CMPT 210: Probability and Computing

Lecture 11

Sharan Vaswani

October 10, 2024

Q: For $n \times n$ matrices A, B and D, is D = AB?

Algorithm:

- 1. Generate a random n-bit vector x, by making each bit x_i either 0 or 1 independently with probability $\frac{1}{2}$. E.g, for n=2, toss a fair coin independently twice with the scheme H is 0 and T is 1). If we get HT, then set $x=[0\,;\,1]$.
- 2. Compute t = Bx and y = At = A(Bx) and z = Dx.
- 3. Output "yes" if y = z (all entries need to be equal), else output "no".

Computational complexity: Step 1 can be done in O(n) time. Step 2 requires 3 matrix vector multiplications and can be done in $O(n^2)$ time. Step 3 requires comparing two n-dimensional vectors and can be done in O(n) time. Hence, the total computational complexity is $O(n^2)$.

1

Let us run the algorithm on an example. Suppose we have generated x = [1; 0]

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad ; \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
$$Bx = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad y = A(Bx) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad z = Dx = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Hence the algorithm will correctly output "no" since $D \neq AB$.

Q: Suppose we have generated x = [0; 0]. What is y and z? Ans: y = [0; 0] and z = [0; 0]. In this case, y = z and the algorithm will incorrectly output "yes" even though $D \neq AB$.

2

Let us run the algorithm on an example. Suppose we have generated x = [1; 0].

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad ; \quad C = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$Bx = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad y = A(Bx) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ; \quad z = Cx = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Hence the algorithm will correctly output "yes" since C = AB.

Q: Suppose we have generated x = [0; 1]. What is y and z? Ans: y = [1; 0] and z = [1; 0]. In this case again, y = z and the algorithm will correctly output "yes".

3

Let us analyze the algorithm for general matrix multiplication.

Case (i): If D = AB, does the algorithm always output "yes"? Yes! Since D = AB, for any vector x, Dx = ABx.

Case (ii) If $D \neq AB$, does the algorithm always output "no"?

Claim: For any input matrices A, B, D if $D \neq AB$, then the (Basic) Frievald's algorithm will output "no" with probability $\geq \frac{1}{2}$.

Table 1: Probabilities for Basic Frievalds Algorithm

Proof: If $D \neq AB$, we wish to compute the probability that algorithm outputs "yes" and prove that it less than $\frac{1}{2}$.

Define
$$E:=(AB-D)$$
 and $r:=Ex=(AB-D)x=y-z$. If $D\neq AB$, then $\exists (i,j)$ s.t. $E_{i,j}\neq 0$.

 \implies $\Pr[\mathsf{Algorithm\ outputs\ "yes"}] \leq \Pr[r_i = 0]$ (Probabilities are in [0,1])

To complete the proof, on the next slide, we will prove that $\Pr[r_i = 0] \leq \frac{1}{2}$.

$$r_{i} = \sum_{k=1}^{n} E_{i,k} x_{k} = E_{i,j} x_{j} + \sum_{k \neq j} E_{i,k} x_{k} = E_{i,j} x_{j} + \omega \qquad (\omega := \sum_{k \neq j} E_{i,k} x_{k})$$

$$\Pr[r_{i} = 0] = \Pr[r_{i} = 0 | \omega = 0] \Pr[\omega = 0] + \Pr[r_{i} = 0 | \omega \neq 0] \Pr[\omega \neq 0]$$

$$(\text{By the law of total probability})$$

$$\Pr[r_{i} = 0 | \omega = 0] = \Pr[x_{j} = 0] = \frac{1}{2} \qquad (\text{Since } E_{i,j} \neq 0 \text{ and } \Pr[x_{j} = 1] = \frac{1}{2})$$

$$\Pr[r_{i} = 0 | \omega \neq 0] = \Pr[(x_{j} = 1) \cap E_{i,j} = -\omega] = \Pr[(x_{j} = 1)] \Pr[E_{i,j} = -\omega | x_{j} = 1]$$

$$(\text{By def. of conditional probability})$$

$$\implies \Pr[r_{i} = 0 | \omega \neq 0] \leq \Pr[(x_{j} = 1)] = \frac{1}{2} \qquad (\text{Probabilities are in } [0, 1], \Pr[x_{j} = 1] = \frac{1}{2})$$

$$\implies \Pr[r_{i} = 0] \leq \frac{1}{2} \Pr[\omega = 0] + \frac{1}{2} \Pr[\omega \neq 0] = \frac{1}{2} \Pr[\omega = 0] + \frac{1}{2} [1 - \Pr[\omega = 0]] = \frac{1}{2}$$

$$(\Pr[E^{c}] = 1 - \Pr[E])$$

$$\implies \Pr[\text{Algorithm outputs "yes"}] \leq \Pr[r_{i} = 0] \leq \frac{1}{2}.$$

- Hence, if $D \neq AB$, the Algorithm outputs "yes" with probability $\leq \frac{1}{2} \implies$ the Algorithm outputs "no" with probability $\geq \frac{1}{2}$.
- In the worst case, the algorithm can be incorrect half the time! We promised the algorithm would return the correct answer with "high" probability close to 1.
- A common trick in randomized algorithms is to have *m* independent trials of an algorithm and aggregate the answer in some way, reducing the probability of error, thus *amplifying the* probability of success.

