CMPT 419/983: Theoretical Foundations of

Reinforcement Learning

Lecture 5

Sharan Vaswani
October 6, 2023

e Bellman equation for policy 7: v™(s) = r;(s) +~ > . Px[s,s'] v (s’)
= 2scar(sa)mals] +7 2ses 2aca PlS'ls al mlals] v (s').
e Bellman Optimality: 7 : R® — RS s.t. (Tu)(s) = max, {r(s,a) +v> . P(s'|s,a)u(s)}.

Fundamental Theorem: For policy 7* € Msp, v (5) = Maxgem,g V7 (s) forall s € S.

v =TV = maXgengp {rr + YPrV*} = Tos v =1 + yPrev*

o Value lteration: Iterate v = T v, for K iterations. Vs € S, return the greedy policy
w.rt vk i.e. 7(s) = argmax,{r(s,a) +v > . P(s'[s,a) vk(s')}.

@ VI convergence: After K > W iterations, VI returns a vk s.t. |lvk — v¥|| <e.

@ Since 7 is the policy returned by VI, we want a bound on Hv* — vﬁHoo.

: . ca-?) :
@ Today, we will prove that VI requires K > w iterations to ensure

v*—v”“ <e.
o =

Policy Error Bound

Claim: For an arbitrary v € R if (i) 7 is the greedy policy w.r.t v, i.e.
m(s) = argmax,{r(s,a) +~ >, P(s'|s,a) v(s')}, (ii) v™ is the value function corresponding to
policy mi.e. v =T v™ =r; +yP,v™, then,

v > v —
Proof: For the proof, we need the following properties of the 7 and 7, operators.
Tvi=v* : Tv=T,v ; v =T v"

We will also need the following properties: for u,w € R® s.t. u < w (element-wise) and a

constant c,

T(u) <T(w) 5 Tr(u) < Tr(w) (Monotonicity)
Tw+cl)=T(u)+cyl ; Tr(u+cl)=Tr(u)+cy1 (Additivity)

Prove in Assignment 2!

Policy Error Bound

Define € := ||[v* — v|| ., = —€el < v* —v <€l and define § := v* — v7.
d=v' =V =Tv = v =Tv* = Tv" (By definitions of T, Ty)
<T(v+€el)=Tv"=Tv+eyl = Tv™ (By monotonicity, additivity of T)
=Tv+eyl —Tv™ (Since Tv =Trv)

ST(vi+el)+ eyl —Tv™ =Tov' + vel + eyl — Tv™
(By monotonicity, additivity of 7)
=TV — Tov™ + 27el
=[rr + YPv*] = [rx + YPov"] 4 27el (By definition of 7;)
=P, (v — v™) + 2vel
— 0 < YP,d + 27¢l
= 0| < v|Pxd| + 27el
(Taking an element-wise absolute value and using the triangle inequality)

Policy Error Bound

Recall that e = ||v* — v||_, § := v* — v and |§] < y|Pd| + 2vel Let us simplify |P:d|. For an
arbitrary s,

Px[(s

)6(s)| < Y IPa(s,5)3(s) = Y Pa(s, s)[8(s")]
< Iléllm > Pa(s,s") = (16l

= [Pxd] < [0l 1 = [8] <7[|9]loc 1 + 27el

2ve

OO_1

= [0llee < NI8llo +27e = [I4]l

(By taking the element-wise maximum on both sides)

2 Y= 2 —v*
R) Tt M v -t NP
1=~ 1—7y

Policy Iteration

Policy Iteration

Algorithm Policy lteration
1. Input: MDP M = (S, A, P, r,p), mo.
2: for k=0— K do
3: Policy Evaluation: Calculate v™ as the solution to (/ —vYP,,)v =r,,.
4
5

Policy Improvement: Vs, w1 1(s) = argmax,{r(s,a) +~v >, P(s'|s,a) v7«(s')}
: end for

e Computational Complexity: O((S3 + S2A) K)
@ We will prove that K = O (%) iterations of Pl are sufficient to ensure exact convergence

S*A+S53A2

-y) operations.

to the optimal policy. Hence, Pl requires O(
We will do the proof in two steps:

(i) Show that the sequence of v™ converges to v* at a linear rate (similar to VI).
(ii) Relate v™ to the greedy policy chosen by PI at each iteration.

Policy Iteration

(i) Claim: For PI, [[v™* — v*|_ <~K [v™ —v¥|| .
Proof: We will first prove a more general result: for any 7, #’, if 7’ is the greedy policy w.r.t v™,
then, v™ < Tv™ < v™ . To see this, note that,

Tvh =Tuv™ vi=Tv" <Tv" (By definition of 7’ and by definitions of 7 and T)

We will use induction to show that v™ < Tv™ < T/ v7™ for all n. As n— oo, v7 < Tv™ < v
Base Case: For n = 1, from the above definition, we know that v™ < Tv™ = T v7™.
Inductive Hypothesis: Assume that v™ < Tv™ < 7;",*1v”. Let us prove it for n,

v < 7;",71v7r = TV <TIvl = TvE<TIHvi = v <Tv" <TIv"
Using this result for Pl, we get that v™ < Tv™ < v™+1_ Using this result recursively,

Tvre < v™ = T2y™ < Ty < ™2 = TKy™ < 7

Policy Iteration

Recall we have proved that 7Xv™ < v« Since v* is the optimal value function,
Ty < T < yF = F TR <y TR
v = T* vl

= IV = v < |T v = THvme|| <A lve — vl O

= V' = vl

IN

For proving (ii), we will require an intermediate result — the value difference lemma.

T

Claim: For any 7,7’ € Msg, v™ — v™ = (| —yP) "' g(x’,) where g(n/,) := Trv™ — V7.
Proof: Recall that v™ = (I — vP) ey

Vv = (I =APx) e — v = (I = AP) e — (I = /Pw) V7]

= (I e 'yPﬂ_/)il [(rﬂ./ +’YP7T/ Vﬂ—) — Vﬂ—] = (/ — ’\/Pﬂ-/)il [7;/‘/71' — VTr]

= (I —yP) " g(n',m) O

Policy Iteration

Claim: Consider an arbitrary sub-optimal stationary deterministic policy 7 and define 7 to be

the policy returned by Pl after K iterations starting from policy 7. For all
K> K*:= [%1 + 1, there exists a state s” such that 7 [s'] # m{[s’]. This means that
for all K > K*, the action corresponding to m{[s’] is eliminated for state s’.

We will use this claim multiple times starting from 7 = 7. In particular,

o After K > K™ iterations of PI, we know there exists a state s’ for which the action
corresponding to mg[s’] is eliminated.

@ If we continue running PI, after a further K* iterations, another action would be eliminated.
Specifically, for m = mk~, there exists a state s” for which the action corresponding to
7k~ [s"] is eliminated.

@ Since we are considering deterministic policies, we need to eliminate at most SA — S

actions, and need to run Pl for at most (SA — S) K* iterations. Hence, Pl will converge to

S A log(t/1-)
Y

the optimal policy in O (=) iterations.

Policy Iteration

Proof: We will make use of the value difference lemma to bound g(m,7*). Note that
g(m,) = Trv* — v* <0 for all sub-optimal policies .
— g(my,m*) = (I - VPw/) [v' — v”k] =[v"— v”/K] — P [V — v”k] <[v*— v”/K]
¥ NIp——
Non-negative

— llg(m, ™)l < [[v* = v

oo
(Taking element-wise absolute value and max over the states)

<~K ’ v — v (From the claim in (i))
=K H(I - ’yP,ré)_l g(mp,) ’ (Value Difference Lemma)
AK
< 1 g (76, 7)o (Using the Neumann series)
-
— Je(reo ™)l < gl 7)o (K > K* = o8] 4 1)

Policy Iteration

Recall that ||g(my, 7). < llg(7g, ™) || o -

It s":= argmax; [g(mo, 7°)(s)| = lg(mo, 7°)l| o = —&(mo, 7)(s"), then,
lg(mic, ™)l < —&(mo, 7")(s") = max|g(mi, 7")| < —g(my, 7*)(s")
= —g(mic, 7)(s") < —g(mo, 7)(s'
= V() = (Tap v)(s') < v'(s") = (Tyv™)(s') (Recall that —g(n’, 7*) = v* — T v*)
= 15 (8) + (P v¥)(s") > 1y (57) + (Pryv™)(s") (Recall that T v* = rp + Prv®)
= me(s') #my(s’) O (Proof by contradiction)

10

Linear Programming

Linear Programming and MDPs

Finding an optimal policy in an MDP is equivalent to solving a linear program.

Primal LP: For a starting state distribution p € Ag
v =argmin(p,v) s.t. V(s,a); v(s)>r(s,a)+ ’YZ'P(S/|5, a) v(s")
veERS s/
@ Intuition: In Lecture 4, while proving the Fundamental Theorem, we saw that if v > Tv,

then v > v*. The constraints in the primal LP correspond to v > T v, and the objective is
to find the smallest v that satisfies these constraints.

@ The primal LP is over-determined and has S variables and S x A constraints.

@ For each s € S, there exists an a*(s) such that
vi(s) = r(s,a*(s)) +7 D oes P(s'[s, a*(s))v*(s) i.e. the constraint is “tight”.

@ The stationary deterministic policy 7*(s) = a*(s) is an optimal policy and v*, the solution
to the primal LP is the optimal value function.

@ For details and proofs, refer to Section 5.8.1 of [PC'23].

11

Linear Programming and MDPs

Dual LP: Define r € R5*A to be the reward vector, ;1 € R3*# to be the state-action occupancy
measure and d™ € R® to be the state occupancy measure such that,

pis,a) :=(1=9) > plso) Y V' PrSe=sA=ASo=s5] ; ¥(s,a)eSxA

SOES t=0
d(s):=(1—-7) > p(s0) > V' PrSe=5sSo=s5] Vse&
SOES t=0
" {1, r) N _ /
wr= argmi@l—v st. Vs'es8 vz Z’P(S/‘&a) ,u(sa)—i—(l—v)p(s)fZ/wL(s,a)
nel0,00) sES ac A acA

@ Intuition: Maximizing the value function is equivalent to aligning i to the reward vector r
while ensuring that ju satisfies the “flow” constraints.

@ The dual LP has SA variables and SA + S constraints. p* consists of S non-zeros.

@ There is a one-one mapping between 1 and 7, i.e. 7(als) = #(s:3)/>°,, u(s,a’),

@ Need to derive the dual LP from basics and implement it in Assignment 2!

12

Linear Programming and MDPs

@ The primal and dual LPs satisfy strong duality i.e. {p,v*) = <‘1‘_’§>.

e 7" is the greedy policy corresponding to v* such that 7*(s) = arg max, u*(s, a).

@ The Simplex method for solving these LPs is equivalent to Policy Iteration.

@ The resulting LP can be solved by other algorithms such as interior point methods,
primal-dual methods and this connection has been recently exploited for proving
sample-complexity results and designing algorithms with function approximation.

@ We have studied algorithms that use knowledge of the transition probabilities P and rewards
r to compute the optimal policy.

@ These quantities are difficult to obtain in practical scenarios, and hence we need methods
that can compute the optimal policy without explicitly relying on this information.

@ In the next class, we will consider evaluating a fixed policy m without explicit knowledge of
P and r.

13

