CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 5

Sharan Vaswani
October 6, 2023

Recap

- Bellman equation for policy $\pi: v^{\pi}(s)=\mathbf{r}_{\pi}(s)+\gamma \sum_{s^{\prime}} \mathbf{P}_{\pi}\left[s, s^{\prime}\right] v^{\pi}\left(s^{\prime}\right)$ $=\sum_{a \in \mathcal{A}} r(s, a) \pi[a \mid s]+\gamma \sum_{s^{\prime} \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mathcal{P}\left[s^{\prime} \mid s, a\right] \pi[a \mid s] v^{\pi}\left(s^{\prime}\right)$.
- Bellman Optimality: $\mathcal{T}: \mathbb{R}^{\mathcal{S}} \rightarrow \mathbb{R}^{S}$ s.t. $(\mathcal{T} u)(s)=\max _{a}\left\{r(s, a)+\gamma \sum_{s^{\prime}} \mathcal{P}\left(s^{\prime} \mid s, a\right) u\left(s^{\prime}\right)\right\}$.
- Fundamental Theorem: For policy $\pi^{*} \in \Pi_{\mathrm{SD}}, v^{\pi^{*}}(s)=\max _{\pi \in \Pi_{\mathrm{HR}}} v^{\pi}(s)$ for all $s \in \mathcal{S}$.
- $v^{*}=\mathcal{T} v^{*}=\max _{\pi \in \Pi_{\text {sd }}}\left\{\mathbf{r}_{\pi}+\gamma \mathbf{P}_{\pi} v^{*}\right\}=\mathcal{T}_{\pi^{*}} v^{*}=\mathbf{r}_{\pi^{*}}+\gamma \mathbf{P}_{\pi^{*}} v^{*}$
- Value Iteration: Iterate $v_{k}=\mathcal{T} v_{k-1}$ for K iterations. $\forall s \in \mathcal{S}$, return the greedy policy w.r.t v_{K} i.e. $\hat{\pi}(s)=\arg \max _{a}\left\{r(s, a)+\gamma \sum_{s^{\prime}} \mathcal{P}\left(s^{\prime} \mid s, a\right) v_{K}\left(s^{\prime}\right)\right\}$.
- VI convergence: After $K \geq \frac{\log (1 / \epsilon(1-\gamma))}{1-\gamma}$ iterations, VI returns a v_{K} s.t. $\left\|v_{K}-v^{*}\right\|_{\infty} \leq \epsilon$.
- Since $\hat{\pi}$ is the policy returned by VI, we want a bound on $\left\|v^{*}-v^{\hat{\pi}}\right\|_{\infty}$.
- Today, we will prove that VI requires $K \geq \frac{\log \left(2 \gamma / \epsilon(1-\gamma)^{2}\right)}{1-\gamma}$ iterations to ensure $\left\|v^{*}-v^{\hat{\pi}}\right\|_{\infty} \leq \epsilon$.

Policy Error Bound

Claim: For an arbitrary $v \in \mathbb{R}^{S}$ if (i) π is the greedy policy w.r.t v, i.e. $\pi(s)=\arg \max _{a}\left\{r(s, a)+\gamma \sum_{s^{\prime}} \mathcal{P}\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right)\right\}$, (ii) v^{π} is the value function corresponding to policy π i.e. $v^{\pi}=\mathcal{T}_{\pi} v^{\pi}=\mathbf{r}_{\pi}+\gamma \mathbf{P}_{\pi} v^{\pi}$, then,

$$
v^{\pi} \geq v^{*}-\frac{2 \gamma\left\|v-v^{*}\right\|_{\infty}}{1-\gamma} \mathbf{1}
$$

Proof: For the proof, we need the following properties of the \mathcal{T} and \mathcal{T}_{π} operators.

$$
\mathcal{T} v^{*}=v^{*} \quad ; \quad \mathcal{T} v=\mathcal{T}_{\pi} v \quad ; \quad v^{\pi}=\mathcal{T}_{\pi} v^{\pi}
$$

We will also need the following properties: for $u, w \in \mathbb{R}^{S}$ s.t. $u \leq w$ (element-wise) and a constant c,

$$
\begin{aligned}
\mathcal{T}(u) & \leq \mathcal{T}(w) \quad ; \quad \mathcal{T}_{\pi}(u) \leq \mathcal{T}_{\pi}(w) \\
\mathcal{T}(u+c \mathbf{1}) & =\mathcal{T}(u)+c \gamma \mathbf{1} \quad ; \quad \mathcal{T}_{\pi}(u+c \mathbf{1})=\mathcal{T}_{\pi}(u)+c \gamma \mathbf{1}
\end{aligned}
$$

(Monotonicity)
(Additivity)
Prove in Assignment 2!

Policy Error Bound

Define $\epsilon:=\left\|v^{*}-v\right\|_{\infty} \Longrightarrow-\epsilon \mathbf{1} \leq v^{*}-v \leq \epsilon \mathbf{1}$ and define $\delta:=v^{*}-v^{\pi}$.

$$
\begin{aligned}
& \delta=v^{*}-v^{\pi}=\mathcal{T} v^{*}-v^{\pi}=\mathcal{T} v^{*}-\mathcal{T}_{\pi} v^{\pi} \\
& \leq \mathcal{T}(v+\epsilon \mathbf{1})-\mathcal{T}_{\pi} v^{\pi}=\mathcal{T} v+\epsilon \gamma \mathbf{1}-\mathcal{T}_{\pi} v^{\pi} \\
& =\mathcal{T}_{\pi} v+\epsilon \gamma \mathbf{1}-\mathcal{T}_{\pi} v^{\pi} \\
& \text { (By definitions of } \mathcal{T}, \mathcal{T}_{\pi} \text {) } \\
& \text { (By monotonicity, additivity of } \mathcal{T} \text {) } \\
& \text { (Since } \mathcal{T} v=\mathcal{T}_{\pi} v \text {) } \\
& \leq \mathcal{T}_{\pi}\left(v^{*}+\epsilon \mathbf{1}\right)+\epsilon \gamma \mathbf{1}-\mathcal{T}_{\pi} v^{\pi}=\mathcal{T}_{\pi} v^{*}+\gamma \epsilon \mathbf{1}+\epsilon \gamma \mathbf{1}-\mathcal{T}_{\pi} v^{\pi} \\
& \text { (By monotonicity, additivity of } \mathcal{T}_{\pi} \text {) } \\
& =\mathcal{T}_{\pi} v^{*}-\mathcal{T}_{\pi} v^{\pi}+2 \gamma \epsilon \mathbf{1} \\
& =\left[\mathbf{r}_{\pi}+\gamma \mathbf{P}_{\pi} v^{*}\right]-\left[\mathbf{r}_{\pi}+\gamma \mathbf{P}_{\pi} v^{\pi}\right]+2 \gamma \epsilon \mathbf{1} \\
& \text { (By definition of } \mathcal{T}_{\pi} \text {) } \\
& =\gamma \mathbf{P}_{\pi}\left(v^{*}-v^{\pi}\right)+2 \gamma \epsilon \mathbf{1} \\
& \Longrightarrow \delta \leq \gamma \mathbf{P}_{\pi} \delta+2 \gamma \epsilon \mathbf{1} \\
& \Longrightarrow|\delta| \leq \gamma\left|\mathbf{P}_{\pi} \delta\right|+2 \gamma \epsilon \mathbf{1} \\
& \text { (Taking an element-wise absolute value and using the triangle inequality) }
\end{aligned}
$$

Policy Error Bound

Recall that $\epsilon=\left\|v^{*}-v\right\|_{\infty}, \delta:=v^{*}-v^{\pi}$ and $|\delta| \leq \gamma\left|\mathbf{P}_{\pi} \delta\right|+2 \gamma \epsilon \mathbf{1}$ Let us simplify $\left|\mathbf{P}_{\pi} \delta\right|$. For an arbitrary s,

$$
\begin{aligned}
\left|\mathbf{P}_{\pi} \delta\right|(s) & =\left|\sum_{s^{\prime}} \mathbf{P}_{\pi}\left(s, s^{\prime}\right) \delta\left(s^{\prime}\right)\right| \leq \sum_{s^{\prime}}\left|\mathbf{P}_{\pi}\left(s, s^{\prime}\right) \delta\left(s^{\prime}\right)\right|=\sum_{s^{\prime}} \mathbf{P}_{\pi}\left(s, s^{\prime}\right)\left|\delta\left(s^{\prime}\right)\right| \\
& \leq\|\delta\|_{\infty} \sum_{s^{\prime}} \mathbf{P}_{\pi}\left(s, s^{\prime}\right)=\|\delta\|_{\infty} \\
\Longrightarrow\left|\mathbf{P}_{\pi} \delta\right| & \leq\|\delta\|_{\infty} \mathbf{1} \Longrightarrow|\delta| \leq \gamma\|\delta\|_{\infty} \mathbf{1}+2 \gamma \epsilon \mathbf{1} \\
\Longrightarrow\|\delta\|_{\infty} & \leq \gamma\|\delta\|_{\infty}+2 \gamma \epsilon \Longrightarrow\|\delta\|_{\infty} \leq \frac{2 \gamma \epsilon}{1-\gamma}
\end{aligned}
$$

(By taking the element-wise maximum on both sides)

$$
\Longrightarrow\left\|v^{*}-v^{\pi}\right\|_{\infty} \leq \frac{2 \gamma\left\|v^{*}-v\right\|_{\infty}}{1-\gamma} \Longrightarrow v^{\pi} \geq v^{*}-\frac{2 \gamma\left\|v-v^{*}\right\|_{\infty}}{1-\gamma} 1
$$

Policy Iteration

Policy Iteration

Algorithm Policy Iteration

1: Input: $\operatorname{MDP} M=(\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \rho), \pi_{0}$.
2: for $k=0 \rightarrow K$ do
3: Policy Evaluation: Calculate $v^{\pi_{k}}$ as the solution to $\left(I-\gamma \mathbf{P}_{\pi_{k}}\right) v=\mathbf{r}_{\pi_{k}}$.
4: Policy Improvement: $\forall s, \pi_{k+1}(s)=\arg \max _{a}\left\{r(s, a)+\gamma \sum_{s^{\prime}} \mathcal{P}\left(s^{\prime} \mid s, a\right) v^{\pi_{k}}\left(s^{\prime}\right)\right\}$
5: end for

- Computational Complexity: $O\left(\left(S^{3}+S^{2} A\right) K\right)$
- We will prove that $K=O\left(\frac{S A}{1-\gamma}\right)$ iterations of PI are sufficient to ensure exact convergence to the optimal policy. Hence, PI requires $O\left(\frac{S^{4} A+S^{3} A^{2}}{1-\gamma}\right)$ operations.
We will do the proof in two steps:
(i) Show that the sequence of $v^{\pi_{k}}$ converges to v^{*} at a linear rate (similar to VI).
(ii) Relate $v^{\pi_{k}}$ to the greedy policy chosen by PI at each iteration.

Policy Iteration

(i) Claim: For PI, $\left\|v^{\pi_{K}}-v^{*}\right\|_{\infty} \leq \gamma^{K}\left\|v^{\pi_{0}}-v^{*}\right\|_{\infty}$.

Proof: We will first prove a more general result: for any π, π^{\prime}, if π^{\prime} is the greedy policy w.r.t v^{π}, then, $v^{\pi} \leq \mathcal{T} v^{\pi} \leq v^{\pi^{\prime}}$. To see this, note that,

$$
\mathcal{T} v^{\pi}=\mathcal{T}_{\pi^{\prime} v^{\pi}} \quad ; \quad v^{\pi}=\mathcal{T}_{\pi} v^{\pi} \leq \mathcal{T} v^{\pi} \quad\left(\text { By definition of } \pi^{\prime} \text { and by definitions of } \mathcal{T} \text { and } \mathcal{T}_{\pi}\right)
$$

We will use induction to show that $v^{\pi} \leq \mathcal{T} v^{\pi} \leq \mathcal{T}_{\pi^{\prime}}^{n} v^{\pi}$ for all n. As $n \rightarrow \infty, v^{\pi} \leq \mathcal{T} v^{\pi} \leq v^{\pi^{\prime}}$. Base Case: For $n=1$, from the above definition, we know that $v^{\pi} \leq \mathcal{T} v^{\pi}=\mathcal{T}_{\pi^{\prime}} v^{\pi}$. Inductive Hypothesis: Assume that $v^{\pi} \leq \mathcal{T} v^{\pi} \leq \mathcal{T}_{\pi^{\prime}}^{n-1} v^{\pi}$. Let us prove it for n,

$$
v^{\pi} \leq \mathcal{T}_{\pi^{\prime}}^{n-1} v^{\pi} \Longrightarrow \mathcal{T}_{\pi^{\prime}} v^{\pi} \leq \mathcal{T}_{\pi^{\prime}}^{n} v^{\pi} \Longrightarrow \mathcal{T} v^{\pi} \leq \mathcal{T}_{\pi^{\prime}}^{n} v^{\pi} \Longrightarrow v^{\pi} \leq \mathcal{T} v^{\pi} \leq \mathcal{T}_{\pi^{\prime}}^{n} v^{\pi}
$$

Using this result for PI , we get that $v^{\pi_{k}} \leq \mathcal{T} v^{\pi_{k}} \leq v^{\pi_{k+1}}$. Using this result recursively,

$$
\mathcal{T} v^{\pi_{0}} \leq v^{\pi_{1}} \Longrightarrow \mathcal{T}^{2} v^{\pi_{0}} \leq \mathcal{T} v^{\pi_{1}} \leq v^{\pi_{2}} \Longrightarrow \mathcal{T}^{K} v^{\pi_{0}} \leq v^{\pi_{K}}
$$

Policy Iteration

Recall we have proved that $\mathcal{T}^{K} v^{\pi_{0}} \leq v^{\pi_{K}}$. Since v^{*} is the optimal value function,

$$
\begin{aligned}
\mathcal{T}^{K} v^{\pi_{0}} & \leq v^{\pi_{K}} \leq v^{*} \Longrightarrow v^{*}-v^{\pi_{K}} \leq v^{*}-\mathcal{T}^{K} v^{\pi_{0}} \\
\Longrightarrow\left\|v^{*}-v^{\pi_{K}}\right\|_{\infty} & \leq\left\|v^{*}-\mathcal{T}^{K} v^{\pi_{0}}\right\|_{\infty} \\
\Longrightarrow\left\|v^{*}-v^{\pi_{K}}\right\|_{\infty} & \leq\left\|\mathcal{T}^{K} v^{*}-\mathcal{T}^{K} v^{\pi_{0}}\right\|_{\infty} \leq \gamma^{K}\left\|v^{*}-v^{\pi_{0}}\right\|_{\infty}
\end{aligned}
$$

For proving (ii), we will require an intermediate result - the value difference lemma.
Claim: For any $\pi, \pi^{\prime} \in \Pi_{\mathrm{SR}}, v^{\pi^{\prime}}-v^{\pi}=\left(I-\gamma \mathbf{P}_{\pi^{\prime}}\right)^{-1} g\left(\pi^{\prime}, \pi\right)$ where $g\left(\pi^{\prime}, \pi\right):=\mathcal{T}_{\pi^{\prime}} v^{\pi}-v^{\pi}$.
Proof: Recall that $v^{\pi^{\prime}}=\left(I-\gamma \mathbf{P}_{\pi^{\prime}}\right)^{-1} \mathbf{r}_{\pi^{\prime}}$.

$$
\begin{aligned}
& v^{\pi^{\prime}}-v^{\pi}=\left(I-\gamma \mathbf{P}_{\pi^{\prime}}\right)^{-1} \mathbf{r}_{\pi^{\prime}}-v^{\pi}=\left(I-\gamma \mathbf{P}_{\pi^{\prime}}\right)^{-1}\left[\mathbf{r}_{\pi^{\prime}}-\left(I-\gamma \mathbf{P}_{\pi^{\prime}}\right) v^{\pi}\right] \\
& =\left(I-\gamma \mathbf{P}_{\pi^{\prime}}\right)^{-1}\left[\left(\mathbf{r}_{\pi^{\prime}}+\gamma \mathbf{P}_{\pi^{\prime}} v^{\pi}\right)-v^{\pi}\right]=\left(I-\gamma \mathbf{P}_{\pi^{\prime}}\right)^{-1}\left[\mathcal{T}_{\pi^{\prime}} v^{\pi}-v^{\pi}\right] \\
& =\left(I-\gamma \mathbf{P}_{\pi^{\prime}}\right)^{-1} g\left(\pi^{\prime}, \pi\right) \quad \square
\end{aligned}
$$

Policy Iteration

Claim: Consider an arbitrary sub-optimal stationary deterministic policy π_{0}^{\prime} and define π_{K}^{\prime} to be the policy returned by PI after K iterations starting from policy π_{0}^{\prime}. For all $K \geq K^{*}:=\left\lceil\frac{\log (1 / 1-\gamma)}{\log (1 / \gamma)}\right\rceil+1$, there exists a state s^{\prime} such that $\pi_{K}^{\prime}\left[s^{\prime}\right] \neq \pi_{0}^{\prime}\left[s^{\prime}\right]$. This means that for all $K \geq K^{*}$, the action corresponding to $\pi_{0}^{\prime}\left[s^{\prime}\right]$ is eliminated for state s^{\prime}.
We will use this claim multiple times starting from $\pi_{0}^{\prime}=\pi_{0}$. In particular,

- After $K \geq K^{*}$ iterations of PI , we know there exists a state s^{\prime} for which the action corresponding to $\pi_{0}\left[s^{\prime}\right]$ is eliminated.
- If we continue running PI , after a further K^{*} iterations, another action would be eliminated. Specifically, for $\pi_{0}^{\prime}=\pi_{K^{*}}$, there exists a state $s^{\prime \prime}$ for which the action corresponding to $\pi_{K^{*}}\left[s^{\prime \prime}\right]$ is eliminated.
- Since we are considering deterministic policies, we need to eliminate at most $S A-S$ actions, and need to run PI for at most $(S A-S) K^{*}$ iterations. Hence, PI will converge to the optimal policy in $O\left(\frac{S A \log (1 / 1-\gamma)}{1-\gamma}\right)$ iterations.

Policy Iteration

Proof: We will make use of the value difference lemma to bound $g\left(\pi, \pi^{*}\right)$. Note that $g\left(\pi, \pi^{*}\right)=\mathcal{T}_{\pi} v^{*}-v^{*}<0$ for all sub-optimal policies π.

$$
-g\left(\pi_{K}^{\prime}, \pi^{*}\right)=\left(I-\gamma \mathbf{P}_{\pi_{\kappa}^{\prime}}\right)\left[v^{*}-v^{\pi_{\kappa}^{\prime}}\right]=\left[v^{*}-v^{\pi_{\kappa}^{\prime}}\right]-\gamma \mathbf{P}_{\pi_{\kappa}^{\prime}} \underbrace{\left[v^{*}-v^{\pi_{\kappa}^{\prime}}\right]}_{\text {Non-negative }} \leq\left[v^{*}-v^{\pi_{\kappa}^{\prime}}\right]
$$

$$
\Longrightarrow\left\|g\left(\pi_{K}^{\prime}, \pi^{*}\right)\right\|_{\infty} \leq\left\|v^{*}-v^{\pi_{K}^{\prime}}\right\|_{\infty}
$$

(Taking element-wise absolute value and max over the states)

$$
\begin{aligned}
& \leq \gamma^{K}\left\|v^{\pi_{0}^{\prime}}-v^{*}\right\|_{\infty} \\
& =\gamma^{K}\left\|\left(I-\gamma \mathbf{P}_{\pi_{0}^{\prime}}\right)^{-1} g\left(\pi_{0}^{\prime}, \pi^{*}\right)\right\|_{\infty} \\
& \leq \frac{\gamma^{K}}{1-\gamma}\left\|g\left(\pi_{0}^{\prime}, \pi^{*}\right)\right\|_{\infty}
\end{aligned}
$$

(From the claim in (i))
(Value Difference Lemma)
(Using the Neumann series)

$$
\Longrightarrow\left\|g\left(\pi_{K}^{\prime}, \pi^{*}\right)\right\|_{\infty}<\left\|g\left(\pi_{0}^{\prime}, \pi^{*}\right)\right\|_{\infty}
$$

$$
\left(K \geq K^{*}=\left\lceil\frac{\log (1 / 1-\gamma)}{\log (1 / \gamma)}\right\rceil+1\right)
$$

Policy Iteration

Recall that $\left\|g\left(\pi_{K}^{\prime}, \pi^{*}\right)\right\|_{\infty}<\left\|g\left(\pi_{0}^{\prime}, \pi^{*}\right)\right\|_{\infty}$.
If $s^{\prime}:=\arg \max _{s}\left|g\left(\pi_{0}^{\prime}, \pi^{*}\right)(s)\right| \Longrightarrow\left\|g\left(\pi_{0}^{\prime}, \pi^{*}\right)\right\|_{\infty}=-g\left(\pi_{0}^{\prime}, \pi^{*}\right)\left(s^{\prime}\right)$, then,

$$
\begin{array}{rr}
\left\|g\left(\pi_{K}^{\prime}, \pi^{*}\right)\right\|_{\infty}<-g\left(\pi_{0}^{\prime}, \pi^{*}\right)\left(s^{\prime}\right) \Longrightarrow \max _{s}\left|g\left(\pi_{K}^{\prime}, \pi^{*}\right)\right| \leq-g\left(\pi_{0}^{\prime}, \pi^{*}\right)\left(s^{\prime}\right) \\
\Longrightarrow-g\left(\pi_{K}^{\prime}, \pi^{*}\right)\left(s^{\prime}\right)<-g\left(\pi_{0}^{\prime}, \pi^{*}\right)\left(s^{\prime}\right) \\
\Longrightarrow v^{*}\left(s^{\prime}\right)-\left(\mathcal{T}_{\pi_{K}^{\prime}}^{\prime *}\right)\left(s^{\prime}\right)<v^{*}\left(s^{\prime}\right)-\left(\mathcal{T}_{\pi_{0}^{\prime}}^{*}\right)\left(s^{\prime}\right) & \text { (Recall that } \left.-g\left(\pi^{\prime}, \pi^{*}\right)=v^{*}-\mathcal{T}_{\pi^{\prime}} v^{*}\right) \\
\Longrightarrow \mathbf{r}_{\pi_{K}^{\prime}}\left(s^{\prime}\right)+\left(\mathbf{P}_{\pi_{K}^{\prime}} v^{*}\right)\left(s^{\prime}\right)>\mathbf{r}_{\pi_{0}^{\prime}}\left(s^{\prime}\right)+\left(\mathbf{P}_{\pi_{0}^{\prime}} v^{*}\right)\left(s^{\prime}\right) & \text { (Recall that } \left.\mathcal{T}_{\pi^{\prime}} v^{*}=\mathbf{r}_{\pi^{\prime}}+\mathbf{P}_{\pi^{\prime}} v^{*}\right) \\
\Longrightarrow \pi_{K}^{\prime}\left(s^{\prime}\right) \neq \pi_{0}^{\prime}\left(s^{\prime}\right) \square & \text { (Proof by contradiction) }
\end{array}
$$

Linear Programming

Linear Programming and MDPs

Finding an optimal policy in an MDP is equivalent to solving a linear program.
Primal LP: For a starting state distribution $\rho \in \Delta_{S}$

$$
v^{*}=\underset{v \in \mathbb{R}^{s}}{\arg \min }\langle\rho, v\rangle \quad \text { s.t. } \forall(s, a) ; \quad v(s) \geq r(s, a)+\gamma \sum_{s^{\prime}} \mathcal{P}\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right)
$$

- Intuition: In Lecture 4, while proving the Fundamental Theorem, we saw that if $v \geq \mathcal{T} v$, then $v \geq v^{*}$. The constraints in the primal LP correspond to $v \geq \mathcal{T} v$, and the objective is to find the smallest v that satisfies these constraints.
- The primal LP is over-determined and has S variables and $S \times A$ constraints.
- For each $s \in \mathcal{S}$, there exists an $a^{*}(s)$ such that

$$
v^{*}(s)=r\left(s, a^{*}(s)\right)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}\left(s^{\prime} \mid s, a^{*}(s)\right) v^{*}(s) \text { i.e. the constraint is "tight". }
$$

- The stationary deterministic policy $\pi^{*}(s)=a^{*}(s)$ is an optimal policy and v^{*}, the solution to the primal LP is the optimal value function.
- For details and proofs, refer to Section 5.8.1 of [PC'23].

Linear Programming and MDPs

Dual LP: Define $r \in \mathbb{R}^{S \times A}$ to be the reward vector, $\mu \in \mathbb{R}^{S \times A}$ to be the state-action occupancy measure and $d^{\pi} \in \mathbb{R}^{S}$ to be the state occupancy measure such that,

$$
\begin{aligned}
& \mu(s, a):=(1-\gamma) \sum_{s_{0} \in \mathcal{S}} \rho\left(s_{0}\right) \sum_{t=0}^{\infty} \gamma^{t} \operatorname{Pr}\left[S_{t}=s, A_{t}=A \mid S_{0}=s_{0}\right] \quad ; \quad \forall(s, a) \in \mathcal{S} \times \mathcal{A} \\
& d(s):=(1-\gamma) \sum_{s_{0} \in \mathcal{S}} \rho\left(s_{0}\right) \sum_{t=0}^{\infty} \gamma^{t} \operatorname{Pr}\left[S_{t}=s \mid S_{0}=s_{0}\right] \quad \forall s \in \mathcal{S} \\
& \mu^{*}=\underset{\mu \in[0, \infty)^{s \times A}}{\arg \max } \frac{\langle\mu, r\rangle}{1-\gamma} \text { s.t. } \quad \forall s^{\prime} \in \mathcal{S} \quad \gamma \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mathcal{P}\left(s^{\prime} \mid s, a\right) \mu(s, a)+(1-\gamma) \rho\left(s^{\prime}\right)=\sum_{a \in \mathcal{A}} \mu\left(s^{\prime}, a\right)
\end{aligned}
$$

- Intuition: Maximizing the value function is equivalent to aligning μ to the reward vector r while ensuring that μ satisfies the "flow" constraints.
- The dual LP has $S A$ variables and $S A+S$ constraints. μ^{*} consists of S non-zeros.
- There is a one-one mapping between μ and π, i.e. $\pi(a \mid s)=\mu(s, a) / \sum_{a^{\prime}} \mu\left(s, a^{\prime}\right)$,
- Need to derive the dual LP from basics and implement it in Assignment 2!

Linear Programming and MDPs

- The primal and dual LPs satisfy strong duality i.e. $\left\langle\rho, v^{*}\right\rangle=\frac{\left\langle\mu^{*}, r\right\rangle}{1-\gamma}$.
- π^{*} is the greedy policy corresponding to v^{*} such that $\pi^{*}(s)=\arg \max _{a} \mu^{*}(s, a)$.
- The Simplex method for solving these LPs is equivalent to Policy Iteration.
- The resulting LP can be solved by other algorithms such as interior point methods, primal-dual methods and this connection has been recently exploited for proving sample-complexity results and designing algorithms with function approximation.
- We have studied algorithms that use knowledge of the transition probabilities \mathcal{P} and rewards r to compute the optimal policy.
- These quantities are difficult to obtain in practical scenarios, and hence we need methods that can compute the optimal policy without explicitly relying on this information.
- In the next class, we will consider evaluating a fixed policy π without explicit knowledge of \mathcal{P} and r.

