
CMPT 419/983: Theoretical Foundations of
Reinforcement Learning

Lecture 8

Sharan Vaswani

October 27, 2023

Recap

• Approximate policy iteration (API) aims to find an optimal policy without access to P, r .

• API alternates between policy evaluation and policy improvement: at iteration k ,

Policy Evaluation: Compute the estimate q̂πk (for example, using TD, Monte-Carlo).
Policy Improvement: ∀s, πk+1(s) = argmaxa q̂

πk (s, a).

• If the policy evaluation error at iteration k is controlled s.t. q̂πk = qπk + ϵk , then, API has the
following convergence, ∥vπK+1 − v∗∥∞ ≤ γK ∥vπ0 − v∗∥∞ +

2maxk∈{0,...,K−1}∥ϵk∥∞
(1−γ)2

• We have access to Φ ∈ RSA×d s.t. for every π, there exists a θ∗ such that,
max(s,a) |qπ(s, a)− ⟨θ∗, ϕ(s, a)⟩| ≤ εb.

• In order to control the policy evaluation error,

Choose C ⊂ S ×A, and for each z := (s, a) ∈ C, rollout m trajectories (truncated to horizon
H) and calculate R̂(z). We can ensure that |R̂(z)− qπ(z)| ≤ εs w.p. 1 − δ for all z ∈ C.

Estimate θ̂ := argminθ
1
2

∑
z∈C ζ(z)

[
⟨θ, ϕ(z)⟩ − R̂(z)

]2
.

1

Policy Evaluation for Approximate Policy Iteration

Claim: Assuming V :=
∑

z∈C ζ(z)ϕ(z)ϕ(z)
T ∈ Rd×d is invertible, for any z ∈ S ×A,

|qπ(z)− ⟨θ̂, ϕ(z)⟩| ≤ εb + ∥ϕ(z)∥V−1 [εs + εb]

Proof : Since θ̂ is computed by minimizing 1
2

∑
z∈C ζ(z)

[
⟨θ, ϕ(z)⟩ − R̂(z)

]2
and V is

invertible,

θ̂ = V−1

[∑
z′∈C

ζ(z ′) R̂(z ′)ϕ(z ′)

]
|qπ(z)− ⟨θ̂, ϕ(z)⟩| = |qπ(z)− ⟨θ∗, ϕ(z)⟩+ ⟨θ∗, ϕ(z)⟩ − ⟨θ̂, ϕ(z)⟩|

(Add/subtract ⟨θ∗, ϕ(z)⟩)

≤ |qπ(z)− ⟨θ∗, ϕ(z)⟩|+ |⟨θ∗, ϕ(z)⟩ − ⟨θ̂, ϕ(z)⟩|
(Triangle inequality)

=⇒ |qπ(z)− ⟨θ̂, ϕ(z)⟩| ≤ εb + |⟨θ∗, ϕ(z)⟩ − ⟨θ̂, ϕ(z)⟩|

We will now bound |⟨θ∗, ϕ(z)⟩ − ⟨θ̂, ϕ(z)⟩|.
2

Policy Evaluation for Approximate Policy Iteration

For z ′ ∈ C, define E(z ′) := R̂(z ′)− ⟨θ∗, ϕ(z ′)⟩. Hence,

θ̂ = V−1

[∑
z′∈C

ζ(z ′) [⟨θ∗, ϕ(z ′)⟩+ E(z ′)]ϕ(z ′)]

]

= V−1

[∑
z′∈C

ζ(z ′)ϕ(z ′)ϕ(z ′)T

]
θ∗ + V−1

[∑
z′∈C

ζ(z ′) E(z ′)ϕ(z ′)

]

=⇒ θ̂ − θ∗ = V−1

[∑
z′∈C

ζ(z ′) E(z ′)ϕ(z ′)

]
Hence, for an arbitrary z ∈ S ×A,

|⟨θ∗, ϕ(z)⟩ − ⟨θ̂, ϕ(z)⟩| =

∣∣∣∣∣
〈
V−1

[∑
z′∈C

ζ(z ′) E(z ′)ϕ(z ′)

]
, ϕ(z)

〉∣∣∣∣∣
=

∣∣∣∣∣
〈∑

z′∈C
ζ(z ′) E(z ′)V−1ϕ(z ′), ϕ(z)

〉∣∣∣∣∣ =
∣∣∣∣∣∑
z′∈C

ζ(z ′) E(z ′) ⟨ϕ(z),V−1ϕ(z ′)⟩

∣∣∣∣∣
3

Policy Evaluation for Approximate Policy Iteration

Recall that |⟨θ∗, ϕ(z)⟩ − ⟨θ̂, ϕ(z)⟩| =
∣∣∑

z′∈C ζ(z ′) E(z ′) ⟨ϕ(z),V−1ϕ(z ′)⟩
∣∣.

|⟨θ∗, ϕ(z)⟩ − ⟨θ̂, ϕ(z)⟩| ≤
∑
z′∈C

|E(z ′)| ζ(z ′)
∣∣⟨ϕ(z),V−1ϕ(z ′)⟩

∣∣
≤

(
max
z′∈C

|E(z ′)|
) ∑

z′∈C
ζ(z ′)

∣∣⟨ϕ(z),V−1ϕ(z ′)⟩
∣∣

∑
z′∈C

ζ(z ′)
∣∣⟨ϕ(z),V−1ϕ(z ′)⟩

∣∣ = √
(Ez′∼ζ |⟨ϕ(z),V−1ϕ(z ′)⟩|)2

Jensen
≤

√
Ez′ |⟨ϕ(z),V−1ϕ(z ′)⟩|2

=
√
Ez′ [ϕ(z)T V−1 ϕ(z ′)ϕ(z ′)T V−1 ϕ(z)] =

√√√√ϕ(z)T V−1

[∑
z′

ζ(z ′)ϕ(z ′)ϕ(z ′)T

]
V−1 ϕ(z)

=⇒
∑
z′∈C

ζ(z ′)
∣∣⟨ϕ(z),V−1ϕ(z ′)⟩

∣∣ = √
ϕ(z)TV−1ϕ(z) = ∥ϕ(z)∥V−1

=⇒ |⟨θ∗, ϕ(z)⟩ − ⟨θ̂, ϕ(z)⟩| ≤ max
z′∈C

|E(z ′)| ∥ϕ(z)∥V−1

4

Policy Evaluation for Approximate Policy Iteration

Recall that |⟨θ∗, ϕ(z)⟩ − ⟨θ̂, ϕ(z)⟩| ≤ maxz′∈C |E(z ′)| ∥ϕ(z)∥V−1 . Bounding maxz′∈C |E(z ′)|,

|E(z ′)| = |R̂(z ′)− ⟨θ∗, ϕ(z ′)⟩| = |R̂(z ′)− qπ(z ′) + qπ(z ′)− ⟨θ∗, ϕ(z ′)⟩|
(Add/subtract qπ(z ′))

≤ |R̂(z ′)− qπ(z ′)|+ |qπ(z ′)− ⟨θ∗, ϕ(z ′)⟩| (Triangle inequality)

≤ εs + εb

=⇒ |⟨θ∗, ϕ(z)⟩ − ⟨θ̂, ϕ(z)⟩| ≤ [εs + εb] ∥ϕ(z)∥V−1

Putting everything together,

|qπ(z)− ⟨θ̂, ϕ(z)⟩| ≤ εb + [εs + εb] ∥ϕ(z)∥V−1

Hence, in order to control the generalization error, we have to control ∥ϕ(z)∥V−1 , while
controlling the size of C.

5

Policy Evaluation for Approximate Policy Iteration

Kiefer-Wolfowitz Theorem: There exists a C ⊂ S ×A and a distribution ζ ∈ ∆|C| such that
for V :=

∑
z∈C ζ(z)ϕ(z)ϕ(z)

T ∈ Rd×d ,

sup
z∈S×A

∥ϕ(z)∥V−1 ≤
√
d ; |C| ≤ d (d + 1)

2
Intuitively, this means that we can find a coreset of feature vectors that captures most of
the information in Φ. Finding such a coreset is referred to as G-optimal design in statistics.
C and ζ can be approximately computed using a greedy algorithm that has access to Φ

(Need to do this in Assignment 3!)

Combining the Kiefer-Wolfowitz theorem with our previous result gives,

|qπ(z)− q̂π(z)| = |qπ(z)− ⟨θ̂, ϕ(z)⟩| ≤ εb +
√
d [εs + εb] = εb

(
1 +

√
d
)
+ εs

√
d

• Note that the
√
d amplification in the error is tight.

• Algorithmically, we need to run Monte-Carlo estimation from O(d2) (s, a) pairs, and we can
estimate qπ(s, a) upto an εb

(
1 +

√
d
)
+ εs

√
d error for all (s, a) pairs.

6

Convergence of Approximate Policy Iteration

We have seen the following results:

∥vπK − v∗∥∞ ≤ γK ∥vπ0 − v∗∥∞ +
2maxk∈{0,...,K−1} ∥ϵk∥∞

(1 − γ)2

|qπ(s, a)− q̂π(s, a)| ≤ εb

(
1 +

√
d
)
+ εs

√
d (for all π and (s, a) pairs)

=⇒ ∥vπK − v∗∥∞ ≤ γK ∥vπ0 − v∗∥∞ +
2εb

(
1 +

√
d
)
+ 2εs

√
d

(1 − γ)2

If the q functions are exactly in the span of Φ, εb = 0. For example, in the tabular setting
where d = SA and the features are one hot vectors, the error depends on

√
SA εs.

The algorithm for constructing C requires iterating through the states, and this can be
inefficient. [YHAY+22] considers an online algorithm that does not require global access to
the full Φ matrix, but has similar theoretical guarantees.
Next, we will see an alternative algorithm – Politex that has slower convergence [O(1/

√
K)],

but smaller error amplification [O(1/(1 − γ))].
7

Politex

7

Politex

Like policy iteration, Politex alternates between evaluating the policy and updating it.
Unlike policy iteration that uses a max over actions, Politex uses a softmax (multiplicative
weights) to update the policy. This makes the resulting algorithm less aggressive.

Algorithm Politex
1: Input: MDP M = (S,A, ρ), π0, step-size η
2: for k = 0 → K − 1 do
3: Policy Evaluation: Compute the estimate q̂k := q̂πk (for example, using TD, Monte-Carlo)

and define q̄k =
∑k

i=0 q̂i
4: Policy Update: ∀(s, a), πk+1(a|s) = exp(η q̄k (s,a))∑

a′ exp(η q̄k (s,a′))
.

5: end for
6: Return the mixture policy π̄K :=

∑K−1
k=0 πk

K

Politex returns the mixture policy π̄K which corresponds to choosing a policy in {πk}K−1
k=0

uniformly at random.
If q̄k = q̂k , Politex recovers policy iteration as η → ∞ (Prove in Assignment 3!)

8

Convergence of Politex

Claim: If the policy evaluation error at iteration k is controlled s.t. q̂k = qπk + ϵk , then Politex
has the following convergence,∥∥v π̄K − v∗∥∥

∞ ≤
∥Regret(K)∥∞

(1 − γ)K
+

2maxk∈{0,...,K−1} ∥ϵk∥∞
(1 − γ)

,

where Regret(K) =
∑K−1

k=0 [Mπ∗ q̂k −Mπk
q̂k] ∈ RS is the regret incurred by Politex on an

online linear optimization problem for each state s ∈ S.

The error amplification only depends on 1/1−γ, and thus Politex has a better dependence on
ϵ compared to approximate policy iteration.
Compared to policy iteration that has an γK convergence, the convergence for Politex
depends on Regret(K)

K . We will show that Regret(K) = O(
√
K), and hence, the Politex

achieves the slower O(1/
√
K) convergence.

The above claim does not depend on the specific update rule of Politex, and can be used to
prove convergence for alternative algorithms that have sublinear regret.

9

Convergence of Politex

Proof : vπ
∗
− vπk = (I − γPπ∗)−1 [Tπ∗ vπk − vπk] (Value difference lemma)

Summing up from k = 0 to k = K − 1 and dividing by K ,

vπ
∗
−

∑K−1
k=0 vπk

K
=

1
K

(I − γPπ∗)−1
K−1∑
k=0

[Tπ∗ vπk − vπk]

=⇒ vπ
∗
− v π̄K = (I − γPπ∗)−1

K−1∑
k=0

[Tπ∗ vπk − vπk] =
1
K

(I − γPπ∗)−1
K−1∑
k=0

[Tπ∗ vπk − Tπk
vπk]

(Since v π̄K =
∑K−1

k=0 vπk

K and vπ = Tπvπ)

=
1
K

(I − γPπ∗)−1
K−1∑
k=0

[Mπ∗ qπk −Mπk
qπk] (Since Tπv = Mπ[r + γPv] = Mπq)

=
1
K

(I − γPπ∗)−1
K−1∑
k=0

[Mπ∗ q̂k −Mπk
q̂k] +

1
K

(I − γPπ∗)−1
K−1∑
k=0

(Mπk
−Mπ∗) (q̂k − qπk)︸ ︷︷ ︸

=ϵk


10

Convergence of Politex

vπ∗
− v π̄K = 1

K
(I − γPπ∗)−1 ∑K−1

k=0 [Mπ∗ q̂k −Mπk q̂k] +
1
K
(I − γPπ∗)−1 ∑K−1

k=0 [(Mπk −Mπ∗) ϵk]

Using the definition of Regret(K) and taking norms,∥∥∥vπ∗
− v π̄K

∥∥∥
∞

=

∥∥∥∥∥ 1
K

(I − γPπ∗)−1 Regret(K) +
1
K

(I − γPπ∗)−1
K−1∑
k=0

[(Mπk
−Mπ∗) ϵk]

∥∥∥∥∥
∞

≤ 1
K

∥∥(I − γPπ∗)−1 Regret(K)
∥∥
∞ +

1
K

∥∥∥∥∥(I − γPπ∗)−1
K−1∑
k=0

[(Mπk
−Mπ∗) ϵk]

∥∥∥∥∥
∞

(Triangle inequality)

≤
∥Regret(K)∥∞

K (1 − γ)
+

1
K (1 − γ)

∥∥∥∥∥
K−1∑
k=0

[(Mπk
−Mπ∗) ϵk]

∥∥∥∥∥
∞

(Neumann series)

≤
∥Regret(K)∥∞

K (1 − γ)
+

1
K (1 − γ)

K−1∑
k=0

[
∥Mπk

ϵk∥∞ + ∥Mπ∗ϵk∥∞
]

(Triangle inequality)

≤
∥Regret(K)∥∞

K (1 − γ)
+

2maxk∈{0,...,K−1} ∥ϵk∥∞
(1 − γ)

(Mπ is non-expansive)
11

Convergence of Politex

Our aim now is to control ∥Regret(K)∥∞ where Regret(K) =
∑K−1

k=0 [Mπ∗ q̂k −Mπk
q̂k]. By

definition, for an arbitrary vector u ∈ RS×A, (Mπu)(s) =
∑

a π(a|s) u(s, a). Hence,

∥Regret(K))∥∞ = max
s

∣∣∣∣∣
K−1∑
k=0

[∑
a

π∗(a|s) q̂k(s, a)−
∑
a

πk(a|s) q̂k(s, a)

]∣∣∣∣∣
Define RK (π

∗, s) :=
∑K−1

k=0 ⟨π∗(·|s), q̂k(s, ·)⟩ − ⟨πk(·|s), q̂k(s, ·)⟩

=⇒ ∥Regret(K))∥∞ = max
s

|RK (π
∗, s)|

To bound RK (π
∗, s), we will cast Politex as an online linear optimization for each state s ∈ S:

In each iteration k ∈ [K], Politex chooses a distribution πk(·|s) ∈ ∆A for each state s.
The “environment” chooses and reveals the vector q̂k(s, ·) ∈ RA and Politex receives a
reward ⟨πk(·|s), q̂k(s, ·)⟩.
The aim is to do as well as the optimal policy π∗ that receives a reward ⟨π∗(·|s), q̂k(s, ·)⟩

12

Digression – Online Optimization

Online Optimization
1: Input: w0, Algorithm A, Convex set W
2: for k = 0, . . . ,K − 1 do
3: Algorithm A chooses point (decision) wk ∈ W
4: Environment chooses and reveals the (potentially adversarial) function fk : W → R
5: Algorithm receives a reward fk(wk)

6: end for

Application: Prediction from Expert Advice – Given n experts,
W = ∆n = {wi |wi ≥ 0 ;

∑n
i=1 wi = 1} and fk(wk) = ⟨ck ,wk⟩ where ck is the reward vector.

Application: Imitation Learning – Given access to an expert that knows what action a ∈ [A] to
take in each state s ∈ S, learn a policy π : S → A that imitates the expert, i.e. we want that
π(a|s) ≈ πexpert(a|s). Here, w = π and W = ∆A ×∆A . . .∆A (simplex for each state) and fk is
a measure of the (negative) discrepancy between πk and πexpert.

Q: What is w , W, fk for Politex (for state s)? Ans: π(·|s), ∆A, ⟨π(·|s), q̂k(s, ·)⟩
13

Digression – Online Optimization

Recall that the sequence of functions {fk}K−1
k=0 is potentially adversarial and can depend on wk .

Objective: Do well against the best fixed decision in hindsight, i.e. if we knew the entire
sequence of functions beforehand, we would choose w∗ := argmaxw∈W

∑K−1
k=0 fk(w).

Regret: RK (w
∗) :=

∑K−1
k=0 [fk(w

∗)− fk(wk)]

We want to design algorithms that achieve a sublinear regret (that grows as o(T)). A sublinear
regret implies that the performance of our sequence of decisions is approaching that of w∗.

Q: What is “best” decision we want to compare against in Politex (for state s)? Ans: π∗(·|s)

Hence, bounding RK (π
∗, s) for Politex is equivalent to bounding the regret for a sequence of

linear functions of the form: fk(w) = ⟨gk ,w⟩.

14

Digression – Online Optimization

The simplest algorithm that results in sublinear regret is Online Gradient Ascent.

Online Gradient Ascent: At iteration k , the algorithm chooses the point wk . After the
function fk is revealed, the algorithm receives a reward fk(wk) and uses it to compute

wk+1 = ΠW [wk + ηk∇fk(wk)]

where ΠW [x] = argminy∈W
1
2 ∥y − x∥2

2 is the Euclidean projection onto W.

The Online Gradient Ascent update at iteration k can also be written as:

wk+1 = argmax
w∈W

[
⟨∇fk(wk),w⟩ − 1

2ηk
∥w − wk∥2

2

]
In other words, gradient ascent moves in the direction of the gradient ∇fk(wk), while remaining
“close” (in the Euclidean norm) to the previous iterate wk .

Instead of using the Euclidean norm, we could measure the distance to wk differently.

15

Digression – Online Optimization

• Online Mirror Ascent generalizes gradient ascent by choosing a strictly convex, differentiable
function ψ : Rd → R to induce a distance measure. ψ is referred to as the mirror map.

• ψ induces the Bregman divergence Dψ(·, ·), a distance measure between points x , y ,

Dψ(y , x) := ψ(y)− ψ(x)− ⟨∇ψ(x), y − x⟩ .

Geometrically, Dψ(y , x) is the distance between the function ψ(y) and the line
ψ(x) + ⟨∇ψ(x), y − x⟩ which is tangent to the function at x .

Using this distance measure results in the mirror ascent update:

wk+1 = argmax
w∈W

[
⟨∇fk(wk),w⟩ − 1

ηk
Dψ(w ,wk)

]

• Setting ψ(x) = 1
2 ∥x∥

2 results in Dψ(y , x) =
1
2 ∥y − x∥2 and recovers gradient ascent.

16

Digression – Online Optimization

The mirror ascent update can be equivalently written as:

wk+1/2 = (∇ψ)−1 (∇ψ(wk) + ηk∇fk(wk)) ; wk+1 = argmin
w∈W

Dψ(w ,wk+1/2)

Prove in Assignment 3!

17

Digression – Online Optimization

In order to analyze mirror ascent, we will make some assumptions on fk and ψ.

• We will assume that {fk}K−1
k=0 are linear i.e. for some vector gk , fk(w) = ⟨gk ,w⟩. We will also

assume that {fk}K−1
k=0 are G -Lipschitz continuous.

Lipschitz continuous functions: f is Lipschitz continuous iff f can not change arbitrarily fast
meaning that its gradient is bounded. Formally, for any w ∈ W,

∥∇f (w)∥∞ ≤ G

where G is the Lipschitz constant.

• We will assume that ψ is ν strongly-convex.

Strongly-convex functions: If f is differentiable, it is ν-strongly convex iff its domain D is a
convex set and for all x , y ∈ D and ν > 0,

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ ν

2
∥y − x∥2

1

i.e. for all y , the function is lower-bounded by the quadratic defined in the RHS.
18

References i

Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári, Efficient
local planning with linear function approximation, International Conference on Algorithmic
Learning Theory, PMLR, 2022, pp. 1165–1192.

19

