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Recap

Monte-Carlo estimation for policy evaluation
Generate trajectory τ = (s0, a0, s1, . . .) and calculate R(τ) =

∑∞
t=0 γ

trt .
Generate m trajectories {τi}mi=1 and calculate v̂ :=

∑m
i=1 R(τi )

m
as an approximation to vπ(s0).

Using Monte-Carlo estimation with m = ln(2/δ)
2ϵ2 (1−γ)2 trajectories with H ≥ ln(1/ϵ (1−γ))

ln(1/γ)

guarantees that |v̂ − vπ(s0)| ≤ ϵ with probability 1 − δ.

Linear TD(0):
Assumption: For the fixed policy π being evaluated, there exists a unique θ∗ such that
vπ = Φθ∗ = vθ∗ .
Update: θt+1 = θt + αt gt(θt) where gt(θ) = [rt + γ⟨θ, ϕ(st+1)⟩ − ⟨θ, ϕ(st)⟩] ϕ(st).
Mean-path TD(0): θt+1 = θt + α ḡ(θ) where
ḡ(θ) := Es∼ωEs′∼P(·|s) [r(s, π(s)) + γ⟨θ, ϕ(s ′)⟩ − ⟨θ, ϕ(s)⟩] ϕ(s) and ω is the stationary
distribution.
By using an analysis similar to GD, we showed that Mean-path TD(0) converges to θ∗at a
linear rate.
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Linear TD(0) Analysis – IID

Mean-path TD requires ḡ(θ) = Es∼ωEs′∼P(·|s) [r(s, π(s)) + γ⟨θ, ϕ(s ′)⟩ − ⟨θ, ϕ(s)⟩] ϕ(s).

Since we do not have access to the expectation, we will adapt the previous proof.

We will assume that (st , st+1) are sampled i.i.d. from the stationary distribution, i.e. st ∼ ω and
st+1 ∼ P(·|st) =⇒ Pr[st = s, st+1 = s ′] = ω(s)P(s ′|s). Hence, taking the expectation over the
randomness in (st , st+1), we have that for all t and θ,

E[gt(θ)] = Est ,st+1 [[r(st , π(st)) + γ⟨θ, ϕ(st+1)⟩ − ⟨θ, ϕ(st)⟩] ϕ(st)]

=
∑
s,s′

[r(s, π(s)) + γ⟨θ, ϕ(s ′)⟩ − ⟨θ, ϕ(s)⟩] ϕ(s) Pr[st = s, st+1 = s ′] = ḡ(θ)

Similar to the previous proofs, we will rely on two important properties for gt(θ). For a fixed t

and θ independent of the randomness in (st , st+1),

(1) E [⟨gt(θ), θ∗ − θ⟩] = ⟨ḡ(θ), θ∗ − θ⟩ ≥ (1 − γ) ∥vθ − vθ∗∥2
D .

(2) E[∥gt(θ)∥2] ≤ 2σ2 + 8 ∥vθ − vθ∗∥2
D where σ2 := Est ,st+1 ∥gt(θ∗)∥

2 is the variance in gt(θ
∗).

(Prove in Assignment 3!)
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Linear TD(0) Analysis – IID

Claim: Assuming (st , st+1) are sampled i.i.d from the stationary distribution, the update
θt+1 = θt + αt gt(θ) with αt =

1−γ

8
√
T

has the following convergence,

E
∥∥vθ̄T − vθ∗

∥∥2
D
≤ 8 ∥θ0 − θ∗∥2

(1 − γ)2
√
T

+
σ2

4
√
T

,

where the expectation is w.r.t. {st , st+1}T−1
t=0 and θ̄T :=

∑T−1
t=0 θt
T is the average iterate.

Proof : We have proved that (1) E [⟨gt(θ), θ∗ − θ⟩] ≥ (1 − γ) ∥vθ − vθ∗∥2
D and (2)

E[∥gt(θ)∥2] ≤ 2σ2 + 8 ∥vθ − vθ∗∥2
D . Proceeding similar to the previous proof,

∥θt+1 − θ∗∥2 = ∥θt − θ∗∥2 + 2αt⟨gt(θt), θt − θ∗⟩+ α2
t ∥gt(θ)∥

2

Taking expectation w.r.t the randomness at iteration t

E ∥θt+1 − θ∗∥2 = ∥θt − θ∗∥2 + 2αt E[⟨gt(θt), θt − θ∗⟩] + α2
t E ∥gt(θ)∥2

≤ ∥θt − θ∗∥2 − 2αt (1 − γ) ∥vθt − vθ∗∥2
D + α2

t E ∥gt(θ)∥2

(Using Property (1))
3



Linear TD(0) Analysis – IID

We have shown that E ∥θt+1 − θ∗∥2 ≤ ∥θt − θ∗∥2 − 2αt (1 − γ) ∥vθt − vθ∗∥2
D + α2

t E ∥gt(θ)∥2. Using
Property (2),

E ∥θt+1 − θ∗∥2 ≤ ∥θt − θ∗∥2 − 2αt (1 − γ) ∥vθt − vθ∗∥2
D + α2

t

[
2σ2 + 8 ∥vθt − vθ∗∥2

D

]
≤ ∥θt − θ∗∥2 − αt (1 − γ) ∥vθt − vθ∗∥2

D + 2α2
t σ

2 (For αt ≤ 1−γ
8 )

=⇒ (1 − γ) ∥vθt − vθ∗∥2
D ≤ E[∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2]

αt
+ 2αt σ

2

Using constant step-size αt =
1−γ

8
√
T

, and taking expectation w.r.t the randomness in iterations 0
to T − 1,

(1 − γ)E ∥vθt − vθ∗∥2
D ≤ E

[
∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2

αt

]
+ 2αt σ

2

≤ 8
√
T

1 − γ
E
[
∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2

]
+

σ2 (1 − γ)

4
√
T
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Linear TD(0) Analysis – IID

Recall (1 − γ)E ∥vθt − vθ∗∥2
D ≤ 8

√
T

1−γ
E
[
∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2]+ σ2 (1−γ)

4
√
T

. Summing from t = 0
to T − 1,

(1 − γ)
T−1∑
t=0

E ∥vθt − vθ∗∥2
D ≤ 8

√
T

1 − γ
∥θ0 − θ∗∥2 +

σ2 (1 − γ)
√
T

4

=⇒
∑T−1

t=0 E ∥vθt − vθ∗∥2
D

T
≤ 8 ∥θ0 − θ∗∥2

(1 − γ)2
√
T

+
σ2

4
√
T

(Dividing by (1 − γ)T )

Using Jensen’s inequality,

E
∥∥vθ̄T − vθ∗

∥∥2
D
≤ 8 ∥θ0 − θ∗∥2

(1 − γ)2
√
T

+
σ2

4
√
T

By using more complicated step-size sequences, we can also show convergence for the
last-iterate θT (similar to the previous proofs).
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Linear TD(0) Analysis – Markovian

The previous analysis assumes that (st , st+1) are sampled i.i.d from the stationary distribution.
However, (st , st+1) are gathered from a single trajectory of the Markov chain induced by policy π.

Hence, the samples are correlated and assuming that they are i.i.d is not valid. However, under
certain standard assumptions, we can adapt the previous proof.

Assumption: The underlying Markov chain is “fast-mixing” i.e. for constants m > 0 and
ρ ∈ (0, 1), and all t, if TV(P,Q) is the total variation distance between distributions P,Q, then,

sup
s

TV(Prπ[st |s0 = s], ω) ≤ m ρt

i.e. the distribution over states approaches the stationary distribution exponentially fast.

Define τmix(ϵ) = min{t|ρt ≤ ϵ} as the mixing time of the Markov chain.
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Linear TD(0) Analysis – Markovian

Projected linear TD(0) update: θt+1 = Proj [θt+1 + αtgt(θ)]. The projection is onto the ball
B = {θ| ∥θ∥ ≤ R} where R is an upper-bound on ∥θ∗∥.

Claim: Assuming fast-mixing of the underlying Markov chain, Projected linear TD(0) with
αt =

1√
T

has the following convergence:

E
∥∥vθ̄T − vθ∗

∥∥2
D
≤ O

(
∥θ0 − θ∗∥2

√
T

+
(1 + 2R)2 (1 + τmix (1/

√
T))√

T

)
.

Intuitively, every cycle of τmix (·) samples provides as much information as a single
independent sample from the stationary distribution.

If (st , st+1) were sampled i.i.d. from ω, τmix (·) = 0 and we would obtain the IID result.

The proof is similar to the i.i.d case except that it needs to carefully handle correlations and
bound E [⟨gt(θt)− ḡ(θt), θt − θ∗⟩] ̸= 0.

For more details, refer to [BRS18, Section 8].
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Interpolating between TD(0) and Monte-Carlo

Recall the derivation of TD(0): (i) use the Bellman equation:
vπ(s) = Ea∼π(·|s) Es′∼P(·|s,a) [r(s, a) + γvπ(s ′)], (ii) sampling a from π(·|s), s ′ ∼ P(·|s, a)
gives v̂π(s) = r(s, a) + γ vπ(s ′), (iii) using estimate v̂π(s ′) in place of vπ(s ′)

(bootstrapping) results in the TD(0) update.

Instead, (i) use the Bellman equation for vπ(s ′), meaning that:
v̂π(s) = r(s, a) + γ vπ(s1) = r(s, a) + γ Ea1∼π(·|s1) Es2∼P(·|s1,a1) [r(s1, a1) + γvπ(s2)],
(ii) sampling a1 from π(·|s1), s2 ∼ P(·|s1, a1) gives v̂π(s) = r(s, a) + γ r(s1, a1) + γ2 vπ(s2),
(iii) using estimate v̂π(s2) in place of vπ(s2) (bootstrapping) results in the TD(1) update.

Similarly, we can derive TD(n) updates for n ≥ 0, v̂π(s) =
∑n

t=0 γ
trt + γn+1v̂π(sn+1).

As n → ∞, we get the update v̂π(s) =
∑∞

t=0 γ
trt corresponding to Monte-Carlo estimation.

TD(0) has a higher bias, lower variance, while Monte-Carlo estimation has lower bias, higher
variance. As n increases, the bias (proportional to γn) decays exponentially fast.

For more details, refer to [SB18, Chapter 7].
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Approximate Policy Iteration
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Approximate Policy Iteration

For approximate policy iteration (without access to P, r), we will make use of q functions.
State-action value function for policy π: qπ : S ×A → R such that for s ∈ S, a ∈ A,

qπ(s, a) := r(s, a) + γ
∑
s′∈S

P[s ′|s, a] vπ(s ′)

i.e. qπ(s, a) corresponds to the cumulative discounted reward obtained when starting at state s,
taking action a and following policy π from then on. (See Assignment 2 for details)

Algorithm Approximate Policy Iteration
1: Input: MDP M = (S,A, ρ), π0.
2: for k = 0 → K do
3: Policy Evaluation: Compute the estimate q̂πk (for example, using TD, Monte-Carlo).
4: Policy Improvement: ∀s, πk+1(s) = argmaxa q̂

πk (s, a).
5: end for

First, we will study how the error in estimating the q function affects vπK+1 , the value function
corresponding to the policy output by the algorithm.
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Policy Improvement with Errors

Claim: For Markov policies π, π̃, define q̂ ∈ RS×A as an estimate of qπ s.t. q̂π = qπ + ϵ for
some ϵ ∈ RS×A. If π̃ is the greedy policy w.r.t q̂π, then,∥∥v∗ − v π̃

∥∥
∞ ≤ γ ∥v∗ − vπ∥∞ +

1
1 − γ

∥ϵ∥∞

Proof : Since π∗ is optimal, using the fundamental theorem, T v∗ = v∗ = Tπ∗v∗. Since v π̃ is
the fixed point of Tπ̃, v π̃ = Tπ̃v π̃. Hence,

v∗ − v π̃ = Tπ∗v∗ − Tπ̃v π̃

= Tπ∗v∗ − Tπ∗vπ + Tπ∗vπ − Tπ̃vπ + Tπ̃vπ − Tπ̃v π̃ (Add/subtract Tπ∗vπ and Tπ̃vπ)

= [[rπ∗ + γPπ∗v∗]− [rπ∗ + γPπ∗vπ]] + Tπ∗vπ − Tπ̃vπ +
[
[rπ̃ + γPπ̃v

π]− [rπ̃ + γPπ̃v
π̃]
]

(Since Tπv = rπ + γPπv)

= γPπ∗ [v∗ − vπ] + Tπ∗vπ − Tπ̃vπ + γPπ̃[v
π − v π̃]

≤ γPπ∗ [v∗ − vπ] + T vπ − Tπ̃vπ + γPπ̃[v
π − v π̃] (Since Tπ∗vπ ≤ T vπ)

= γPπ∗ [v∗ − vπ] + δ + γPπ̃[v
π − v π̃] (Define δ := T vπ − Tπ̃vπ)
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Policy Improvement with Errors

Recall that v∗ − v π̃ ≤ γPπ∗ [v∗ − vπ] + δ + γPπ̃[v
π − v π̃], where δ = T vπ − Tπ̃v

π.

vπ − v π̃ = (I − γPπ̃)
−1 [vπ − Tπ̃ vπ] (Value Difference Lemma)

≤ (I − γPπ̃)
−1 [T vπ − Tπ̃ vπ] = (I − γPπ̃)

−1 δ

(Since vπ = Tπvπ ≤ T vπ and for u ≤ w , (I − γPπ̃)
−1u ≤ (I − γPπ̃)

−1w)

=⇒ v∗ − v π̃ ≤ γPπ∗ [v∗ − vπ] + δ + γPπ̃

(
(I − γPπ̃)

−1 δ
)

= γPπ∗ [v∗ − vπ] +
[
I + γPπ̃ (I − γPπ̃)

−1
]
δ = γPπ∗ [v∗ − vπ] + (I − γPπ̃)

−1 δ

(Since I + γPπ̃ (I − γPπ̃)
−1 = (I − γPπ̃)

−1)∥∥vπ − v π̃
∥∥
∞ ≤

∥∥γPπ∗ [v∗ − vπ] + (I − γPπ̃)
−1 δ

∥∥
∞ (Taking norms on both sides)

≤ ∥γPπ∗ [v∗ − vπ]∥∞ +
∥∥(I − γPπ̃)

−1 δ
∥∥
∞ (Triangle inequality)

=⇒
∥∥vπ − v π̃

∥∥
∞ ≤ γ ∥v∗ − vπ∥∞ +

1
1 − γ

∥δ∥∞ (Using the Neumann series)
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Policy Improvement with Errors

Recall that
∥∥v∗ − v π̃

∥∥
∞ ≤ γ ∥v∗ − vπ∥∞ + 1

1−γ
∥δ∥∞ where δ = T vπ − Tπ̃v

π.
In order to bound ∥δ∥∞, recall the following definitions from Assignment 2: Mπ : RS×A → RS ,
P : RS → RS×A and M : RS×A → RS , such that for u ∈ RS×A and w ∈ RS ,

(Mπu)(s) =
∑
a

π(a|s) u(s, a) ; (Pw)(s, a) =
∑
s′∈S

P(s ′|s, a)w(s ′) ; (Mu)(s) = max
a∈A

u(s, a)

T vπ ≥ Tπ̃ vπ (Since T is the Bellman optimality operator)

= Mπ̃ (r + γP vπ) (Since Tπw = Mπ(r + γ Pw) for all w ∈ RS)

= Mπ̃q
π (By definition of qπ)

= Mπ̃[q̂
π − ϵ] (Since qπ = q̂π − ϵ)

= Mπ̃q̂
π −Mπ̃ϵ (Mπ is a linear operator)

= Mq̂π −Mπ̃ϵ (Since π̃ is greedy w.r.t q̂π)

= M(qπ + ϵ)−Mπ̃ϵ (Since q̂π = qπ + ϵ)

=⇒ T vπ ≥ Tπ̃vπ ≥ M(qπ − ∥ϵ∥∞ 1)−Mπ̃ϵ (Since ϵ ≥ −∥ϵ∥∞ 1 and M is monotone)
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Policy Improvement with Errors

Recall that T vπ ≥ Tπ̃v
π ≥ M(qπ − ∥ϵ∥∞ 1)−Mπ̃ϵ

T vπ ≥ Tπ̃ vπ ≥ Mqπ − ∥ϵ∥∞ 1 −Mπ̃ϵ

(Since M is non-expansive, ∥M(qπ − ∥ϵ∥∞ 1)−Mqπ∥∞ ≤ ∥ϵ∥∞)

≥ Mqπ − ∥ϵ∥∞ 1 − ∥ϵ∥∞ 1
(Since Mπ is non-expansive, ∥Mπ(∥ϵ∥∞ 1)∥∞ ≤ ∥ϵ∥∞)

= Mqπ − 2 ∥ϵ∥∞ 1 = M(r + γPvπ)− 2 ∥ϵ∥∞ 1 = T vπ − 2 ∥ϵ∥∞ 1
(By def. of q and since T u = M(r + γ P u))

=⇒ T vπ ≥ Tπ̃ vπ ≥ T vπ − 2 ∥ϵ∥∞ 1

=⇒ δ = T vπ − Tπ̃vπ ≤ 2 ∥ϵ∥∞ 1 =⇒ ∥δ∥∞ ≤ 2 ∥ϵ∥∞ (Taking norms on both sides)

Putting everything together,∥∥v∗ − v π̃
∥∥
∞ ≤ γ ∥v∗ − vπ∥∞ +

2 ∥ϵ∥∞
1 − γ
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Approximate Policy Iteration

For approximate policy iteration, πk+1(s) = argmaxa q̂
πk (s, a), i.e. πk+1 is greedy w.r.t q̂πk .

For each iteration k ∈ [K ], if we can estimate q̂πk such that q̂πk = qπk + ϵk , then, by using the
previous claim,

∥v∗ − vπk+1∥∞ ≤ γ ∥v∗ − vπk∥∞ +
2 ∥ϵk∥∞
1 − γ

Claim: If the policy evaluation error at iteration k is controlled s.t. q̂πk = qπk + ϵk , then,
approximate policy iteration has the following convergence,

∥vπK − v∗∥∞ ≤ γK ∥vπ0 − v∗∥∞ +
2maxk∈{0,...,K−1} ∥ϵk∥∞

(1 − γ)2

Prove in Assignment 3!

This generalizes the claim for exact policy iteration (corresponding to ϵk = 0) in Lecture 5.
The convergence is only to a neighbourhood of v∗ and the error ϵ is amplified by 2

(1−γ)2 .
This error amplification is tight for approximate policy iteration. See Csaba’s notes for the
formal lower-bound. 14
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Policy Evaluation for Approximate Policy Iteration

For Approximate Policy Iteration to be effective, we need to control the policy evaluation error in
each iteration. We have seen that,

Without any structural assumption, Monte-Carlo estimation required rolling out trajectories
from each state, making it sample inefficient.

TD(0) can exploit the linear assumption in an efficient manner.

However, for TD(0) to have theoretical guarantees, we needed to make assumptions about
the ergodicity (can reach all states) and mixing of the underlying Markov chain. This
side-steps the important issue of exploration in MDPs.

In order to handle exploration and still be sample-efficient, we will use Monte-Carlo
estimation with a linear assumption on qπ(s, a) along with experimental design. This will
enable us to control the policy evaluation error in theoretically principled manner.
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Policy Evaluation for Approximate Policy Iteration

Assumption: Have access to features Φ ∈ RSA×d , such that the q functions for policy π are
εb-close to the span of Φ. Consider a fixed π. There exists a θ∗ s.t.

max
(s,a)

|qπ(s, a)− ⟨θ∗, ϕ(s, a)⟩| ≤ εb

• Given a “good” estimate of θ̂, we can estimate qπ(s, a) by q̂π(s, a) = ⟨θ̂, ϕ(s, a)⟩.

Algorithm Idea:
Choose a set C ⊂ S ×A, and for each (s, a) ∈ C, rollout trajectories (truncated to horizon
H) starting from state s, taking action a and then following policy π.
For each trajectory τ , calculate the cumulative discounted reward

∑H
t=0 γ

trt .
For each (s, a) ∈ C, run m trajectories and use the average as an estimate for qπ(s, a).
Define z := (s, a) and the corresponding empirical mean as R̂(z). For weights ζ ∈ ∆|C| (to
be determined later), compute the estimate θ̂ by weighted linear regression:

θ̂ := argmin
θ

1
2

∑
z∈C

ζ(z)
[
⟨θ, ϕ(z)⟩ − R̂(z)

]2
16



Policy Evaluation for Approximate Policy Iteration

Similar to the proof in Lecture 6, we have the following result that shows that the error in
estimating qπ(z) for z ∈ C can be controlled.

Claim: Using m = ln(2 |C|/δ)
2ε2

s (1−γ)2 trajectories with H ≥ ln(1/εs (1−γ))
ln(1/γ) guarantees that

|R̂(z)− qπ(z)| ≤ εs with probability 1 − δ for all z ∈ C.

For the policy evaluation to be effective,

(i) We require control over the generalization error, the estimation error for z /∈ C.

(ii) For computational efficiency, we want that |C| not depend on |S|.

Next class, we will see how to choose C such that both (i) and (ii) are satisfied.
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