CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 9

Sharan Vaswani November 3, 2023

Politex

- Policy Evaluation: Compute the estimate $\hat{q}_k := \hat{q}^{\pi_k}$ and define $\bar{q}_k := \sum_{i=0}^k \hat{q}_i$.
- Policy Update: $\forall (s, a), \ \pi_{k+1}(a|s) = \frac{\exp(\eta \ \bar{q}_k(s, a))}{\sum_{a'} \exp(\eta \ \bar{q}_k(s, a'))}.$
- If $\hat{q}^k = q^{\pi_k} + \epsilon_k$, $\|v^{\bar{\pi}_K} v^*\|_{\infty} \leq \frac{\|\operatorname{Regret}(K)\|_{\infty}}{(1-\gamma)K} + \frac{2\max_{k \in \{0,\dots,K-1\}}\|\epsilon_k\|_{\infty}}{(1-\gamma)}$, where $\operatorname{Regret}(K) = \sum_{k=0}^{K-1} [\mathcal{M}_{\pi^*}\hat{q}_k - \mathcal{M}_{\pi_k}\hat{q}_k] \in \mathbb{R}^S$. $\|\operatorname{Regret}(K))\|_{\infty} = \max_s |R_K(\pi^*, s)|$, where $R_K(\pi^*, s) := \sum_{k=0}^{K-1} \langle \pi^*(\cdot|s), \hat{q}_k(s, \cdot) \rangle - \langle \pi_k(\cdot|s), \hat{q}_k(s, \cdot) \rangle$.

• To bound $R_{\mathcal{K}}(\pi^*, s)$, we cast Politex as an online linear optimization for each state $s \in \mathcal{S}$:

- In each iteration $k \in [K]$, Politex chooses a distribution $\pi_k(\cdot|s) \in \Delta_A$ for each state s.
- The "environment" chooses and reveals the vector $\hat{q}_k(s, \cdot) \in \mathbb{R}^A$ and Politex receives a reward $\langle \pi_k(\cdot|s), \hat{q}_k(s, \cdot) \rangle$.
- The aim is to do as well as the optimal policy π^* that receives a reward $\langle \pi^*(\cdot|s), \hat{q}_k(s, \cdot) \rangle$

Recap

Generic online optimization

- In iteration k, the algorithm chooses $w_k \in \mathcal{W}$. The environment then chooses and reveals the function $f_k : \mathcal{W} \to \mathbb{R}$ and the algorithm receives a reward $f_k(w_k)$.
- **Regret**: $R_{\mathcal{K}}(w^*) := \sum_{k=0}^{K-1} [f_k(w^*) f_k(w_k)].$
- Online Gradient Ascent: $w_{k+1} = \arg \max_{w \in \mathcal{W}} \left[\langle \nabla f_k(w_k), w \rangle \frac{1}{2\eta_k} \|w w_k\|_2^2 \right].$
- Online Mirror Ascent: $w_{k+1} = \arg \max_{w \in \mathcal{W}} \left[\langle \nabla f_k(w_k), w \rangle \frac{1}{\eta_k} D_{\psi}(w, w_k) \right]$. Here ψ is the mirror map and $D_{\psi}(y, x) := \psi(y) \psi(x) \langle \nabla \psi(x), y x \rangle$ is the Bregman divergence.
- Online Mirror Ascent is equivalent to the following update: $w_{k+1/2} = (\nabla \psi)^{-1} (\nabla \psi(w_k) + \eta_k \nabla f_k(w_k)), \ w_{k+1} = \arg \min_{w \in \mathcal{W}} D_{\psi}(w, w_{k+1/2}).$
- Lipschitz continuous functions: For all w, $\left\| \nabla f(w) \right\|_{\infty} \leq G$
- Strongly-convex functions: For all $y, x, f(y) \ge f(x) + \langle \nabla f(x), y x \rangle + \frac{\nu}{2} \|y x\|_1^2$

Digression – Online Optimization

Claim: For *G*-Lipschitz linear functions $\{f_k\}_{k=0}^{K-1}$ such that $f_k(w) = \langle g_k, w \rangle$, online mirror ascent with a ν strongly-convex mirror map ψ , $\eta_k = \eta = \sqrt{\frac{2\nu}{K}} \frac{D}{G}$ where $D^2 := \max_{u \in \mathcal{W}} D_{\psi}(u, w_0)$ has the following regret for all $u \in \mathcal{W}$,

$$R_{K}(u) \leq rac{\sqrt{2}\,DG}{\sqrt{
u}}\,\sqrt{K}$$

Proof: Recall the mirror ascent update: $\nabla \phi(w_{k+1/2}) = \nabla \phi(w_k) + \eta_k \nabla f_k(w_k)$. Setting $\eta_k = \eta$ and using the definition of regret

$$R_{\mathcal{K}}(u) = \sum_{k=0}^{\mathcal{K}-1} [\langle g_k, u \rangle - \langle g_k, w_k \rangle] = \sum_{k=0}^{\mathcal{K}-1} \frac{1}{\eta} \left\langle \nabla \psi(w_{k+1/2}) - \nabla \psi(w_k), u - w_k \right\rangle.$$

Using the three point Bregman property: for any 3 points x, y, z, $\langle \nabla \psi(z) - \nabla \psi(y), z - x \rangle = D_{\psi}(x, z) + D_{\psi}(z, y) - D_{\psi}(x, y),$ $\langle \nabla \psi(w_{k+1/2}) - \nabla \psi(w_k), u - w_k \rangle = D_{\psi}(u, w_k) + D_{\psi}(w_k, w_{k+1/2}) - D_{\psi}(u, w_{k+1/2})$ $\implies R_K(u) = \sum_{k=0}^{K-1} \frac{1}{\eta} \left[D_{\psi}(u, w_k) + D_{\psi}(w_k, w_{k+1/2}) - D_{\psi}(u, w_{k+1/2}) \right]$

Digression – Online Optimization

$$R_{K}(u) = \sum_{k=0}^{K-1} \frac{1}{\eta} \left[D_{\psi}(u, w_{k}) + D_{\psi}(w_{k}, w_{k+1/2}) - D_{\psi}(u, w_{k+1/2}) \right], \ w_{k+1} = \arg\min_{w \in \mathcal{W}} D_{\psi}(w, w_{k+1/2}).$$

Recall the optimality condition: for a convex function f and a convex set \mathcal{X} , if $x^* = \arg \min_{x \in \mathcal{X}} f(x)$, then $\forall x \in \mathcal{X}$, $\langle \nabla f(x^*), x^* - x \rangle \leq 0$. Q: Why is $D_{\psi}(w, w_{k+1/2})$ convex in w? Ans: Sum of a convex and linear function.

Using this condition for $f = D_{\psi}(w, w_{k+1/2})$ and $x^* = w_{k+1}$, we infer that for any $w \in \mathcal{W}$,

$$\implies -D_{\psi}(u, w_{k+1/2}) \leq -D_{\psi}(u, w_{k+1}) - D_{\psi}(w_{k+1}, w_{k+1/2}) \qquad (\text{Setting } w = u)$$

$$\implies R_{K}(u) \leq \sum_{k=0}^{K-1} \frac{1}{\eta} \left[D_{\psi}(u, w_{k}) - D_{\psi}(u, w_{k+1}) \right] + \left[D_{\psi}(w_{k}, w_{k+1/2}) - D_{\psi}(w_{k+1}, w_{k+1/2}) \right]$$

$$\leq \frac{1}{\eta} D_{\psi}(u, w_{0}) + \frac{1}{\eta} \sum_{k=0}^{K-1} \left[D_{\psi}(w_{k}, w_{k+1/2}) - D_{\psi}(w_{k+1}, w_{k+1/2}) \right]$$

4

Digression – Online Optimization

Recall that $R_{K}(u) \leq \frac{1}{\pi} D_{\psi}(u, w_{0}) + \frac{1}{\pi} \sum_{k=0}^{K-1} \left[D_{\psi}(w_{k}, w_{k+1/2}) - D_{\psi}(w_{k+1}, w_{k+1/2}) \right]$. By def. of D_{ψ} , $D_{\psi}(w_k, w_{k+1/2}) - D_{\psi}(w_{k+1}, w_{k+1/2}) = \psi(w_k) - \psi(w_{k+1}) - \langle \nabla \psi(w_{k+1/2}), w_k - w_{k+1/2} \rangle$ $\leq \langle \nabla \psi(\mathbf{w}_k) - \nabla \psi(\mathbf{w}_{k+1/2}), \mathbf{w}_k - \mathbf{w}_{k+1} \rangle - \frac{\nu}{2} \|\mathbf{w}_k - \mathbf{w}_{k+1}\|_1^2$ (Using strong-convexity of ψ with $y = w_{k+1}$ and $x = w_k$) $= -\eta \langle g_k, w_k - w_{k+1} \rangle - \frac{\nu}{2} \|w_k - w_{k+1}\|_1^2$ (Using the mirror ascent update) $\leq \eta G \|w_k - w_{k+1}\|_1 - \frac{\nu}{2} \|w_k - w_{k+1}\|_1^2$ (Holder's inequality: $\langle x, y \rangle \leq ||x||_{\infty} ||y||_{1}$ and since f_{k} is *G*-Lipschitz) $\leq \frac{\eta^2 G^2}{2}$ (For all z, $az - bz^2 < \frac{a^2}{4b}$) $\implies R_{\mathcal{K}}(u) \leq \frac{1}{n} D_{\psi}(u, w_0) + \frac{\eta G^2 K}{2\nu} \leq \frac{D^2}{n} + \frac{\eta G^2 K}{2\nu}$ (Since $D_{\psi}(u, w_0) < D^2$) $R_{K}(u) \leq \frac{\sqrt{2}DG}{\sqrt{u}}\sqrt{K}$ (Setting $\eta = \sqrt{\frac{2\nu}{\kappa} \frac{D}{C}}$)

5

Convergence of Politex

• We have proved that: For *G*-Lipschitz linear functions $\{f_k\}_{k=0}^{K-1}$ such that $f_k(w) = \langle g_k, w \rangle$, online mirror ascent with a ν strongly-convex mirror map ψ , $\eta_k = \eta = \sqrt{\frac{2\nu}{K}} \frac{D}{G}$ where $D^2 := \max_{u \in \mathcal{W}} D_{\psi}(u, w_0)$ has the following regret for all $u \in \mathcal{W}$, $R_K(u) \leq \frac{\sqrt{2}DG}{\sqrt{K}} \sqrt{K}$.

• For Politex (for $s \in S$), $w = \pi_s := \pi(\cdot|s)$, $\mathcal{W} = \Delta_A$, $g_k = \hat{q}_k(s, \cdot)$ and $u = \pi_s^* := \pi^*(\cdot|s)$.

Claim 1: For policies $\pi, \tilde{\pi}$, if $\pi_s := \pi(\cdot|s) \in \Delta_A$, with the *negative entropy mirror map* equal to: $\psi(\pi_s) = \sum_{a \in \mathcal{A}} \pi(a|s) \log(\pi(a|s))$, the corresponding Bregman divergence $D_{\psi}(\pi_s, \tilde{\pi}_s)$ is equal to the KL divergence equal to: $\mathsf{KL}(\pi_s || \tilde{\pi}_s) = \sum_{a \in \mathcal{A}} \pi(a|s) \log(\pi(a|s)/\pi(a|s))$.

Claim 2: For an arbitrary state $s \in S$, at iteration $k \ge 0$, online mirror ascent with $w = \pi(\cdot|s) \in \mathbb{R}^A$, negative entropy mirror map, step-size $\eta_k = \eta$ for all k has the following *multiplicative weights* update on linear losses $f_k(\pi(\cdot|s)) = \langle \pi(\cdot|s), \hat{q}_k(s, \cdot) \rangle$ for all $a \in A$, $\pi_{k+1}(a|s) = \frac{\pi_k(a|s) \exp(\eta \hat{q}_k(s,a))}{\sum_{a' \in A} \pi_k(a'|s) \exp(\eta \hat{q}_k(s,a'))}$

Claim 3: With $\pi_0(a|s) = \frac{1}{A}$ for each (s, a), the above update is equal to the update for Politex. Prove in Assignment 3!

Convergence of Politex

Using the claims on the previous slide, we can conclude that Politex (for state $s \in S$) has the following regret: $R_K(\pi_s^*) \leq \frac{\sqrt{2}DG}{\sqrt{\nu}}\sqrt{K}$. We now need to characterize the constants D, G, ν . • Recall that $D^2 = \max D_{\psi}(u, w_0) = \text{KL}(\pi^*(\cdot|s)||\pi_0(\cdot|s))$. For all $a \in A$, choose $\pi_0(a|s) = \frac{1}{A}$ i.e. for each state, π_0 is a uniform distribution over actions. With this choice, $\text{KL}(\pi^*(\cdot|s)||\pi_0(\cdot|s)) = \sum \pi^*(a|s) \log (A \pi^*(a|s)) \leq \log (A \max \pi^*(a|s)) \sum \pi^*(a|s) \leq \log (A)$

$$\mathsf{KL}(\pi^*(\cdot|s)||\pi_0(\cdot|s)) = \sum_{a} \pi^*(a|s) \, \log \left(A \, \pi^*(a|s)\right) \leq \log \left(A \, \max_{a} \pi^*(a|s)\right) \, \sum_{a} \pi^*(a|s) \leq \log \left(A\right)$$

• Recall that $\|\nabla f(x)\|_{\infty} \leq G$. If the $\hat{q}_k(s, a)$ functions are constrained to lie in the $[0, 1/1-\gamma]$ interval, then $G = \frac{1}{1-\gamma}$.

• Recall that ν is the strong-convexity of ψ , i.e. the following inequality holds: $\psi(y) \ge \psi(x) + \langle \nabla \psi(x), y - x \rangle + \frac{\nu}{2} ||y - x||_1^2.$

$$\psi(y) - \psi(x) - \langle \nabla \psi(x), y - x \rangle = D_{\psi}(y, x) = \mathsf{KL}(y||x) \ge \frac{1}{2} \left\|y - x\right\|_{1}^{2}$$
 (Pinsker's inequality)

Hence, $\nu = 1$.

Convergence of Politex

Putting everything together, we can prove the following claim:

Claim: If $\hat{q}(s, a) \in [0, \frac{1}{1-\gamma}]$ for all (s, a), Politex with $\pi_0(a|s) = \frac{1}{A}$ for all (s, a) and $\eta_k = \eta = \sqrt{\frac{2 \log(A)}{K}} (1 - \gamma)$ has the following regret,

$$R_{K}(\pi^{*}, s) \leq rac{\sqrt{2\log(A)}}{1 - \gamma} \sqrt{K} \implies \|\operatorname{Regret}(K)\|_{\infty} = rac{\sqrt{2\log(A)}}{1 - \gamma} \sqrt{K}$$

Combining the above bound with the general result for Politex,

$$\left\|\boldsymbol{v}^{\bar{\pi}_{K}}-\boldsymbol{v}^{*}\right\|_{\infty}\leq\frac{\sqrt{2\log(A)}}{(1-\gamma)^{2}\sqrt{K}}+\frac{2\max_{k\in\{0,\ldots,K-1\}}\|\boldsymbol{\epsilon}_{k}\|_{\infty}}{(1-\gamma)}$$

Controlling the policy evaluation error using G experimental design and Monte-Carlo estimation ensures that $\max_{k \in \{0,...,K-1\}} \|\epsilon_k\|_{\infty} \leq \varepsilon_{\mathsf{b}} \left(1 + \sqrt{d}\right) + \varepsilon_{\bullet} \sqrt{d}$.

$$\implies \left\| v^{\bar{\pi}_{K}} - v^{*} \right\|_{\infty} \leq \frac{\sqrt{2 \log(A)}}{(1-\gamma)^{2} \sqrt{K}} + \frac{2\varepsilon_{\mathtt{b}} \left(1 + \sqrt{d} \right) + 2\varepsilon_{\mathtt{s}} \sqrt{d}}{(1-\gamma)}$$

Policy Gradient

Policy Gradient

• For approximate policy iteration and Politex, we parameterized the q functions, and designed algorithms that avoid the explicit dependence on S.

• Policy gradient methods directly parameterize the policy and use gradient ascent to maximize the value function. Formally, given a policy parameterization s.t. $\pi = h(\theta)$ and a step-size η , policy gradient methods have the following update:

$$\theta_{t+1} = \theta_t + \eta \, \nabla_{\theta} J(\theta_t) \quad \text{where} \quad J(\theta) := v^{\pi_{\theta}}(\rho) = \mathbb{E}_{s_0 \sim \rho} v^{\pi_{\theta}}(s_0)$$

- Common policy parameterizations include:
 - Tabular softmax policy parameterization: $\forall (s, a) \in S \times A$, there is a parameter $\theta(s, a)$ s.t. $\pi(a|s) = \frac{\exp(\theta(s, a))}{\sum_{a'} \exp(\theta(s, a'))}$
 - Log-linear policies: Given access to features $\Phi \in \mathbb{R}^{SA \times d}$, $\pi(a|s) = \frac{\exp(\langle \phi(s,a), \theta \rangle)}{\sum_{a'} \exp(\langle \phi(s,a'), \theta \rangle)}$ for parameter $\theta \in \mathbb{R}^d$.
 - Energy-based policies: Using a general function approximation (deep neural network) $f_{\theta}: S \times A \to \mathbb{R}, \ \pi(a|s) = \frac{\exp(f_{\theta}(s,a))}{\sum_{a'} \exp(f_{\theta}(s,a')))}.$

Policy Gradient

In order to calculate $\nabla J(\theta)$ for a general policy parameterization, we recall the definitions of the state occupancy measure $d^{\pi} \in \mathbb{R}^{S}$ and the state-action occupancy measure $\mu^{\pi} \in \mathbb{R}^{S \times A}$.

$$egin{aligned} u^{\pi}(s,a) &:= (1-\gamma) \, \sum_{s_0 \in \mathcal{S}}
ho(s_0) \, \sum_{t=0}^{\infty} \gamma^t \, \Pr[S_t = s, A_t = a | S_0 = s_0] \ d^{\pi}(s) &:= (1-\gamma) \, \sum_{s_0 \in \mathcal{S}}
ho(s_0) \, \sum_{t=0}^{\infty} \gamma^t \, \Pr[S_t = s | S_0 = s_0] \end{aligned}$$

In Assignment 2, we proved that if $r \in \mathbb{R}^{S \times A}$ is the reward vector, (i) $v^{\pi}(\rho) = \frac{1}{1-\gamma} \langle \mu^{\pi}, r \rangle$, (ii) $d^{\pi}(s) = \sum_{a} \mu^{\pi}(s, a)$, (iii) $\pi(a|s) = \frac{\mu^{\pi}(s, a)}{\sum_{a'} \mu^{\pi}(s, a')}$. Hence, $v^{\pi}(\rho) = \frac{1}{1-\gamma} \sum_{s} d^{\pi}(s) \sum_{a} \pi(a|s) r(s, a) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi}} \mathbb{E}_{a \sim \pi(\cdot|s)} r(s, a)$

Recall that $v^{\pi}(\rho)$ can be (approximately) computed by rolling out trajectories and using Monte-Carlo estimation. By the above equivalence, the expectation $\mathbb{E}_{s\sim d^{\pi}}\mathbb{E}_{a\sim\pi(\cdot|s)}$ can also be estimated similarly.

Claim: $\nabla_{\theta} J(\theta) = \frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta} = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi_{\theta}}} \left[\sum_{a \in \mathcal{A}} \frac{\partial \pi_{\theta}(a|s)}{\partial \theta} q^{\pi_{\theta}}(s, a) \right].$ *Proof*:

$$\begin{aligned} v^{\pi_{\theta}}(s) &= \sum_{a} \pi_{\theta}(a|s) \, q^{\pi_{\theta}}(s,a) \implies \frac{\partial v^{\pi_{\theta}}(s)}{\partial \theta} = \sum_{a} \left[\frac{\partial \pi_{\theta}(a|s)}{\partial \theta} \, q^{\pi_{\theta}}(s,a) + \pi_{\theta}(a|s) \, \frac{\partial q^{\pi_{\theta}}(s,a)}{\partial \theta} \right] \\ q^{\pi_{\theta}}(s,a) &= r(s,a) + \gamma \sum_{s' \in S} \mathcal{P}(s'|s,a) \, v^{\pi_{\theta}}(s') \implies \frac{\partial q^{\pi_{\theta}}(s,a)}{\partial \theta} = \gamma \sum_{s' \in S} \mathcal{P}(s'|s,a) \, \frac{\partial v^{\pi_{\theta}}(s')}{\partial \theta} \\ \implies \frac{\partial v^{\pi_{\theta}}(s)}{\partial \theta} = \sum_{a} \left[\frac{\partial \pi_{\theta}(a|s)}{\partial \theta} \, q^{\pi_{\theta}}(s,a) \right] + \gamma \sum_{s' \in S} \sum_{a} \mathcal{P}(s'|s,a) \, \pi_{\theta}(a|s) \frac{\partial v^{\pi_{\theta}}(s')}{\partial \theta} \\ \frac{\partial v^{\pi_{\theta}}(s)}{\partial \theta} = \sum_{a} \left[\frac{\partial \pi_{\theta}(a|s)}{\partial \theta} \, q^{\pi_{\theta}}(s,a) \right] + \gamma \sum_{s' \in S} \mathcal{P}_{\pi_{\theta}}[s,s'] \, \frac{\partial v^{\pi_{\theta}}(s')}{\partial \theta} \end{aligned}$$

Hence, $\frac{\partial v^{\pi_{\theta}}(s)}{\partial \theta}$ can be expressed in terms of $\frac{\partial v^{\pi_{\theta}}(s')}{\partial \theta}$. We will use this result recursively from the starting state.

Recall that
$$\frac{\partial v^{\pi_{\theta}}(s)}{\partial \theta} = \sum_{a} \left[\frac{\partial \pi_{\theta}(a|s)}{\partial \theta} q^{\pi_{\theta}}(s,a) \right] + \gamma \sum_{s'} \mathbf{P}_{\pi_{\theta}}[s,s'] \frac{\partial v^{\pi_{\theta}}(s')}{\partial \theta}$$
. Starting from state s_{0} ,
 $\frac{\partial v^{\pi_{\theta}}(s_{0})}{\partial \theta} = \underbrace{\sum_{a_{0}} \left[\frac{\partial \pi_{\theta}(a_{0}|s_{0})}{\partial \theta} q^{\pi_{\theta}}(s_{0},a_{0}) \right]}_{:=\omega(s_{0})} + \gamma \sum_{s_{1}} \mathbf{P}_{\pi_{\theta}}[s_{0},s_{1}] \frac{\partial v^{\pi_{\theta}}(s_{1})}{\partial \theta}$
 $= \omega(s_{0}) + \gamma \sum_{s_{1}} \mathbf{P}_{\pi_{\theta}}[s_{0},s_{1}] \left[\sum_{a_{1}} \left[\frac{\partial \pi_{\theta}(a_{1}|s_{1})}{\partial \theta} q^{\pi_{\theta}}(s_{1},a_{1}) \right] + \gamma \sum_{s_{2}} \mathbf{P}_{\pi_{\theta}}[s_{1},s_{2}] \frac{\partial v^{\pi_{\theta}}(s_{2})}{\partial \theta} \right]$
 $= \omega(s_{0}) + \gamma \sum_{s_{1}} \mathbf{P}_{\pi_{\theta}}[s_{0},s_{1}] \omega(s_{1}) + \gamma^{2} \sum_{s_{1}} \sum_{s_{2}} \mathbf{P}_{\pi_{\theta}}[s_{0},s_{1}] \mathbf{P}_{\pi_{\theta}}[s_{1},s_{2}] \frac{\partial v^{\pi_{\theta}}(s_{2})}{\partial \theta}$
 $= \omega(s_{0}) + \gamma \sum_{s_{1}} \mathbf{P}_{r}[S_{1} = s_{1}|S_{0} = s_{0}] \omega(s_{1}) + \gamma^{2} \sum_{s_{2}} \mathbf{P}_{r}[S_{2} = s_{2}|S_{0} = s_{0}] \frac{\partial v^{\pi_{\theta}}(s_{2})}{\partial \theta}$
 $\Longrightarrow \frac{\partial v^{\pi_{\theta}}(s_{0})}{\partial \theta} = \sum_{t=0}^{\infty} \gamma^{t} \left[\sum_{s_{t}} \mathbf{P}_{r}[S_{t} = s_{t}|S_{0} = s_{0}] \omega(s_{t}) \right]$ (Recursively unrolling)

Recall that
$$\frac{\partial v^{\pi_{\theta}}(s_{0})}{\partial \theta} = \sum_{s=0}^{\infty} \gamma^{t} \left[\sum_{s_{t}} \Pr[S_{t} = s_{t} | S_{0} = s_{0}] \omega(s_{t}) \right]$$
. Rearranging the sum,
 $\frac{\partial v^{\pi_{\theta}}(s_{0})}{\partial \theta} = \sum_{s} \left[\sum_{t=0}^{\infty} \gamma^{t} \Pr[S_{t} = s | S_{0} = s_{0}] \right] \omega(s)$

$$\implies \frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta} = \sum_{s_{0}} \rho(s_{0}) \frac{\partial v^{\pi_{\theta}}(s_{0})}{\partial \theta} = \sum_{s_{0}} \rho(s_{0}) \sum_{s} \left[\sum_{t=0}^{\infty} \gamma^{t} \Pr[S_{t} = s | S_{0} = s_{0}] \right] \omega(s)$$

$$= \sum_{s} \left[\sum_{s_{0}} \rho(s_{0}) \left[\sum_{t=0}^{\infty} \gamma^{t} \Pr[S_{t} = s | S_{0} = s_{0}] \right] \right] \omega(s)$$

$$= \frac{1}{1 - \gamma} \sum_{s} d^{\pi_{\theta}}(s) \omega(s) = \frac{1}{1 - \gamma} \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \left[\frac{\partial \pi_{\theta}(a|s)}{\partial \theta} q^{\pi_{\theta}}(s, a) \right]$$
(By def. of $d^{\pi}(s)$)

$$\implies \frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi_{\theta}}} \left[\sum_{a \in \mathcal{A}} \frac{\partial \pi_{\theta}(a|s)}{\partial \theta} q^{\pi_{\theta}}(s, a) \right]$$

In order to compute
$$\frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta} = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi_{\theta}}} \left[\sum_{a \in \mathcal{A}} \frac{\partial \pi_{\theta}(a|s)}{\partial \theta} q^{\pi_{\theta}}(s, a) \right]$$
 algorithmically,
let us simplify $\left[\sum_{a \in \mathcal{A}} \frac{\partial \pi_{\theta}(a|s)}{\partial \theta} q^{\pi_{\theta}}(s, a) \right]$,
 $\left[\sum_{a \in \mathcal{A}} \frac{\partial \pi_{\theta}(a|s)}{\partial \theta} q^{\pi_{\theta}}(s, a) \right] = \left[\sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) \frac{1}{\pi_{\theta}(a|s)} \frac{\partial \pi_{\theta}(a|s)}{\partial \theta} q^{\pi_{\theta}}(s, a) \right]$
 $= \left[\sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) \frac{\partial \ln(\pi_{\theta}(a|s))}{\partial \theta} q^{\pi_{\theta}}(s, a) \right] = \mathbb{E}_{a \sim \pi_{\theta}}(\cdot|s) \left[\frac{\partial \ln(\pi_{\theta}(a|s))}{\partial \theta} q^{\pi_{\theta}}(s, a) \right]$
 $\frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta} = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi_{\theta}}} \mathbb{E}_{a \sim \pi_{\theta}}(\cdot|s) \left[\frac{\partial \ln(\pi_{\theta}(a|s))}{\partial \theta} q^{\pi_{\theta}}(s, a) \right]$

The term $\frac{\partial \ln(\pi_{\theta}(a|s))}{\partial \theta}$ is referred to as the *score function*.

As before, the $\mathbb{E}_{s \sim d^{\pi}} \mathbb{E}_{a \sim \pi(\cdot|s)}$ expectations can be computed by rolling out trajectories starting at $s_0 \sim \rho$, taking actions $a_t \sim \pi_{\theta}(\cdot|s_t)$ for $t \geq 0$ and using Monte-Carlo estimation. The gradient expression involves $q^{\pi}(s, a)$ that can be estimated using a policy evaluation method such as TD.

The policy gradient theorem gives us a handle on $\nabla_{\theta} J(\theta)$ enabling us to use the resulting update.

In order to analyze the convergence of policy gradient, we will only focus on the tabular softmax policy parameterization in this course.

Tabular softmax policy parameterization: Consider $\theta \in \mathbb{R}^A$ and the function $h : \mathbb{R}^A \to \mathbb{R}^A$ such that $h(\theta) = \pi_{\theta}$ where $\pi_{\theta}(a) = \frac{\exp(\theta(a))}{\sum_{a'} \exp(\theta(a'))}$. For the tabular softmax policy parameterization, $\pi_{\theta}(\cdot|s) = h(\theta(s, \cdot))$.

Claim: The Jacobian of $h : \mathbb{R}^A \to \mathbb{R}^A$ is given by $H(\pi_\theta) \in \mathbb{R}^{A \times A} = \operatorname{diag}(\pi_\theta) - \pi_\theta \pi_\theta^T$ where $\operatorname{diag}(\pi_\theta) \in \mathbb{R}^{A \times A}$ is a diagonal matrix s.t. $[\operatorname{diag}(\pi_\theta)]_{a,a} = \pi_\theta(a)$ and $\pi_\theta \in \mathbb{R}^A$ s.t. $\pi_\theta(a) = \frac{\exp(\theta(a))}{\sum_{a'} \exp(\theta(a'))}$.

Prove in Assignment 4!

Let us first instantiate the policy gradient expression with this choice of the policy parameterization.

Softmax Policy Gradient

Claim: For the tabular softmax policy parameterization,

$$rac{\partial v^{\pi_{ heta}}(
ho)}{\partial heta(s, a)} = rac{d^{\pi_{ heta}}(s)}{1-\gamma} \, \pi_{ heta}(a|s) \, \mathfrak{a}^{\pi_{ heta}}(s, a) \, ,$$

where $a^{\pi_{\theta}}(s, a) = q^{\pi_{\theta}}(s, a) - v^{\pi_{\theta}}(s)$ is the advantage (over π_{θ}) of taking action a in state s. *Proof*: For vector θ , we know that $\frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta} = \frac{1}{1-\gamma} \mathbb{E}_{s' \sim d^{\pi_{\theta}}} \left[\sum_{a' \in \mathcal{A}} \frac{\partial \pi_{\theta}(a'|s')}{\partial \theta} q^{\pi_{\theta}}(s', a') \right]$. For the tabular softmax policy parameterization, $H(\pi_{\theta}) = \frac{\partial \pi_{\theta}}{\partial \theta} = \text{diag}(\pi_{\theta}) - \pi_{\theta} \pi_{\theta}^{T}$. Since there is no coupling between the parameters $\theta(s, a)$, for $s' \neq s$ and any $a \in \mathcal{A}$, $\pi_{\theta}(a|s')$ does not depend on $\theta(s, a)$ and hence, $\frac{\partial \pi_{\theta}(a|s')}{\partial \theta(s, \cdot)} = \mathbf{0}$.

$$rac{\partial
u^{\pi_{ heta}}(
ho)}{\partial heta(s,\cdot)} = rac{d^{\pi_{ heta}}(s)}{1-\gamma} \sum_{a'\in\mathcal{A}} rac{\partial \pi_{ heta}(a'|s)}{\partial heta(s,\cdot)} \, q^{\pi_{ heta}}(s,a') = rac{d^{\pi_{ heta}}(s)}{1-\gamma} \, \underbrace{rac{\partial \pi_{ heta}(\cdot|s)}{\partial heta(s,\cdot)}}_{A imes A} \, \underbrace{rac{\partial \pi_{ heta}(s,\cdot)}{\partial heta(s,\cdot)}}_{A imes A}$$

$$= \frac{d^{\pi_{\theta}}(s)}{1-\gamma} H(\pi_{\theta}(\cdot|s)) q^{\pi_{\theta}}(s, \cdot) = \frac{d^{\pi_{\theta}}(s)}{1-\gamma} \left[\mathsf{diag}(\pi_{\theta}(\cdot|s)) - \pi_{\theta}(\cdot|s) \pi_{\theta}(\cdot|s)^{\mathsf{T}} \right] q^{\pi_{\theta}}(s, \cdot)$$

Softmax Policy Gradient

Recall that
$$\frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta(s,\cdot)} = \frac{d^{\pi_{\theta}}(s)}{1-\gamma} \left[\operatorname{diag}(\pi_{\theta}(\cdot|s)) - \pi_{\theta}(\cdot|s)\pi_{\theta}(\cdot|s)^{T} \right] q^{\pi_{\theta}}(s,\cdot).$$
 Define
 $\omega \in \mathbb{R}^{A} := \left[\pi_{\theta}(a_{1}|s) q^{\pi_{\theta}}(s,a_{1}), \pi_{\theta}(a_{2}|s) q^{\pi_{\theta}}(s,a_{2}) \dots \pi_{\theta}(a_{A}|s) q^{\pi_{\theta}}(s,a_{A}) \right].$ Hence,

$$rac{\partial v^{\pi_{ heta}}(
ho)}{\partial heta(s,\cdot)} = rac{d^{\pi_{ heta}}(s)}{1-\gamma} \, \left[\omega - \left[\sum_{a'} \pi_{ heta}(a'|s) \, q^{\pi}(s,a')
ight] \, \pi_{ heta}(\cdot|s)
ight]$$

Taking the component corresponding to action *a*,

$$egin{aligned} &\Longrightarrow \; rac{\partial oldsymbol{v}^{\pi_{ heta}}(
ho)}{\partial heta(s, a)} = rac{d^{\pi_{ heta}}(s)}{1-\gamma} \; [\pi_{ heta}(a|s) \, q^{\pi_{ heta}}(s, a) - \pi_{ heta}(a|s) \, \mathbf{v}^{\pi_{ heta}}(s)] \ &= rac{d^{\pi_{ heta}}(s)}{1-\gamma} \, \pi_{ heta}(a|s) \, \mathfrak{a}^{\pi}_{ heta}(s, a) \quad \Box \end{aligned}$$

Softmax Policy Gradient for Bandits

In order to analyze the convergence of softmax policy gradient, let us further simplify the problem and focus on the special case of multi-armed bandits where $\gamma = 0$ and S = 1. In this case, assuming that the rewards $r \in \mathbb{R}^A$ are deterministic,

$$J(heta) = \mathbb{E}_{a \sim \pi_{ heta}}[r(a)] = \langle \pi_{ heta}, r \rangle$$

For the tabular softmax parameterization, $\theta \in \mathbb{R}^A$ and $\pi_{\theta} = h(\theta)$. In this case, $q^{\pi_{\theta}} \in \mathbb{R}^A = r$ and $\mathfrak{a}^{\pi_{\theta}} \in \mathbb{R}^A = r - \langle \pi_{\theta}, r \rangle$. Hence,

$$\frac{\partial J(\theta)}{\partial \theta(\mathbf{a})} = \frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta(\mathbf{a})} = \pi_{\theta}(\mathbf{a}) \left[r(\mathbf{a}) - \langle \pi_{\theta}, r \rangle \right]$$

Hence, for multi-armed bandit problems, the softmax policy gradient with a tabular parameterization can be written as: $\theta_{t+1} = \theta_t + \eta \ [\pi_{\theta}(a) [r(a) - \langle \pi_{\theta}, r \rangle]].$

Q: Why is this algorithm impractical? Ans: Assumes r is deterministic and known Next, we will see that even for this special case, $J(\theta)$ is non-concave in θ . This implies that in

general, $J(\theta)$ is a non-concave function of θ when using the softmax parameterization.