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@ We have studied algorithms (VI/P1/LP) that use knowledge of the transition probabilities P
and rewards r to compute the optimal policy.

@ These quantities are difficult to obtain in practical scenarios, and hence we need methods
that can compute the optimal policy without explicitly relying on this information.

@ Today, we will consider evaluating a fixed policy m without explicit knowledge of P and r.



Policy Evaluation

For a fixed policy 7 and starting state sy, v™(so) = E [X|So = so] where X := Y2 'R
E [X|50 = 50] = EAO‘SO [E [X|50 = S0, AO]] = EA0|50 [Esﬂ{SO,AD} [E [X‘SO = %0, A07 51]”
(Using that E[X] = Ey[E[X|Y]])
= Eag150 Esy (50,40} EAy[{S0,40,51) - - - ES.[{S0,40,..Se— 1,41 E [X[{ S0, Ao, - - - Se—1, Ae—1}]

(Unrolling recursively)

= Eagi50 Esy[£S0,40} B Ay [{S0,40,5:} - - - Bsi{Se—1,Ac_ 1} [X[{S0, Ao, - - -, St—1, Ac—1}]
(Markov assumption)

= Eaq)5; Es, (50,40} Eaulsy - - - Esif(si 1,41} E [X[{S0, Ao, .., Se—1}]
(Restricting to Markov policies)

= Enlso [Ro + Es, (50,40} Eayjs, [YR1 + -+ Es (s, p.a0) [V R+ ]]]
(Distributing the sum)



Policy Evaluation

The unrolling on the previous slide suggests a Monte-Carlo sampling scheme:

@ Starting from sp, for t > 0, sample a; ~ 7(+|s;), the environment transitions to s;;1
(equivalent to sampling s;+1 ~ P(:|s¢, a:)). This generates a trajectory 7 = (o, a0, 51, - - -)-

o Collect rewards r; = r(s¢, a;), calculate R(7) = Y2 v're. Note that E[R(7)] = v™(sp).

@ In order to reduce the variance, generate m trajectories {7;} ;, calculate R(7;) and output

R(r,
the empirical average: ¥ := % as an approximation to v™(sp).

Q: What is the problem with this approach? Ans: Need to generate infinitely long trajectories.

Solution 1: Truncate the trajectory to H steps, i.e. calculate R(7) = Zf’;ol yir.
D ElZv | - [Zv ] RV

= |v(s0) — E[R(7)]| < 17 (re <1, Sum of geometric series.)
-




Policy Evaluation

Claim: Using m = % W guarantees that [? — v™(sp)| < 3¢

with probability 1 — .

trajectories with H >

Proof: Recall that ¥ = w

v (59) — 2 iy E[R(7i)] ‘ _ ‘Zf"zl [v™(s0)

[v"(s0) — E[9)| = L

- IE[R(Tf)]]‘

- 2 ve(so) BRI _
< ) <

v —vT(so)l = |0 —E[0] + E[V] — v (s0)| < [V — E[?]] + [E[V] — v"(s0)|

H
R ~ y N N € g n(l/e(1—~
§|V—E[V”+ES|V—E[V”+§ (UsmgHEW)
o |Xm— ]
9~ B[] = | X2 = (X 1= X024 R()

Since the R(7;) r.v's are i.i.d, we can use Hoeffding's inequality.



Policy Evaluation

Recall that [V — v (s0)| < [V — E[V]| + 5. Here, |V —E[V]| = Xm+E[Xm] where X, := 3", R(7).

Hoeffding’s Inequality: For m i.i.d. r.v's such that X; € [a;, b;]. For t > 0,

942
Pr{|Xm — E[Xum]| > t] < 2exp (Z"’_l(jta)2>

R(Ti) € [071/1—"/]- Setting t = me,

Xm — E[Xm
Pr { Xin — E[Xm] > e} < 2exp (—2m€2 (1- 7)2)
m
X — E[Xn] . _In(2/6)
— pr Hm > E} ) (Setting m = m)
Putting everything together, with probability 1 — 4, [V — v™(sp)| < % =

Solution 2: Randomly truncate the trajectory i.e. sample H from a geometric distribution with
parameter 1 — ~y, return R(7) = Z:I:_ol re. Eliminates the bias from using a fixed truncation.

Claim: E4E [R(7)] = v™(so). Prove in Assignment 2!



Policy Evaluation

@ Problem 1: To estimate v™ € R®, we need fresh trajectories for estimating v™(s) for each
s € S. We need to restart the sampling each time, which may not always be possible.

@ Sol: Sample a single trajectory, estimate v”(s) as the cumulative discounted sum of rewards
following the first time state s is visited. This is referred to as “first visit” Monte-Carlo. Can
also average the returns following “every visit” to state s. Both strategies can be shown to
produce unbiased estimates of v™. For more details, see [SB18, Chapter 5].

o If Uy is the empirical average after sampling k € [1, m] trajectories, we can update it in an
online fashion: Uy = Vy_1 + %.

@ Problem 2: Hence, ¥y is updated only after observing the rewards from the entire
trajectory. This could be slow when the trajectories are long. Moreover, Monte-Carlo
estimation does not exploit the MDP structure effectively.

@ Sol: Temporal Difference Learning



Temporal Difference Learning

Idea: Exploit the Bellman equation and combine it with Monte-Carlo estimation.

Recall that, for starting state s, for a fixed policy m,

vT(s) = ra(s) v Y _Pals,s1v(s") = Y r(s,a)wlals] +v Y > Pls'ls, alwlals] v (s')

acA s’eS ac A

= wlals] |f($ a) +7 Y Pls'ls, alv™(s) | = Eann(is) [r(5,3) +7Esnp(isa)v™(s)]]

acA s’eS

= Vv"(s) = anﬂ(.‘s) ES/NP(.‘S@) [r(s,a) + ’YVTF(S/)]
Sampling a from 7(-|s) and the environment samples s’ ~ P(-|s, a), V" (s) = r(s,a) + v v™(s').

Since we do not know v™(s’) either, we can use the estimate instead, implying that,
07(s) = r(s,a) + v V™(s"). This is known as bootstrapping since we are using an estimate at s’
to estimate the value function at state s.

Using this idea, we can design an iterative algorithm — TD(0).



Temporal Difference Learning

Algorithm Temporal Difference Learning. [TD(0)]
. Input: MDP M = (S, A, p), vo = 0, Policy 7. Step-sizes {a:}. .

1
2: Sample state sy ~ p.

3: fort=0—T-1 do

4:  Take action a; ~ m(+|s;), observe reward r(s;, a;) and transition to state s;;1.
5. Update viy1(s:) = (1 — o) ve(se) + ave [r(se, ar) + v ve(se+1)]-

6: Vs # st ver1(s) = vi(s)

7: end for

@ Unlike Monte-Carlo estimation, TD(0) does not require waiting until the end of trajectories
to start updating the value function estimates.

@ Unlike using 7, TD(0) does not require knowledge of P and r.

@ Under some technical assumptions, TD(0) will converge, i.e. lim;_ o v¢ = v7.

@ TD(0) can handle linear function approximation and has non-asymptotic theoretical
convergence guarantees. We will prove this next.



Linear Temporal Difference Learning



Linear TD(0)

Assumption: Have access to features ® € R>*? such that for every policy , there exists a
6 € R such that v™ = ®f. For the specific policy 7 being evaluated, there exists a unique *
such that v™ = ®6* = vy« where vy := $6.

Define ¢(s) as the feature vector corresponding to state s. Hence, vy(s) = (¢(s), ). For
convenience, we will assume that Vs, ||¢(s)]| < 1.

Algorithm TD(0) with linear function approximation
. Input: MDP M = (S, A, p), Features ® € R>*9, Policy 7. 6y € R9, Step-sizes {at}tT:_Ol.

1
2: Sample state sp ~ p

3: fort=0—T-1 do

4. Take action a; ~ m(-|s;), observe reward r(s;, a;) and transition to state s;.1.
5. Define g¢(6) = [re + (0, ¢(se+1)) — (0, d(st))] d(st)

6 Update 0¢11 = 0; + o g:(0¢)

7: end for

If d =S and ¢(s) correspond to one-hot vectors, then we recover TD(0) from the previous slide.



Linear TD(0) Analysis

The TD(0) update is 0;11 = 0; + o g:(0) where g¢(0) = [re + (0, d(se41)) — (0, d(st))] d(st)-

Q: Could we use a Gradient Descent type analysis? Ans: Note that g:(6) does not correspond to
the gradient of a specific loss function (Prove in Assignment 3!). Hence, TD(0) is a
“semi-gradient” method. But we can use a GD type analysis!

We will analyze Linear TD(0) in 4 steps:

(1) Warmup: Analyze a hypothetical algorithm that performs GD on f(6) := % [|vp — V9||%,.

(2) Mean-path: Make an analogy between Linear TD(0) and GD, and analyze Linear TD(0)
assuming access to the stationary distribution.

(3) 1ID: Analyze Linear TD(0) assuming access to (s, st+1) sampled i.i.d from the stationary
distribution.

(4) Markovian: Analyze Projected Linear TD(0) assuming access to (st, syy1) that are gathered
from a “fast-mixing”" Markov chain (will not cover this in detail).
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Linear TD(0) Analysis

Define P(s’|s) to be the probability of transitioning from s to s’ when acting according to .

Assumption: The Markov chain induced by policy 7 is ergodic (can visit every state) with a
unique stationary distribution w € As. For s € S, w(s) = lim;_,o Pr[s; = s]. Hence, wP™ = w
meaning that if s ~ w and s’ ~ P(:|s), then the marginal distribution of s’ is w.

Define a diagonal matrix D € R®*® such that D; ; = w(i). For any u, w € R>, define
lu—w(|p = w(s) [u(s) — w(s)].
For vp and vy, define £ := " _w(s) ¢(s)¢(s)” € R and X := Apin[Z].

Ive = virlp = D w(s) [va(s) — var()> = D w(s) [(6(s), 6 — 6]

S S

=(0-0)T Y w(s)d(s)p(s)T(0 —0') = [0 — '3

Q: Prove that \pmax[X] < 1
Ans: Amax[X] < Tr[X] = >, w(s) Tr[p(s)é(s)T] = Yocw(s) ngb(s)|\2 <1 Hence, for any 6,

V0] < |Ivallp < [16]] (by setting 8" = 0 above). u



Linear TD(0) Analysis — Warmup

Define f(0) := % [|vp- — V9H2D =16*- 9||§ Consider a hypothetical algorithm that performs
GD on f(6) i.e. at iteration t, 0;11 = 0, — aVf(0;). Note that V£ (0) = X(0 — 0*).

1662 = %117 = 116: — VF(0:) = 6%[1* = 10 — 0| + 2a (VF(0:), 0" — 0) + o [ VF(6:)||”

(VF(6:),0" = 0c) = (£(6: = 6%),0" — 6:) = — 0 — 0" |5 = — vo, — vo- 15

For any vector u s.t. |lu]| < 1,

(u, VF(0)) = (u, (6 — 07)) < H)Zl/z uH Y12 (9 —0%) (Cauchy Schwarz)
= [lullz 160 = 60%lls < Amax[E] |ul[ 16 = 6%[I5 < llvo = vo-1I (Amax[E] < 1, [Jufl < 1)
— VO < o — vo- I3 (Setting u = VFO)vr(o)))

= |01 — 071> < [16: — 6%|1° — 22 |vo, — vo- |3, + @ [[vo, — vo- I,
16e11 — %[> < 116: — 07|[* — [[va, — vo-[[5 < (1= A) [0 — 67[®  (Set & = 1, A = Amin[2])
— 10 6" P < (@ —=X)T || — 6*| (Recursing from t =0 to T — 1)
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Linear TD(0) Analysis — Mean-path

The previous analysis relied on bounding two key quantities: (i) (V£ (6;),0* — 0:) and (ii)
IV£(6)]°. We now consider analyzing Mean-path TD. For this, define () and the
corresponding update as:

8(0) := EsnwBywp()s) [r(s, m(s)) + 7(0, 6(s')) — (6, ¢(s))] ¢(s)
Ori1 =0+ g(0)
o Intuitively, g(0) is the Linear TD update in expectation if s was sampled from the stationary
distribution, and the Markov chain transitioned to s’.
@ Importantly, recall that the marginal distribution of s’ is the stationary distribution w.
e If 7, is the policy evaluation operator for , then, g() = ®7 D [T,$60 — 6] (Prove in
Assignment 3!).

Similar to the warm-up, we will show two important properties for g(). For all 6,

(1) (8(6),6* —6) > (1 =) |lvo — ve- |5
2) 12O <2v2 [vs — vo-lp

13



Linear TD(0) Analysis — Mean-path

Claim: (g(6),0* —6) > (1 —7) [lvo — vo-| 5.

Proof: Since g() = ®" D [T, ®0 — ®0], using the definition of 6%,

g(0*) = "D [T, 90" — ®0*] = ®T D [T,v™ — v™] = 0. Hence,

g(0) =2(9) — &)
= Eso [[(r(s, 7(5)) + {0, &(s)) — (6, &(s))) — (r(s, w(s)) + (0", &(s")) — (67, ¢(5)))] ¥(5)]
= Eqo [((8(5), 0" — 0) — 7((s"), 0" — 0)) ¢(s)]

Define (s := (6* — 0, ¢(s)) and (s := (0% — 0, ¢(s"))
= B(0) = Es o [(C —1¢sr) 0(5)]

<g(9)7 0" — 9> = <]Es,s’ [(Cs - '745’) ¢(5)] 79* - 0> = IEs,s/ [(Cs - A/Cs’) <¢(5)7 0" — 0>]
=Es o [(Cs - 7(5’) Cs] =E; [Csz —¥Cs Cs}
= (E(G), 0" — 9> = Esw [452] - 7E5~w7s’~P(~|s) [Cs’ Cs]
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Linear TD(0) Analysis — Mean-path

Recall that (g(6), 6" — 6) = EswuEI(2] — 7 Eanas e/ lo) [Gor G] where G := (8" — 6, (s)).
(8(0),6" — 0) = Esnw[(Z] = Y Esmusrmpls) [¢or G5l
> EariBIC] — 7 B 19)[C2] B i) [C2]
(Cauchy Schwarz)
= Feuw[?] = 7 VEsnw[C?] \/Esrnw[C2] (w is the stationary distribution)
= (1= 1) Esnol] = (1= 7) D w(s) ¢(s)

s

= (1= ) S w(s) (0" — 6)Té(s)o(s)T (6" ) (By def. of ¢,)
= (=) 16 —6"II3 (By def. of T)
= (8(0),0"—0) > (1—7) [lvo — ve-[lp O (Since (|6 — 6*[|z = [[vo — vo-1lp)
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Linear TD(0) Analysis — Mean-path

Claim: [|2(0)[| <2V2 [lvy — vp-| 5.
Proof: Since g(0) = Es,s [(¢s — 7¢s) &(5)],
18(O)]| = IIEs,sr [(Cs = 7¢s) ()]l < Essr [[[(¢s — 7Csr) &(s)]] (Jensen’s inequality)
= Ess [[G — 7| 10(5)1] < VEI(G — 762 VE[Ig(s)I°] (Cauchy Schwarz)
< VE[(G —7¢) (Since [|p(s)|| < 1)
< V2VE [ +722] < V2 VEolC + V2 /1B wmpiis)[C2]
(Since (a+ b)? < 2(a® + b?) and Va+ b < \/a+ Vb forall a>0,b>0)

= V2 VE [l + V2 EenulG] = V2(1 4 7) VEI

(Since w is the stationary distribution)

<2v2/E[(?] (Since 1+ < 2)
= 2(0)]| <2V2 |vo — ve-|lp, O (Using the bound on E[¢2])
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Linear TD(0) Analysis — Mean-path

2 T
Claim: |07 — 6*|° < (1 - %) 160 — 6*||°.
Proof: We have proven (1) (g(0),0" —0) > (1 —7) ||ve — ve*HzD and (2) |Ig(0)]] < 22 |[ve — Ve*||D-
[0es — 07117 = (10 + g (0) — 07| = 10 — 07|1* + 20:(&(6), 0 — 0%) + o® || 5 (6:) |1

<10 = 0711* = 2 (1 =) [[vo, = vo- Il + 802 [[vo, = vo-

2
D

1— 2
<1071 ~ Sy, — v

% (Setting o = 177”’)

1—~)? )
— o — 02— L2 o, g2 (Since v — vo- |3 = |16 — 0%]12)
8

1— 2
< 10— 0°1 — Arinlz] L2 o — 072

1—~)2)\ .
|6e41 — 9*”2 < (1 = (;)) |6 — 9*”2 (Since A = Amin[X])

—ARANT
— |67 — 6| < (1 - (1;)/\) 6o —6*]> O (Recursing from t =0to T — 1)
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