CMPT 419/983: Theoretical Foundations of

Reinforcement Learning

Lecture 8

Sharan Vaswani
October 27, 2023

e Approximate policy iteration (API) aims to find an optimal policy without access to P, r.
e API alternates between policy evaluation and policy improvement: at iteration k,

e Policy Evaluation: Compute the estimate §™ (for example, using TD, Monte-Carlo).
@ Policy Improvement: Vs, 7 1(s) = arg max, §7*(s, a).

~

o If the policy evaluation error at iteration k is controlled s.t. §™ = g™ + €, then, API has the
<A o — v + 2k kcar el

(1—)2
e We have access to ® € R**9 st for every , there exists a 8* such that,
max(s.) |97 (s, a) — (0%, (s, a))| < e

e In order to control the policy evaluation error,

following convergence, ||v™<+t — v

gl
o0

@ Choose C C S x A, and for each z := (s, a) € C, rollout m trajectories (truncated to horizon
H) and calculate R(z). We can ensure that |R(z) — ¢™(z)| < e, w.p. 1 —d forall z e C.

e Estimate § := argming 3 3=, .. C(2) |0, 6(2)) — R(2) ’

Policy Evaluation for Approximate Policy Iteration

Claim: Assuming V := " . ((2) ¢(2)¢(2)T € R¥*? is invertible, for any z € S x A,
0,¢

1g7(2) = (0, 9(2))] < e + [[6(2)lly = [e. +]
Proof: Since 6 is computed by minimizing 3> ,ec(2) [(0,(;5(2)) - /%(z)]2 and Vis
invertible,
b=v= > UR(E) ¢(2')]
z'eC

197(2) = (8, 6(2))] = 147 (2) — (6", 6(2)) + (6%, 6(2)) — (B, $(2))]
(Add/subtract (0%, ¢(z)))

< |q™(2) = (6%, ¢(2))] + (67, 6(2)) — (6, $(2))]
(Triangle inequality)
= 1q7(2) — (0, 6(2))| < & + {87, $(2)) — (8, (2))]

~

We will now bound [(6*, ¢(z)) — (0, #(2))].

Policy Evaluation for Approximate Policy Iteration

N

For 2/ € C, define £(2') := R(2") — (0%, ¢(2’)). Hence,

0=V D) [0, 6(2)) + E(2)] ¢>(Z’)]]
z'eC
=V Y) e()e(2)T |0+ VT ZC(Z’)E(Z’W(Z’)]
z'eC z'eC
— 00" =V ()EE) ()
z'eC

Hence, for an arbitrary z € S x A,

6%, 8(2)) — (8, ¢(2))| =

(g

z'eC

<v1

i
;t
X
[

Policy Evaluation for Approximate Policy Iteration

Recall that (6%, 6(2)) — (4, ¢(2) \—}Z cC(Z/)S(Z/)<¢(Z) V7o)

6%, 6(2)) — (B, (D] < 3 16 (") [(@(2), V2o
z'eC
< (max|e(z () [(6(2), V- 16(2)

(m); |
S) [(6(2), V(2] = V(B [(0(2), VBN S wﬁ (6(2), V-16(2")
z'eC
— VE. [6(2)T V- 6(2)0(2)T V1 o(2)] = Jé(ZTVl D C(=)ol)o()T| VI ol2)
— 3¢ [(@(2), V102N = [$2) TV-10(2) = 162y

= (8", ¢(2)) — (8, 6(2))| < max [£(2')] [|¢(2)ly-2

Policy Evaluation for Approximate Policy Iteration

Recall that (6%, ¢(2)) — (6, 6(2))| < maxyrec [€(2)] 6(2)]l,—a. Bounding max,ec [E(2))],

£ = IR(Z) — (6", 6(2))] = |R(2) — q"(2) + g"(2') — (67, 6(2"))]|
(Add/subtract g™ (2))

< IR() = 4] +147() — {6, ()| (Triangle inequality)
£ G- @y
= (6%, 6(2)) — (0, 6(2))] < [e. + &l l$(2)]l

Putting everything together,
197(2) = (0, 6(2))| < ew + [ea + &] [6(2)]] -

Hence, in order to control the generalization error, we have to control ||¢(z)||\/ -1, while
controlling the size of C.

Policy Evaluation for Approximate Policy Iteration

Kiefer-Wolfowitz Theorem: There exists a C C S x A and a distribution ¢ € Aj¢| such that
for V i= ¥, C(2) #(2)(2) T € RO,
d(d+1
wp (o)l <vd ; joj < HED)
SxA

ze
@ Intuitively, this means that we can find a coreset of feature vectors that captures most of
the information in ®. Finding such a coreset is referred to as G-optimal design in statistics.
@ C and (can be approximately computed using a greedy algorithm that has access to ¢
(Need to do this in Assignment 3!)

Combining the Kiefer-Wolfowitz theorem with our previous result gives,
17(2) — §7(2)| = |g7(2) — (B, 4(2))| < en + Vd[e. + &) = & (1 + ﬁ) +e.Vd
e Note that the v/d amplification in the error is tight.

o Algorithmically, we need to run Monte-Carlo estimation from O(d?) (s, a) pairs, and we can
estimate g™ (s, a) upto an ¢, (1 + \/3) +e,+/d error for all (s, a) pairs.

Convergence of Approximate Policy Iteration

We have seen the following results:

2maxyeqo,... k—1} 1€kl oo

V™ = vl <A v — vl

> (1—9)?
g™ (s,a) — §"(s,a)| < e (1 + \fd) +eVd (for all 7w and (s, a) pairs)
2e, (1 4+ ﬂ) +2¢e,Vd

= V= Ve 9V =V + —

@ If the g functions are exactly in the span of ®, ¢, = 0. For example, in the tabular setting
where d = SA and the features are one hot vectors, the error depends on VSAe.,.

@ The algorithm for constructing C requires iterating through the states, and this can be
inefficient. [YHAY"22] considers an online algorithm that does not require global access to
the full ® matrix, but has similar theoretical guarantees.

@ Next, we will see an alternative algorithm — Politex that has slower convergence [O(l/\/R)]
but smaller error amplification [O(1/(1 — ~v))].

Politex

@ Like policy iteration, Politex alternates between evaluating the policy and updating it.
@ Unlike policy iteration that uses a max over actions, Politex uses a softmax (multiplicative
weights) to update the policy. This makes the resulting algorithm less aggressive.

Algorithm Politex
1: Input: MDP M = (S, A, p), 7o, step-size 1
2. fork=0—K—-1 do
3: Policy Evaluation: Compute the estimate g := §™* (for example, using TD, Monte-Carlo)

and define g, = Z,"(:o Gi o
exp(”n gk(s,a

4: Policy Update: V(S, a), 7Tk+]_(a|5) = m.
5: end for

. . _ ZK:l Tk
6: Return the mixture policy Ty = =42—

@ Politex returns the mixture policy Tk which corresponds to choosing a policy in {wk}fgol
uniformly at random.
o If gk = G, Politex recovers policy iteration as 7 — oo (Prove in Assignment 3!)

Convergence of Politex

Claim: If the policy evaluation error at iteration k is controlled s.t. §¥ = g™ + €, then Politex
has the following convergence,

IV — || < |Regret(K)||,, . 2maxkeqo,.. .k—1} €kl 7
o0 (1-9)K (1-7)

where Regret(K) = ZkK:_OI [M- Gk — Mo, k] € RS is the regret incurred by Politex on an
online linear optimization problem for each state s € S.

@ The error amplification only depends on 1/1—~, and thus Politex has a better dependence on
€ compared to approximate policy iteration.

e Compared to policy iteration that has an vX convergence, the convergence for Politex
depends on Re%t(m. We will show that Regret(K) = O(v/K), and hence, the Politex
achieves the slower O(1/vK) convergence.

@ The above claim does not depend on the specific update rule of Politex, and can be used to
prove convergence for alternative algorithms that have sublinear regret.

Convergence of Politex

Proof: v© — v™ = (I — 4P)" [Tre v7* — v7] (Value difference lemma)
Summing up from k =0 to k = K — 1 and dividing by K,

K—1
T Zkovﬂ—

v 7 Klf'yP Z[’T vk — v
K—1
= v" — Vv = (] —P,.)7t 2, [Toe v — v™] = R (I — 4Py Z [Te v — T, v
(Since v = ZK g Wk and v™ = T,v7)
K (I —APr)~ Z M- g™ — Mz, q™] (Since Trv = Mz[r +9Pv] = Mzq)
K—-1
K (I = YPa Z[M < G — M G + K(/—’YP S 2 (M, — M) (8 = q™)

=€)
10

Convergence of Politex

V=V = (= 9P) T S M G = MG+ % (1= 7P)T D (M, — M) €]
Using the definition of Regret(K) and taking norms,

K-1
. - 1 1
’ v — VTR = % (I — yP.+) " Regret(K) + 7 (I — AP)7t [(Mz, — Mz+) €]
o k=0 o
1 1 -
< 2 10 = vPr) ™ Regret(K)|| , + 5 [[(/ = Px) 7" > [(Ma, — Mae)]
k=0 %)
(Triangle inequality)
K-1
|IRegret(K)|| 1 :
== My — Mg)e Neumann series
K(l—v) K(l—v) = [(K) k] N ()
K-1
[[Regret(K)|| 1 . : .
< 0 1 M€l + | Mrser| o Triangle inequalit
R R & Mnerl + M. (Triangle inequality)
||Regret(K)|| 2maxie o, .. k—1} [l €l ; i
- L = 0 M is non-expansive
K(1-) -7 (:

11

Convergence of Politex

Our aim now is to control ||Regret(K)|| ., where Regret(K) = 2(:—01 [Mar+ Gk — Mx, Gi]. By
definition, for an arbitrary vector u € R3*A, (M, u)(s) = >, m(als) u(s, a). Hence,

leﬂ (als) (s, a) Zm als) qksa)H

Define Rk(r",s) := Y4Zg (7 (:s), k(s) — (mu(:ls), (s)

= |[Regret(K))||, = max|R (", s)|
S

|IRegret(K))||., = max

oo

To bound Rk(7*,s), we will cast Politex as an online linear optimization for each state s € S:

@ In each iteration k € [K], Politex chooses a distribution 7,(-|s) € A for each state s.

@ The “environment” chooses and reveals the vector dx(s,) € R? and Politex receives a
reward (mx(|s), Gk(s,-)).

@ The aim is to do as well as the optimal policy 7* that receives a reward (7*(-|s), k(s -))

12

Digression — Online Optimization

Online Optimization

. Input: wy, Algorithm A, Convex set W

. for kZO,...,K—l do

Algorithm A chooses point (decision) wy, € W

Environment chooses and reveals the (potentially adversarial) function f, : W — R
Algorithm receives a reward fi(wy)

@2 @2 ®W R

end for

Application: Prediction from Expert Advice — Given n experts,
W=20,={ww; >0; Y7 w; =1} and fi(wx) = (ck, wk) where ¢ is the reward vector.

Application: Imitation Learning — Given access to an expert that knows what action a € [A] to
take in each state s € S, learn a policy 7 : S — A that imitates the expert, i.e. we want that
7(als) & Texpert(als). Here, w =m and W = Ayg X Aa...Ax (simplex for each state) and fy is
a measure of the (negative) discrepancy between 7, and Texpert-

Q: What is w, W, f for Politex (for state s)? Ans: w(:|s), Aa, (7(+]s), Gk(s, ")) -

Digression — Online Optimization

Recall that the sequence of functions {fk}ngol is potentially adversarial and can depend on w.

Objective: Do well against the best fixed decision in hindsight, i.e. if we knew the entire
sequence of functions beforehand, we would choose w* := arg max,, ¢y ZkK:_OI fi(w).

Regret: Ry (w*) := Zf;ol[fk(W*) — f(wi)]

We want to design algorithms that achieve a sublinear regret (that grows as o(T)). A sublinear
regret implies that the performance of our sequence of decisions is approaching that of w*.

Q: What is “best” decision we want to compare against in Politex (for state s)? Ans: 7*(:|s)

Hence, bounding Rx(7*, s) for Politex is equivalent to bounding the regret for a sequence of
linear functions of the form: fi(w) = (gk, w).

14

Digression — Online Optimization

The simplest algorithm that results in sublinear regret is Online Gradient Ascent.
Online Gradient Ascent: At iteration k, the algorithm chooses the point wy. After the
function fi is revealed, the algorithm receives a reward fx(wy) and uses it to compute

Wicr1 = M [wi + eV i (wi)]

where Myy[x] = argmin)y 3 [ly — x||§ is the Euclidean projection onto W.

The Online Gradient Ascent update at iteration k can also be written as:

1
Wiy1 = arg max [(Vi(wg), w) |lw — Wk||§

wew 2

In other words, gradient ascent moves in the direction of the gradient Vf,(wy), while remaining
“close” (in the Euclidean norm) to the previous iterate wy.

Instead of using the Euclidean norm, we could measure the distance to wy differently.

15

Digression — Online Optimization

e Online Mirror Ascent generalizes gradient ascent by choosing a strictly convex, differentiable
function ¥ : R — R to induce a distance measure. 1 is referred to as the mirror map.

e ¢ induces the Bregman divergence Dy (-,-), a distance measure between points x, y,
Dy(y,x) = ¢(y) = d(x) = (Vi (x),y = x) -
Geometrically, Dy(y, x) is the distance between the function (y) and the line

¥(x) + (Vip(x),y — x) which is tangent to the function at x.

Using this distance measure results in the mirror ascent update:

1
wit1 = argmax | (Vii(wk), w) — — Dy (w, w)
wew n

o Setting ¥(x) = 2 ||x||* results in Dy(y,x) = % ||y — x||* and recovers gradient ascent.

16

Digression — Online Optimization

The mirror ascent update can be equivalently written as:

Wiy1/y = (V) 2 (V(wie) + iV (wi)) ; Wigr = argenljvin Dy (w, Wia/2)

Vy

Vy(w)

Gradient Ascent

W g/min D, (w, w

Vy(w) + i Viwy)
y(Wy Tk VJk Bregman Projection

Dual space

Primal space

(Vy)™!

Prove in Assignment 3!

17

Digression — Online Optimization

In order to analyze mirror ascent, we will make some assumptions on f, and .

o We will assume that {fk}kK:_ol are linear i.e. for some vector gi, fx(w) = (gk, w). We will also
assume that {f }K=1 are G-Lipschitz continuous.

Lipschitz continuous functions: f is Lipschitz continuous iff f can not change arbitrarily fast
meaning that its gradient is bounded. Formally, for any w € W,

[VF(W)ll <G
where G is the Lipschitz constant.
e We will assume that ¢ is v strongly-convex.

Strongly-convex functions: If f is differentiable, it is v-strongly convex iff its domain D is a
convex set and for all x,y € D and v > 0,

F(¥) 2 F0) + (VF(x),y = x) + 2 lly = I

i.e. for all y, the function is lower-bounded by the quadratic defined in the RHS.
18

References i

@ Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazi¢, and Csaba Szepesvari, Efficient
local planning with linear function approximation, International Conference on Algorithmic
Learning Theory, PMLR, 2022, pp. 1165-1192.

19

