CMPT 210: Probability and Computing

Lecture 13

Sharan Vaswani

October 24, 2024

Random variable: A random "variable" R on a probability space is a total function whose domain is the sample space S. The codomain is denoted by V (usually a subset of the real numbers), meaning that $R: S \to V$.

Example: Suppose we toss three independent, unbiased coins. In this case, $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$. *C* is a random variable equal to the number of heads that appear such that $C : S \rightarrow \{0, 1, 2, 3\}$. C(HHT) = 2. **Indicator Random Variable**: An indicator random variable maps every outcome to either 0 or 1. *Example*: Suppose we throw two standard dice, and define M to be the random variable that is 1 iff both throws of the dice produce a prime number, else it is 0.

 $M: \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\} \rightarrow \{0, 1\}.$ M((2, 3)) = 1, M((3, 6)) = 0.

• An indicator random variable partitions the sample space into those outcomes mapped to 1 and those outcomes mapped to 0.

Example: When throwing two dice, if *E* is the event that both throws of the dice result in a prime number, then random variable M = 1 iff event *E* happens, else M = 0.

• The indicator random variable corresponding to an event E is denoted as \mathcal{I}_E , meaning that for $\omega \in E$, $\mathcal{I}_E[\omega] = 1$ and for $\omega \notin E$, $\mathcal{I}_E[\omega] = 0$. In the above example, $M = \mathcal{I}_E$ and since $(2, 4) \notin E$, M((2, 4)) = 0 and since $(3, 5) \in E$, M((3, 5)) = 1.

Random Variables and Events

• In general, a random variable that takes on several values partitions S into several blocks. *Example*: When we toss a coin three times, and define C to be the r.v. that counts the number of heads, C partitions S as follows: $S = \{\underbrace{HHH}_{C=3}, \underbrace{HHT, HTH, THH}_{C=2}, \underbrace{HTT, THT, TTH}_{C=1}, \underbrace{TTT}_{C=0}\}$.

• Each block is a subset of the sample space and is therefore an event. For example, [C = 2] is the event that the number of heads is two and consists of the outcomes {HHT, HTH, THH}.

• Since it is an event, we can compute its probability i.e. $\Pr[C = 2] = \Pr[\{HHT, HTH, THH\}] = \Pr[\{HHT\}] + \Pr[\{THH\}] + \Pr[\{THH\}].$ Since this is a uniform probability space, $\Pr[\omega] = \frac{1}{8}$ for $\omega \in S$ and hence $\Pr[C = 2] = \frac{3}{8}$.

Q: What is $\Pr[C = 0]$, $\Pr[C = 1]$ and $\Pr[C = 3]$? Ans: $\frac{1}{8}$, $\frac{3}{8}$, $\frac{1}{8}$

Q: What is $\sum_{i=0}^{3} \Pr[C=i]$? Ans: 1

• Since a random variable R is a total function that maps every outcome in S to some value in the codomain, $\sum_{i \in \text{Range of } R} \Pr[R = i] = \sum_{i \in \text{Range of } R} \sum_{\omega \text{ s.t. } R(\omega)=i} \Pr[\omega] = \sum_{\omega \in S} \Pr[\omega] = 1.$

Q: Suppose we throw two standard dice one after the other. Let us define R to be the random variable equal to the sum of the dice. What are the outcomes in the event [R = 2]? Ans: $\{(1,1)\}$

Q: What is $\Pr[R = 4]$, $\Pr[R = 9]$? Ans: $\frac{3}{36}$, $\frac{4}{36}$

Q: If M is the indicator random variable equal to 1 iff both throws of the dice produces a prime number, what is Pr[M = 1]? Ans: $\frac{9}{36}$

Distribution Functions

Probability density function (PDF): Let R be a random variable with codomain V. The probability density function of R is the function $PDF_R : V \to [0, 1]$, such that $PDF_R[x] = Pr[R = x]$ if $x \in Range(R)$ and equal to zero if $x \notin Range(R)$.

 $\sum_{x \in V} \mathsf{PDF}_{R}[x] = \sum_{x \in \mathsf{Range}(\mathsf{R})} \mathsf{Pr}[R = x] = 1.$

Cumulative distribution function (CDF): If the codomain is a subset of the real numbers, then the cumulative distribution function is the function $CDF_R : \mathbb{R} \to [0, 1]$, such that $CDF_R[x] = Pr[R \le x]$.

• Importantly, neither PDF_R nor CDF_R involves the sample space of an experiment.

Example: If we flip three coins, and *C* counts the number of heads, then $PDF_C[0] = Pr[C = 0] = \frac{1}{8}$, and $CDF_C[2.3] = Pr[C \le 2.3] = Pr[C = 0] + Pr[C = 1] + Pr[C = 2] = \frac{7}{8}$.

Q: What is $CDF_C[5.8]$? Ans: 1.

• For a general random variable R, as $x \to \infty$, $CDF_R[x] \to 1$ and $x \to -\infty$, $CDF_R[x] \to 0$.

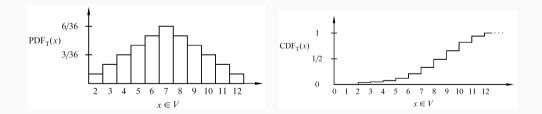
Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define T to be the random variable equal to the sum of the dice. Plot PDF_T and CDF_T

Recall that $T : \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\} \rightarrow V$ where $V = \{2, 3, 4, \dots 12\}$.

 $\mathsf{PDF}_{\mathcal{T}}: \mathcal{V} \to [0,1] \text{ and } \mathsf{CDF}_{\mathcal{T}}: \mathbb{R} \to [0,1].$

For example, $PDF_{T}[4] = Pr[T = 4] = \frac{3}{36}$ and $PDF_{T}[12] = Pr[T = 12] = \frac{1}{36}$.



Questions?