
CMPT 419/983: Theoretical Foundations of
Reinforcement Learning

Lecture 9

Sharan Vaswani

November 3, 2023

Recap

Politex

Policy Evaluation: Compute the estimate q̂k := q̂πk and define q̄k :=
∑k

i=0 q̂i .

Policy Update: ∀(s, a), πk+1(a|s) = exp(η q̄k (s,a))∑
a′ exp(η q̄k (s,a′))

.

If q̂k = qπk + ϵk , ∥v π̄K − v∗∥∞ ≤ ∥Regret(K)∥∞
(1−γ)K +

2maxk∈{0,...,K−1}∥ϵk∥∞
(1−γ) , where

Regret(K) =
∑K−1

k=0 [Mπ∗ q̂k −Mπk
q̂k] ∈ RS . ∥Regret(K))∥∞ = maxs |RK (π

∗, s)|, where
RK (π

∗, s) :=
∑K−1

k=0 ⟨π∗(·|s), q̂k(s, ·)⟩ − ⟨πk(·|s), q̂k(s, ·)⟩.
To bound RK (π

∗, s), we cast Politex as an online linear optimization for each state s ∈ S:
In each iteration k ∈ [K], Politex chooses a distribution πk(·|s) ∈ ∆A for each state s.
The “environment” chooses and reveals the vector q̂k(s, ·) ∈ RA and Politex receives a reward
⟨πk(·|s), q̂k(s, ·)⟩.
The aim is to do as well as the optimal policy π∗ that receives a reward ⟨π∗(·|s), q̂k(s, ·)⟩

1

Recap

Generic online optimization

In iteration k , the algorithm chooses wk ∈ W. The environment then chooses and reveals
the function fk : W → R and the algorithm receives a reward fk(wk).

Regret: RK (w
∗) :=

∑K−1
k=0 [fk(w

∗)− fk(wk)].

Online Gradient Ascent: wk+1 = argmaxw∈W

[
⟨∇fk(wk),w⟩ − 1

2ηk
∥w − wk∥2

2

]
.

Online Mirror Ascent: wk+1 = argmaxw∈W

[
⟨∇fk(wk),w⟩ − 1

ηk
Dψ(w ,wk)

]
. Here ψ is

the mirror map and Dψ(y , x) := ψ(y)− ψ(x)− ⟨∇ψ(x), y − x⟩ is the Bregman divergence.

Online Mirror Ascent is equivalent to the following update:
wk+1/2 = (∇ψ)−1 (∇ψ(wk) + ηk∇fk(wk)), wk+1 = argminw∈W Dψ(w ,wk+1/2).

Lipschitz continuous functions: For all w , ∥∇f (w)∥∞ ≤ G

Strongly-convex functions: For all y , x , f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ ν
2 ∥y − x∥2

1

2

Digression – Online Optimization

Claim: For G -Lipschitz linear functions {fk}K−1
k=0 such that fk(w) = ⟨gk ,w⟩, online mirror ascent

with a ν strongly-convex mirror map ψ, ηk = η =
√

2ν
K

D
G where D2 := maxu∈W Dψ(u,w0) has

the following regret for all u ∈ W,

RK (u) ≤
√

2DG√
ν

√
K ,

Proof : Recall the mirror ascent update: ∇ϕ(wk+1/2) = ∇ϕ(wk) + ηk∇fk(wk).
Setting ηk = η and using the definition of regret

RK (u) =
∑K−1

k=0 [⟨gk , u⟩ − ⟨gk ,wk⟩] =
∑K−1

k=0
1
η

〈
∇ψ(wk+1/2)−∇ψ(wk), u − wk

〉
.

Using the three point Bregman property: for any 3 points x , y , z ,
⟨∇ψ(z)−∇ψ(y), z − x⟩ = Dψ(x , z) + Dψ(z , y)− Dψ(x , y),〈

∇ψ(wk+1/2)−∇ψ(wk), u − wk

〉
= Dψ(u,wk) + Dψ(wk ,wk+1/2)− Dψ(u,wk+1/2)

=⇒ RK (u) =
K−1∑
k=0

1
η

[
Dψ(u,wk) + Dψ(wk ,wk+1/2)− Dψ(u,wk+1/2)

]
3

Digression – Online Optimization

RK (u) =
∑K−1

k=0
1
η

[
Dψ(u,wk) + Dψ(wk ,wk+1/2)− Dψ(u,wk+1/2)

]
, wk+1 = argminw∈W Dψ(w ,wk+1/2).

Recall the optimality condition: for a convex function f and a convex set X , if
x∗ = argminx∈X f (x), then ∀x ∈ X , ⟨∇f (x∗), x∗ − x⟩ ≤ 0. Q: Why is Dψ(w ,wk+1/2) convex in
w? Ans: Sum of a convex and linear function.

Using this condition for f = Dψ(w ,wk+1/2) and x∗ = wk+1, we infer that for any w ∈ W,〈
∇ψ(wk+1)−∇ψ(wk+1/2),wk+1 − w

〉
≤ 0

=⇒ Dψ(w ,wk+1) + Dψ(wk+1,wk+1/2)− Dψ(w ,wk+1/2) ≤ 0
(3 point Bregman property)

=⇒ − Dψ(u,wk+1/2) ≤ −Dψ(u,wk+1)− Dψ(wk+1,wk+1/2) (Setting w = u)

=⇒ RK (u) ≤
K−1∑
k=0

1
η
[Dψ(u,wk)− Dψ(u,wk+1)] +

[
Dψ(wk ,wk+1/2)− Dψ(wk+1,wk+1/2)

]
≤ 1
η
Dψ(u,w0) +

1
η

K−1∑
k=0

[
Dψ(wk ,wk+1/2)− Dψ(wk+1,wk+1/2)

]
4

Digression – Online Optimization

Recall that RK (u) ≤ 1
η
Dψ(u,w0) +

1
η

∑K−1
k=0

[
Dψ(wk ,wk+1/2)− Dψ(wk+1,wk+1/2)

]
. By def. of Dψ,

Dψ(wk ,wk+1/2)− Dψ(wk+1,wk+1/2) = ψ(wk)− ψ(wk+1)− ⟨∇ψ(wk+1/2),wk − wk+1⟩

≤ ⟨∇ψ(wk)−∇ψ(wk+1/2),wk − wk+1⟩ −
ν

2
∥wk − wk+1∥2

1

(Using strong-convexity of ψ with y = wk+1 and x = wk)

= −η⟨gk ,wk − wk+1⟩ −
ν

2
∥wk − wk+1∥2

1 (Using the mirror ascent update)

≤ ηG ∥wk − wk+1∥1 −
ν

2
∥wk − wk+1∥2

1

(Holder’s inequality: ⟨x , y⟩ ≤ ∥x∥∞ ∥y∥1 and since fk is G -Lipschitz)

≤ η2G 2

2ν
(For all z , a z − bz2 ≤ a2

4b)

=⇒ RK (u) ≤
1
η
Dψ(u,w0) +

ηG 2 K

2ν
≤ D2

η
+
ηG 2 K

2ν
(Since Dψ(u,w0) ≤ D2)

RK (u) ≤
√

2DG√
ν

√
K (Setting η =

√
2ν
K

D
G)

5

Convergence of Politex

• We have proved that: For G -Lipschitz linear functions {fk}K−1
k=0 such that fk(w) = ⟨gk ,w⟩,

online mirror ascent with a ν strongly-convex mirror map ψ, ηk = η =
√

2ν
K

D
G where

D2 := maxu∈W Dψ(u,w0) has the following regret for all u ∈ W, RK (u) ≤
√

2DG√
ν

√
K .

• For Politex (for s ∈ S), w = πs := π(·|s), W = ∆A, gk = q̂k(s, ·) and u = π∗
s := π∗(·|s).

Claim 1: For policies π, π̃, if πs := π(·|s) ∈ ∆A, with the negative entropy mirror map equal to:
ψ(πs) =

∑
a∈A π(a|s) log(π(a|s)), the corresponding Bregman divergence Dψ(πs , π̃s) is equal to

the KL divergence equal to: KL(πs ||π̃s) =
∑

a∈A π(a|s) log (π(a|s)/π̃(a|s))..

Claim 2: For an arbitrary state s ∈ S, at iteration k ≥ 0, online mirror ascent with
w = π(·|s) ∈ RA, negative entropy mirror map, step-size ηk = η for all k has the following
multiplicative weights update on linear losses fk(π(·|s)) = ⟨π(·|s), q̂k(s, ·)⟩ for all a ∈ A,
πk+1(a|s) = πk (a|s) exp(η q̂k (s,a))∑

a′∈A πk (a′|s) exp(η q̂k (s,a′))

Claim 3: With π0(a|s) = 1
A for each (s, a), the above update is equal to the update for Politex.

Prove in Assignment 3! 6

Convergence of Politex

Using the claims on the previous slide, we can conclude that Politex (for state s ∈ S) has the
following regret: RK (π

∗
s) ≤

√
2DG√
ν

√
K . We now need to characterize the constants D,G , ν.

• Recall that D2 = maxDψ(u,w0) = KL(π∗(·|s)||π0(·|s)). For all a ∈ A, choose π0(a|s) = 1
A

i.e. for each state, π0 is a uniform distribution over actions. With this choice,

KL(π∗(·|s)||π0(·|s)) =
∑
a

π∗(a|s) log (Aπ∗(a|s)) ≤ log
(
A max

a
π∗(a|s)

) ∑
a

π∗(a|s) ≤ log (A)

• Recall that ∥∇f (x)∥∞ ≤ G . If the q̂k(s, a) functions are constrained to lie in the [0, 1/1−γ]
interval, then G = 1

1−γ .

• Recall that ν is the strong-convexity of ψ, i.e. the following inequality holds:
ψ(y) ≥ ψ(x) + ⟨∇ψ(x), y − x⟩+ ν

2 ∥y − x∥2
1.

ψ(y)− ψ(x)− ⟨∇ψ(x), y − x⟩ = Dψ(y , x) = KL(y ||x) ≥ 1
2
∥y − x∥2

1 (Pinsker’s inequality)

Hence, ν = 1.

7

Convergence of Politex

Putting everything together, we can prove the following claim:

Claim: If q̂(s, a) ∈ [0, 1/1−γ] for all (s, a), Politex with π0(a|s) = 1
A for all (s, a) and

ηk = η =
√

2 log(A)
K (1 − γ) has the following regret,

RK (π
∗, s) ≤

√
2 log(A)

1 − γ

√
K =⇒ ∥Regret(K)∥∞ =

√
2 log(A)

1 − γ

√
K

Combining the above bound with the general result for Politex,∥∥v π̄K − v∗∥∥
∞ ≤

√
2 log(A)

(1 − γ)2
√
K

+
2maxk∈{0,...,K−1} ∥ϵk∥∞

(1 − γ)

Controlling the policy evaluation error using G experimental design and Monte-Carlo estimation
ensures that maxk∈{0,...,K−1} ∥ϵk∥∞ ≤ εb

(
1 +

√
d
)
+ εs

√
d .

=⇒
∥∥v π̄K − v∗∥∥

∞ ≤
√

2 log(A)

(1 − γ)2
√
K

+
2εb

(
1 +

√
d
)
+ 2εs

√
d

(1 − γ)

8

Policy Gradient

8

Policy Gradient

• For approximate policy iteration and Politex, we parameterized the q functions, and designed
algorithms that avoid the explicit dependence on S .

• Policy gradient methods directly parameterize the policy and use gradient ascent to maximize
the value function. Formally, given a policy parameterization s.t. π = h(θ) and a step-size η,
policy gradient methods have the following update:

θt+1 = θt + η∇θJ(θt) where J(θ) := vπθ (ρ) = Es0∼ρv
πθ (s0)

• Common policy parameterizations include:
Tabular softmax policy parameterization: ∀(s, a) ∈ S ×A, there is a parameter θ(s, a)
s.t. π(a|s) = exp(θ(s,a))∑

a′ exp(θ(s,a
′))

Log-linear policies: Given access to features Φ ∈ RSA×d , π(a|s) = exp(⟨ϕ(s,a),θ⟩)∑
a′ exp(⟨ϕ(s,a′),θ⟩)

for
parameter θ ∈ Rd .
Energy-based policies: Using a general function approximation (deep neural network)
fθ : S ×A → R, π(a|s) = exp(fθ(s,a))∑

a′ exp(fθ(s,a
′))) .

9

Policy Gradient

In order to calculate ∇J(θ) for a general policy parameterization, we recall the definitions of the
state occupancy measure dπ ∈ RS and the state-action occupancy measure µπ ∈ RS×A.

µπ(s, a) := (1 − γ)
∑
s0∈S

ρ(s0)
∞∑
t=0

γt Pr[St = s,At = a|S0 = s0]

dπ(s) := (1 − γ)
∑
s0∈S

ρ(s0)
∞∑
t=0

γt Pr[St = s|S0 = s0]

In Assignment 2, we proved that if r ∈ RS×A is the reward vector,
(i) vπ(ρ) = 1

1−γ ⟨µ
π, r⟩, (ii) dπ(s) =

∑
a µ

π(s, a), (iii) π(a|s) = µπ(s,a)∑
a′ µ

π(s,a′) . Hence,

vπ(ρ) =
1

1 − γ

∑
s

dπ(s)
∑
a

π(a|s) r(s, a) = 1
1 − γ

Es∼dπEa∼π(·|s) r(s, a)

Recall that vπ(ρ) can be (approximately) computed by rolling out trajectories and using
Monte-Carlo estimation. By the above equivalence, the expectation Es∼dπEa∼π(·|s) can also be
estimated similarly.

10

Policy Gradient Theorem

Claim: ∇θJ(θ) =
∂vπθ (ρ)
∂θ = 1

1−γEs∼dπθ

[∑
a∈A

∂πθ(a|s)
∂θ qπθ (s, a)

]
.

Proof :

vπθ (s) =
∑
a

πθ(a|s) qπθ (s, a) =⇒ ∂vπθ (s)

∂θ
=

∑
a

[
∂πθ(a|s)
∂θ

qπθ (s, a) + πθ(a|s)
∂qπθ (s, a)

∂θ

]
qπθ (s, a) = r(s, a) + γ

∑
s′∈S

P(s ′|s, a) vπθ (s ′) =⇒ ∂qπθ (s, a)

∂θ
= γ

∑
s′∈S

P(s ′|s, a) ∂v
πθ (s ′)

∂θ

=⇒ ∂vπθ (s)

∂θ
=

∑
a

[
∂πθ(a|s)
∂θ

qπθ (s, a)

]
+ γ

∑
s′∈S

∑
a

P(s ′|s, a)πθ(a|s)
∂vπθ (s ′)

∂θ

∂vπθ (s)

∂θ
=

∑
a

[
∂πθ(a|s)
∂θ

qπθ (s, a)

]
+ γ

∑
s′

Pπθ
[s, s ′]

∂vπθ (s ′)

∂θ

Hence, ∂v
πθ (s)
∂θ can be expressed in terms of ∂vπθ (s′)

∂θ . We will use this result recursively from the
starting state.

11

Policy Gradient Theorem

Recall that ∂vπθ (s)
∂θ

=
∑

a

[
∂πθ(a|s)
∂θ

qπθ (s, a)
]
+ γ

∑
s′ Pπθ [s, s

′] ∂v
πθ (s′)
∂θ

. Starting from state s0,

∂vπθ (s0)

∂θ
=

∑
a0

[
∂πθ(a0|s0)

∂θ
qπθ (s0, a0)

]
︸ ︷︷ ︸

:=ω(s0)

+γ
∑
s1

Pπθ
[s0, s1]

∂vπθ (s1)

∂θ

= ω(s0) + γ
∑
s1

Pπθ
[s0, s1]

[∑
a1

[
∂πθ(a1|s1)

∂θ
qπθ (s1, a1)

]
+ γ

∑
s2

Pπθ
[s1, s2]

∂vπθ (s2)

∂θ

]

= ω(s0) + γ
∑
s1

Pπθ
[s0, s1]ω(s1) + γ2

∑
s1

∑
s2

Pπθ
[s0, s1]Pπθ

[s1, s2]
∂vπθ (s2)

∂θ

= ω(s0) + γ
∑
s1

Pr[S1 = s1|S0 = s0]ω(s1) + γ2
∑
s2

Pr[S2 = s2|S0 = s0]
∂vπθ (s2)

∂θ

=⇒ ∂vπθ (s0)

∂θ
=

∞∑
t=0

γt

[∑
st

Pr[St = st |S0 = s0]ω(st)

]
(Recursively unrolling)

12

Policy Gradient Theorem

Recall that ∂vπθ (s0)
∂θ

=
∑∞

t=0 γt
[∑

st
Pr[St = st |S0 = s0]ω(st)

]
. Rearranging the sum,

∂vπθ (s0)

∂θ
=

∑
s

[∞∑
t=0

γt Pr[St = s|S0 = s0]

]
ω(s)

=⇒ ∂vπθ (ρ)

∂θ
=

∑
s0

ρ(s0)
∂vπθ (s0)

∂θ
=

∑
s0

ρ(s0)
∑
s

[∞∑
t=0

γt Pr[St = s|S0 = s0]

]
ω(s)

=
∑
s

[∑
s0

ρ(s0)

[∞∑
t=0

γt Pr[St = s|S0 = s0]

]]
ω(s)

=
1

1 − γ

∑
s

dπθ (s)ω(s) =
1

1 − γ

∑
s

dπθ (s)
∑
a

[
∂πθ(a|s)
∂θ

qπθ (s, a)

]
(By def. of dπ(s))

=⇒ ∂vπθ (ρ)

∂θ
=

1
1 − γ

Es∼dπθ

[∑
a∈A

∂πθ(a|s)
∂θ

qπθ (s, a)

]
13

Policy Gradient Theorem

In order to compute ∂vπθ (ρ)
∂θ = 1

1−γEs∼dπθ

[∑
a∈A

∂πθ(a|s)
∂θ qπθ (s, a)

]
algorithmically,

let us simplify
[∑

a∈A
∂πθ(a|s)
∂θ qπθ (s, a)

]
,[∑

a∈A

∂πθ(a|s)
∂θ

qπθ (s, a)

]
=

[∑
a∈A

πθ(a|s)
1

πθ(a|s)
∂πθ(a|s)
∂θ

qπθ (s, a)

]

=

[∑
a∈A

πθ(a|s)
∂ ln(πθ(a|s))

∂θ
qπθ (s, a)

]
= Ea∼πθ(·|s)

[
∂ ln(πθ(a|s))

∂θ
qπθ (s, a)

]
∂vπθ (ρ)

∂θ
=

1
1 − γ

Es∼dπθEa∼πθ(·|s)

[
∂ ln(πθ(a|s))

∂θ
qπθ (s, a)

]
The term ∂ ln(πθ(a|s))

∂θ is referred to as the score function.

As before, the Es∼dπEa∼π(·|s) expectations can be computed by rolling out trajectories starting
at s0 ∼ ρ, taking actions at ∼ πθ(·|st) for t ≥ 0 and using Monte-Carlo estimation. The gradient
expression involves qπ(s, a) that can be estimated using a policy evaluation method such as TD.

14

Softmax Policy Gradient

The policy gradient theorem gives us a handle on ∇θJ(θ) enabling us to use the resulting update.

In order to analyze the convergence of policy gradient, we will only focus on the tabular softmax
policy parameterization in this course.

Tabular softmax policy parameterization: Consider θ ∈ RA and the function h : RA → RA

such that h(θ) = πθ where πθ(a) =
exp(θ(a))∑
a′ exp(θ(a

′)) . For the tabular softmax policy
parameterization, πθ(·|s) = h(θ(s, ·)).

Claim: The Jacobian of h : RA → RA is given by H(πθ) ∈ RA×A = diag(πθ)− πθ π
T
θ where

diag(πθ) ∈ RA×A is a diagonal matrix s.t. [diag(πθ)]a,a = πθ(a) and πθ ∈ RA s.t.
πθ(a) =

exp(θ(a))∑
a′ exp(θ(a

′)) .

Prove in Assignment 4!

Let us first instantiate the policy gradient expression with this choice of the policy
parameterization.

15

Softmax Policy Gradient

Claim: For the tabular softmax policy parameterization,

∂vπθ (ρ)

∂θ(s, a)
=

dπθ (s)

1 − γ
πθ(a|s) aπθ (s, a) ,

where aπθ (s, a) = qπθ (s, a)− vπθ (s) is the advantage (over πθ) of taking action a in state s.
Proof : For vector θ, we know that ∂vπθ (ρ)

∂θ = 1
1−γEs′∼dπθ

[∑
a′∈A

∂πθ(a
′|s′)

∂θ qπθ (s ′, a′)
]
.

For the tabular softmax policy parameterization, H(πθ) =
∂πθ

∂θ = diag(πθ)− πθ π
T
θ .

Since there is no coupling between the parameters θ(s, a), for s ′ ̸= s and any a ∈ A,
πθ(a|s ′) does not depend on θ(s, a) and hence, ∂πθ(a|s′))

∂θ(s,·) = 0.

∂vπθ (ρ)

∂θ(s, ·)
=

dπθ (s)

1 − γ

∑
a′∈A

∂πθ(a
′|s)

∂θ(s, ·)
qπθ (s, a′) =

dπθ (s)

1 − γ

∂πθ(·|s)
∂θ(s, ·)︸ ︷︷ ︸

A×A

qπθ (s, ·)︸ ︷︷ ︸
A×1

=
dπθ (s)

1 − γ
H(πθ(·|s)) qπθ (s, ·) = dπθ (s)

1 − γ

[
diag(πθ(·|s))− πθ(·|s)πθ(·|s)T

]
qπθ (s, ·)

16

Softmax Policy Gradient

Recall that ∂vπθ (ρ)
∂θ(s,·) = dπθ (s)

1−γ
[
diag(πθ(·|s))− πθ(·|s)πθ(·|s)T

]
qπθ (s, ·). Define

ω ∈ RA :=
[
πθ(a1|s) qπθ (s, a1), πθ(a2|s) qπθ (s, a2) . . . πθ(aA|s) qπθ (s, aA)

]
. Hence,

∂vπθ (ρ)

∂θ(s, ·)
=

dπθ (s)

1 − γ

[
ω −

[∑
a′

πθ(a
′|s) qπ(s, a′)

]
πθ(·|s)

]

Taking the component corresponding to action a,

=⇒ ∂vπθ (ρ)

∂θ(s, a)
=

dπθ (s)

1 − γ
[πθ(a|s) qπθ (s, a)− πθ(a|s) vπθ (s)]

=
dπθ (s)

1 − γ
πθ(a|s) aπθ (s, a)

17

Softmax Policy Gradient for Bandits

In order to analyze the convergence of softmax policy gradient, let us further simplify the
problem and focus on the special case of multi-armed bandits where γ = 0 and S = 1. In this
case, assuming that the rewards r ∈ RA are deterministic,

J(θ) = Ea∼πθ
[r(a)] = ⟨πθ, r⟩

For the tabular softmax parameterization, θ ∈ RA and πθ = h(θ). In this case, qπθ ∈ RA = r

and aπθ ∈ RA = r − ⟨πθ, r⟩. Hence,

∂J(θ)

∂θ(a)
=
∂vπθ (ρ)

∂θ(a)
= πθ(a) [r(a)− ⟨πθ, r⟩]

Hence, for multi-armed bandit problems, the softmax policy gradient with a tabular
parameterization can be written as: θt+1 = θt + η [πθ(a) [r(a)− ⟨πθ, r⟩]].

Q: Why is this algorithm impractical? Ans: Assumes r is deterministic and known

Next, we will see that even for this special case, J(θ) is non-concave in θ. This implies that in
general, J(θ) is a non-concave function of θ when using the softmax parameterization.

18

