
CMPT 210: Probability and Computing

Lecture 10

Sharan Vaswani

October 8, 2024



Recap

Conditional probability: Pr[E |F ] = Pr[E∩F ]
Pr[F ] .

Multiplication Rule: For events E1,E2, . . . ,En,
Pr[E1 ∩ E2 . . . ∩ En] = Pr[E1] Pr[E2|E1] Pr[E3|E1 ∩ E2] . . .Pr[En|E1 ∩ E2 ∩ . . .En−1].

Bayes Rule: For events E and F if Pr[E ] ̸= 0 and Pr[F ] ̸= 0, then, Pr[F |E ] = Pr[E |F ] Pr[F ]
Pr[E ] .
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Conditional Probability for Complement Events

Q: Prove that for events E , F , Pr[E c |F ] = 1 − Pr[E |F ].

Proof : Since E ∪ E c = S, for an event F such that Pr[F ] ̸= 0,

(E ∪ E c) ∩ F = S ∩ F = F

(E ∪ E c) ∩ F = (E ∩ F ) ∪ (E c ∩ F ) (Distributive Law)

=⇒ Pr[(E ∩ F ) ∪ (E c ∩ F )] = Pr[F ]

Since E ∩ F and E c ∩ F are mutually exclusive events,

Pr[E ∩ F ] + Pr[E c ∩ F ] = Pr[F ] =⇒ Pr[E c ∩ F ]

Pr[F ]
= 1 − Pr[E ∩ F ]

Pr[F ]

=⇒ Pr[E c |F ] = 1 − Pr[E |F ] (By def. of conditional probability)

2



Law of Total Probability and Bayes rule

Law of Total Probability: For events E and F , Pr[E ] = Pr[E |F ] Pr[F ] + Pr[E |F c ] Pr[F c ].
Proof :

E = (E ∩ F ) ∪ (E ∩ F c)

=⇒ Pr[E ] = Pr[(E ∩ F ) ∪ (E ∩ F c)] = Pr[E ∩ F ] + Pr[E ∩ F c ]

(By union-rule for mutually exclusive events)

Pr[E ] = Pr[E |F ] Pr[F ] + Pr[E |F c ] Pr[F c ] (By definition of conditional probability)

Combining Bayes rule and Law of total probability

Pr[F |E ] = Pr[F ∩ E ]

Pr[E ]
=

Pr[E |F ] Pr[F ]
Pr[E ]

(By definition of conditional probability)

Pr[F |E ] = Pr[E |F ] Pr[F ]
Pr[E |F ] Pr[F ] + Pr[E |F c ] Pr[F c ]

(By law of total probability)
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Total Probability - Examples

Q: In answering a question on a multiple-choice test, a student either knows the answer or she
guesses. Let p be the probability that she knows the answer and 1 − p the probability that she
guesses. Assume that a student who guesses at the answer will be correct with probability 1

m ,
where m is the number of multiple-choice alternatives. What is the conditional probability that a
student knew the answer to a question given that she answered it correctly?

Let C be the event that the student answers the question correctly. Let K be the event that the
student knows the answer. We wish to compute Pr[K |C ].

We know that Pr[K ] = p and Pr[C |K c ] = 1/m, Pr[C |K ] = 1. Hence,
Pr[C ] = Pr[C |K ] Pr[K ] + Pr[C |K c ] Pr[K c ] = (1)(p) + 1

m (1 − p).

Pr[K |C ] = Pr[C |K ] Pr[K ]
Pr[C ] = mp

1+(m−1)p .
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Total Probability - Examples

Q: An insurance company believes that people can be divided into two classes — those that are
accident prone and those that are not. Their statistics show that an accident-prone person will
have an accident at some time within a fixed 1-year period with probability 0.4, whereas this
probability decreases to 0.2 for a non-accident-prone person. If we assume that 30% of the
population is accident prone, what is the probability that a new policy holder will have an
accident within a year of purchasing a policy?

Let A = event that a new policy holder will have an accident within a year of purchasing a policy.
Let B = event that the new policy holder is accident prone. We know that Pr[B] = 0.3,
Pr[A|B] = 0.4, Pr[A|Bc ] = 0.2. By the law of total probability,
Pr[A] = Pr[A|B] Pr[B] + Pr[A|Bc ] Pr[Bc ] = (0.4)(0.3) + (0.2)(0.7) = 0.26.

Q: Suppose that a new policy holder has an accident within a year of purchasing their policy.
What is the probability that they are accident prone?

Compute Pr[B|A] = Pr[A|B] Pr[B]
Pr[A] = 0.12

0.26 = 0.4615.
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Total Probability - Examples

Q: Alice is taking a probability class and at the end of each week she can be either up-to-date or
she may have fallen behind. If she is up-to-date in a given week, the probability that she will be
up-to-date (or behind) in the next week is 0.8 (or 0.2, respectively). If she is behind in a given
week, the probability that she will be up-to-date (or behind) in the next week is 0.6 (or 0.4,
respectively). Alice is (by default) up-to-date when she starts the class. What is the probability
that she is up-to-date after three weeks?

Let Ui and Bi be the events that Alice is up-to-date or behind respectively after i weeks. Since
Alice starts the class up-to-date, Pr[U1] = 0.8 and Pr[B1] = 0.2. We also know that
Pr[U2|U1] = 0.8, Pr[U3|U2] = 0.8 and Pr[B2|U1] = 0.2, Pr[B3|U2] = 0.2. Similarly,
Pr[U2|B1] = 0.6, Pr[U3|B2] = 0.6 and Pr[B2|B1] = 0.4, Pr[B3|B2] = 0.4.

We wish to compute Pr[U3]. By the law of total probability,
Pr[U3] = Pr[U3|U2] Pr[U2] + Pr[U3|B2] Pr[B2] and
Pr[U2] = Pr[U2|U1] Pr[U1] + Pr[U2|B1] Pr[B1].

Hence, Pr[U2] = (0.8)(0.8) + (0.6)(0.2) = 0.76, and Pr[U3] = (0.8)(0.76) + (0.6)(0.24) = 0.752.
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Simpson’s Paradox

In 1973, there was a lawsuit against a university with the claim that a male candidate is more
likely to be admitted to the university than a female.

Let us consider a simplified case – there are two departments, EE and CS, and men and women
apply to the program of their choice. Let us define the following events: A is the event that the
candidate is admitted to the program of their choice, FE is the event that the candidate is a
woman applying to EE, FC is the event that the candidate is a woman applying to CS. Similarly,
we can define ME and MC . Assumption: Candidates are either men or women, and that no
candidate is allowed to be part of both EE and CS.

Lawsuit claim: Male candidate is more likely to be admitted to the university than a female i.e.
Pr[A|ME ∪MC ] > Pr[A|FE ∪ FC ].

University response: In any given department, a male applicant is less likely to be admitted
than a female i.e. Pr[A|FE ] > Pr[A|ME ] and Pr[A|FC ] > Pr[A|MC ].

Simpson’s Paradox: Both the above statements can be simultaneously true.
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Simpson’s Paradox

In the above example, Pr[A|FE ] = 0.8 > 0.7 = Pr[A|ME ] and Pr[A|FC ] = 0.5 > 0.4 = Pr[A|MC ].
Pr[A|FE ∪ FC ] ≈ 0.51. Similarly, Pr[A|ME ∪MC ] ≈ 0.69.

In general, Simpson’s Paradox occurs when multiple small groups of data all exhibit a similar
trend, but that trend reverses when those groups are aggregated.
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Questions?
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Back to throwing dice - Independent Events

Q: Suppose we throw two standard dice one after the other. What is the probability that we get
two 6’s in a row?

E = We get a 6 in the second throw. F = We get a 6 in the first throw. E ∩ F = we get two
6’s in a row. We are computing Pr[E ∩ F ]. Pr[E ] = Pr[F ] = 1

6 .

Pr[E |F ] = Pr[E∩F ]
Pr[F ] =⇒ Pr[E ∩ F ] = Pr[E |F ] Pr[F ].

Since the two dice are independent, knowing that we got a 6 in the first throw does not change
the probability that we will get a 6 in the second throw. Hence, Pr[E |F ] = Pr[E ] (conditioning
does not change the probability of the event).

Hence, Pr[E ∩ F ] = Pr[E |F ] Pr[F ] = Pr[E ] Pr[F ] = 1
6

1
6 = 1

36 .
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Independent Events

Independent Events: Events E and F are said to be independent, if knowledge that F has
occurred does not change the probability that E occurs. Formally,

Pr[E |F ] = Pr[E ] ; Pr[E ∩ F ] = Pr[E ] Pr[F ]

Q: I toss two independent, fair coins. What is the probability that I get the HT sequence?

Define E to be the event that I get a heads in the first toss, and F be the event that I get a tails
in the second toss. Since the two coins are independent, events E and F are also independent.
Pr[E ∩ F ] = Pr[E ] Pr[F ] = 1

2
1
2 = 1

4 .

Q: I randomly choose a number from {1, 2, . . . , 10}. E is the event that the number I picked is a
prime. F is the event that the number I picked is odd. Are E and F independent?

Pr[E ] = 2
5 , Pr[F ] = 1

2 , Pr[E ∩ F ] = 3
10 . Pr[E ∩ F ] ̸= Pr[E ] Pr[F ]. Another way: Pr[E |F ] = 3

5
and Pr[E ] = 2

5 , and hence Pr[E |F ] ̸= Pr[E ]. Conditioning on F tell us that prime number
cannot be 2, so it changes the probability of E .
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Independent Events - Example

Q: We have a machine that has 2 independent components. The machine breaks if each of its 2
components break. Suppose each component can break with probability p, what is the
probability that the machine does not break?

Let E1 = Event that the first component breaks, E2 = Event that the second component breaks.
M = Event that the machine breaks = E1 ∩ E2.

Pr[M] = Pr[E1 ∩ E2]. Since the two components are independent, E1 and E2 are independent,
meaning that Pr [E1 ∩ E2] = Pr [E1] Pr[E2] = p2.

Probability that the machine does not break = Pr[Mc ] = 1 − Pr[M] = 1 − p2.
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Independent Events - Examples

Q: We have a new machine that has 2 independent components. The machine breaks if either of
its 2 components break. Suppose each component can break with probability p, what is the
probability that the machine breaks?

For this machine, let M ′ be the event that it breaks. In this case, Pr[M ′] = Pr[E1 ∪ E2].

Incorrect: By the union rule for mutually exclusive events, Pr[E1 ∪ E2] = Pr[E1] + Pr[E2] = 2p.

Mistake: Independence does not imply mutual exclusivity and we can not use the union rule.
Independence implies that for any two events E and F , Pr[E ∩ F ] = Pr[E ] Pr[F ], while mutual
exclusivity requires that Pr[E ∩ F ] = 0.

Correct way:

Pr[E1 ∪ E2] = Pr[E1] + Pr[E2]− Pr[E1 ∩ E2] (By the inclusion-exclusion rule)

= Pr[E1] + Pr[E2]− Pr[E1] Pr[E2] = 2p − p2 (Since E1 and E2 are independent.)
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Questions?
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Matrix Multiplication

Given two n × n matrices – A and B, if C = AB, then,

Ci,j =
n∑

k=1

Ai,kBk,j

Hence, in the worst case, computing Ci,j is an O(n) operation. There are n2 entries to fill in C

and hence, in the absence of additional structure, matrix multiplication takes O(n3) time.

There are non-trivial algorithms for doing matrix multiplication more efficiently:

(Strassen, 1969) Requires O(n2.81) operations.

(Coppersmith-Winograd, 1987) Requires O(n2.376) operations.

(Alman-Williams, 2020) Requires O(n2.373) operations.

Belief is that it can be done in time O(n2+ϵ) for ϵ > 0.
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Verifying Matrix Multiplication

As an example, let us focus on A, B being binary 2 × 2 matrices.

Example: A =

[
0 1
1 0

]
, B =

[
1 0
1 1

]
then C = AB =

[
1 1
1 0

]
Objective: Verify whether a matrix multiplication operation is correct.

Trivial way: Do the matrix multiplication ourselves, and verify it using O(n3) (or O(n2.373))
operations.

Frievald’s Algorithm: Randomized algorithm to verify matrix multiplication with high
probability in O(n2) time.
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