
CMPT 419/983: Theoretical Foundations of
Reinforcement Learning

Lecture 5

Sharan Vaswani

October 6, 2023

Recap

Bellman equation for policy π: vπ(s) = rπ(s) + γ
∑

s′ Pπ[s, s
′] vπ(s ′)

=
∑

a∈A r(s, a)π[a|s] + γ
∑

s′∈S
∑

a∈A P[s ′|s, a]π[a|s] vπ(s ′).

Bellman Optimality: T : RS → RS s.t. (T u)(s) = maxa {r(s, a) + γ
∑

s′ P(s ′|s, a)u(s ′)}.
Fundamental Theorem: For policy π∗ ∈ ΠSD, vπ∗

(s) = maxπ∈ΠHR vπ(s) for all s ∈ S.

v∗ = T v∗ = maxπ∈ΠSD{rπ + γPπv
∗} = Tπ∗v∗ = rπ∗ + γPπ∗v∗

Value Iteration: Iterate vk = T vk−1 for K iterations. ∀s ∈ S, return the greedy policy
w.r.t vK i.e. π̂(s) = argmaxa{r(s, a) + γ

∑
s′ P(s ′|s, a) vK (s ′)}.

VI convergence: After K ≥ log(1/ϵ (1−γ))
1−γ iterations, VI returns a vK s.t. ∥vK − v∗∥∞ ≤ ϵ.

Since π̂ is the policy returned by VI, we want a bound on
∥∥v∗ − v π̂

∥∥
∞.

Today, we will prove that VI requires K ≥ log(2γ/ϵ (1−γ)2)
1−γ iterations to ensure∥∥v∗ − v π̂

∥∥
∞ ≤ ϵ.

1

Policy Error Bound

Claim: For an arbitrary v ∈ RS if (i) π is the greedy policy w.r.t v , i.e.
π(s) = argmaxa{r(s, a) + γ

∑
s′ P(s ′|s, a) v(s ′)}, (ii) vπ is the value function corresponding to

policy π i.e. vπ = Tπvπ = rπ + γPπv
π, then,

vπ ≥ v∗ −
2γ ∥v − v∗∥∞

1 − γ
1

Proof : For the proof, we need the following properties of the T and Tπ operators.

T v∗ = v∗ ; T v = Tπv ; vπ = Tπvπ

We will also need the following properties: for u,w ∈ RS s.t. u ≤ w (element-wise) and a
constant c ,

T (u) ≤ T (w) ; Tπ(u) ≤ Tπ(w) (Monotonicity)

T (u + c1) = T (u) + cγ 1 ; Tπ(u + c1) = Tπ(u) + cγ 1 (Additivity)

Prove in Assignment 2!

2

Policy Error Bound

Define ϵ := ∥v∗ − v∥∞ =⇒ −ϵ1 ≤ v∗ − v ≤ ϵ1 and define δ := v∗ − vπ.

δ = v∗ − vπ = T v∗ − vπ = T v∗ − Tπvπ (By definitions of T , Tπ)

≤ T (v + ϵ1)− Tπvπ = T v + ϵγ1 − Tπvπ (By monotonicity, additivity of T)

= Tπv + ϵγ1 − Tπvπ (Since T v = Tπv)

≤ Tπ(v∗ + ϵ1) + ϵγ1 − Tπvπ = Tπv∗ + γϵ1 + ϵγ1 − Tπvπ

(By monotonicity, additivity of Tπ)

= Tπv∗ − Tπvπ + 2γϵ1

= [rπ + γPπv
∗]− [rπ + γPπv

π] + 2γϵ1 (By definition of Tπ)

= γPπ(v
∗ − vπ) + 2γϵ1

=⇒ δ ≤ γPπδ + 2γϵ1

=⇒ |δ| ≤ γ|Pπδ|+ 2γϵ1
(Taking an element-wise absolute value and using the triangle inequality)

3

Policy Error Bound

Recall that ϵ = ∥v∗ − v∥∞, δ := v∗ − vπ and |δ| ≤ γ|Pπδ|+ 2γϵ1 Let us simplify |Pπδ|. For an
arbitrary s,

|Pπδ|(s) =

∣∣∣∣∣∑
s′

Pπ(s, s
′)δ(s ′)

∣∣∣∣∣ ≤ ∑
s′

|Pπ(s, s
′)δ(s ′)| =

∑
s′

Pπ(s, s
′)|δ(s ′)|

≤ ∥δ∥∞
∑
s′

Pπ(s, s
′) = ∥δ∥∞

=⇒ |Pπδ| ≤ ∥δ∥∞ 1 =⇒ |δ| ≤ γ ∥δ∥∞ 1 + 2γϵ1

=⇒ ∥δ∥∞ ≤ γ ∥δ∥∞ + 2γϵ =⇒ ∥δ∥∞ ≤ 2γϵ
1 − γ

(By taking the element-wise maximum on both sides)

=⇒ ∥v∗ − vπ∥∞ ≤
2γ ∥v∗ − v∥∞

1 − γ
=⇒ vπ ≥ v∗ −

2γ ∥v − v∗∥∞
1 − γ

1

4

Policy Iteration

4

Policy Iteration

Algorithm Policy Iteration
1: Input: MDP M = (S,A,P, r , ρ), π0.
2: for k = 0 → K do
3: Policy Evaluation: Calculate vπk as the solution to (I − γPπk

)v = rπk
.

4: Policy Improvement: ∀s, πk+1(s) = argmaxa{r(s, a) + γ
∑

s′ P(s ′|s, a) vπk (s ′)}
5: end for

Computational Complexity: O((S3 + S2A)K)

We will prove that K = O
(

SA
1−γ

)
iterations of PI are sufficient to ensure exact convergence

to the optimal policy. Hence, PI requires O
(

S4A+S3A2

1−γ

)
operations.

We will do the proof in two steps:

(i) Show that the sequence of vπk converges to v∗ at a linear rate (similar to VI).
(ii) Relate vπk to the greedy policy chosen by PI at each iteration.

5

Policy Iteration

(i) Claim: For PI, ∥vπK − v∗∥∞ ≤ γK ∥vπ0 − v∗∥∞.
Proof: We will first prove a more general result: for any π, π′, if π′ is the greedy policy w.r.t vπ,
then, vπ ≤ T vπ ≤ vπ′

. To see this, note that,

T vπ = Tπ′vπ ; vπ = Tπvπ ≤ T vπ (By definition of π′ and by definitions of T and Tπ)

We will use induction to show that vπ ≤ T vπ ≤ T n
π′vπ for all n. As n → ∞, vπ ≤ T vπ ≤ vπ′

.
Base Case: For n = 1, from the above definition, we know that vπ ≤ T vπ = Tπ′vπ.
Inductive Hypothesis: Assume that vπ ≤ T vπ ≤ T n−1

π′ vπ. Let us prove it for n,

vπ ≤ T n−1
π′ vπ =⇒ Tπ′vπ ≤ T n

π′vπ =⇒ T vπ ≤ T n
π′vπ =⇒ vπ ≤ T vπ ≤ T n

π′vπ

Using this result for PI, we get that vπk ≤ T vπk ≤ vπk+1 . Using this result recursively,

T vπ0 ≤ vπ1 =⇒ T 2vπ0 ≤ T vπ1 ≤ vπ2 =⇒ T Kvπ0 ≤ vπK

6

Policy Iteration

Recall we have proved that T Kvπ0 ≤ vπK . Since v∗ is the optimal value function,

T Kvπ0 ≤ vπK ≤ v∗ =⇒ v∗ − vπK ≤ v∗ − T Kvπ0

=⇒ ∥v∗ − vπK ∥∞ ≤
∥∥v∗ − T Kvπ0

∥∥
∞

=⇒ ∥v∗ − vπK ∥∞ ≤
∥∥T Kv∗ − T Kvπ0

∥∥
∞ ≤ γK ∥v∗ − vπ0∥∞

For proving (ii), we will require an intermediate result – the value difference lemma.

Claim: For any π, π′ ∈ ΠSR, vπ′ − vπ = (I − γPπ′)−1 g(π′, π) where g(π′, π) := Tπ′vπ − vπ.
Proof : Recall that vπ′

= (I − γPπ′)−1 rπ′ .

vπ′
− vπ = (I − γPπ′)−1 rπ′ − vπ = (I − γPπ′)−1 [rπ′ − (I − γPπ′) vπ]

= (I − γPπ′)−1 [(rπ′ + γPπ′vπ)− vπ] = (I − γPπ′)−1 [Tπ′vπ − vπ]

= (I − γPπ′)−1 g(π′, π)

7

Policy Iteration

Claim: Consider an arbitrary sub-optimal stationary deterministic policy π′
0 and define π′

K to be
the policy returned by PI after K iterations starting from policy π′

0. For all
K ≥ K∗ := ⌈ log(1/1−γ)

log(1/γ) ⌉+ 1, there exists a state s ′ such that π′
K [s

′] ̸= π′
0[s

′]. This means that
for all K ≥ K∗, the action corresponding to π′

0[s
′] is eliminated for state s ′.

We will use this claim multiple times starting from π′
0 = π0. In particular,

After K ≥ K∗ iterations of PI, we know there exists a state s ′ for which the action
corresponding to π0[s

′] is eliminated.
If we continue running PI, after a further K∗ iterations, another action would be eliminated.
Specifically, for π′

0 = πK∗ , there exists a state s ′′ for which the action corresponding to
πK∗ [s ′′] is eliminated.
Since we are considering deterministic policies, we need to eliminate at most SA− S

actions, and need to run PI for at most (SA− S)K∗ iterations. Hence, PI will converge to
the optimal policy in O

(
S A log(1/1−γ)

1−γ

)
iterations.

8

Policy Iteration

Proof : We will make use of the value difference lemma to bound g(π, π∗). Note that
g(π, π∗) = Tπv∗ − v∗ < 0 for all sub-optimal policies π.

− g(π′
K , π

∗) =
(
I − γPπ′

K

)
[v∗ − vπ′

K] = [v∗ − vπ′
K]− γPπ′

K
[v∗ − vπ′

K]︸ ︷︷ ︸
Non-negative

≤ [v∗ − vπ′
K]

=⇒ ∥g(π′
K , π

∗)∥∞ ≤
∥∥∥v∗ − vπ′

K

∥∥∥
∞

(Taking element-wise absolute value and max over the states)

≤ γK
∥∥∥vπ′

0 − v∗
∥∥∥
∞

(From the claim in (i))

= γK
∥∥∥(I − γPπ′

0

)−1
g(π′

0, π
∗)
∥∥∥
∞

(Value Difference Lemma)

≤ γK

1 − γ
∥g(π′

0, π
∗)∥∞ (Using the Neumann series)

=⇒ ∥g(π′
K , π

∗)∥∞ < ∥g(π′
0, π

∗)∥∞ (K ≥ K∗ = ⌈ log(1/1−γ)
log(1/γ) ⌉+ 1)

9

Policy Iteration

Recall that ∥g(π′
K , π

∗)∥∞ < ∥g(π′
0, π

∗)∥∞.
If s ′ := argmaxs |g(π′

0, π
∗)(s)| =⇒ ∥g(π′

0, π
∗)∥∞ = −g(π′

0, π
∗)(s ′), then,

∥g(π′
K , π

∗)∥∞ < −g(π′
0, π

∗)(s ′) =⇒ max
s

|g(π′
K , π

∗)| ≤ −g(π′
0, π

∗)(s ′)

=⇒ −g(π′
K , π

∗)(s ′) < −g(π′
0, π

∗)(s ′)

=⇒ v∗(s ′)− (Tπ′
K
v∗)(s ′) < v∗(s ′)− (Tπ′

0
v∗)(s ′) (Recall that −g(π′, π∗) = v∗ − Tπ′v∗)

=⇒ rπ′
K
(s ′) + (Pπ′

K
v∗)(s ′) > rπ′

0
(s ′) + (Pπ′

0
v∗)(s ′) (Recall that Tπ′v∗ = rπ′ + Pπ′v∗)

=⇒ π′
K (s

′) ̸= π′
0(s

′) (Proof by contradiction)

10

Linear Programming

10

Linear Programming and MDPs

Finding an optimal policy in an MDP is equivalent to solving a linear program.

Primal LP: For a starting state distribution ρ ∈ ∆S

v∗ = argmin
v∈RS

⟨ρ, v⟩ s.t. ∀(s, a); v(s) ≥ r(s, a) + γ
∑
s′

P(s ′|s, a) v(s ′)

Intuition: In Lecture 4, while proving the Fundamental Theorem, we saw that if v ≥ T v ,
then v ≥ v∗. The constraints in the primal LP correspond to v ≥ T v , and the objective is
to find the smallest v that satisfies these constraints.

The primal LP is over-determined and has S variables and S × A constraints.

For each s ∈ S, there exists an a∗(s) such that
v∗(s) = r(s, a∗(s)) + γ

∑
s′∈S P(s ′|s, a∗(s))v∗(s) i.e. the constraint is “tight”.

The stationary deterministic policy π∗(s) = a∗(s) is an optimal policy and v∗, the solution
to the primal LP is the optimal value function.

For details and proofs, refer to Section 5.8.1 of [PC’23].

11

Linear Programming and MDPs

Dual LP: Define r ∈ RS×A to be the reward vector, µ ∈ RS×A to be the state-action occupancy
measure and dπ ∈ RS to be the state occupancy measure such that,

µ(s, a) := (1 − γ)
∑
s0∈S

ρ(s0)
∞∑
t=0

γt Pr[St = s,At = A|S0 = s0] ; ∀(s, a) ∈ S ×A

d(s) := (1 − γ)
∑
s0∈S

ρ(s0)
∞∑
t=0

γt Pr[St = s|S0 = s0] ∀s ∈ S

µ∗ = argmax
µ∈[0,∞)S×A

⟨µ, r⟩
1 − γ

s.t. ∀s ′ ∈ S γ
∑
s∈S

∑
a∈A

P(s ′|s, a) µ(s, a) + (1 − γ) ρ(s ′) =
∑
a∈A

µ(s ′, a)

Intuition: Maximizing the value function is equivalent to aligning µ to the reward vector r
while ensuring that µ satisfies the “flow” constraints.
The dual LP has SA variables and SA+ S constraints. µ∗ consists of S non-zeros.
There is a one-one mapping between µ and π, i.e. π(a|s) = µ(s,a)/

∑
a′ µ(s,a

′),
Need to derive the dual LP from basics and implement it in Assignment 2!

12

Linear Programming and MDPs

The primal and dual LPs satisfy strong duality i.e. ⟨ρ, v∗⟩ = ⟨µ∗,r⟩
1−γ .

π∗ is the greedy policy corresponding to v∗ such that π∗(s) = argmaxa µ
∗(s, a).

The Simplex method for solving these LPs is equivalent to Policy Iteration.

The resulting LP can be solved by other algorithms such as interior point methods,
primal-dual methods and this connection has been recently exploited for proving
sample-complexity results and designing algorithms with function approximation.

We have studied algorithms that use knowledge of the transition probabilities P and rewards
r to compute the optimal policy.

These quantities are difficult to obtain in practical scenarios, and hence we need methods
that can compute the optimal policy without explicitly relying on this information.

In the next class, we will consider evaluating a fixed policy π without explicit knowledge of
P and r .

13

