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@ Given an MDP M = (S, A, P, r,sp), interacting with
M using a fixed policy 7 results in a stochastic
process (So, Ao, S1, - . .) over the state-action space
and a corresponding reward process < -
(Ros Ry, --y) = (r(So0,Ao), r(S1, A1), .. .). m D

@ Objective: Find policy 7 € Nyr that maximizes the s
value function v™(sp) :=E [} ;207 Re|So = so)-

@ For each s € S, for a given policy
7w = (mo, 1, ...) € MNyg, there exists a policy
' = (mh, T, . ..) € Mur with the same value,

conditioned on Sy = sp.

@ Hence, considering the class IMyr is sufficient when
searching for the optimal policy.



Infinite-horizon Discounted Setting

Claim: For 7 € MR, if we define

r- €RS st ry(s):= Z r(s,a)w[als],

ac A

PreR>° st Pgls,s'] =Pr"(s = s) Z Pr[s’|s, a] m(als),
acA

then, v™ € R> can be expressed as:

[e’s} t—1
™ t
v :E y HP,U Fr, -
Jj=0

t=0
Furthermore, for a policy © € lMsg, v™ = r; + P, v™. Examining each component,

v(s) = ra(s) + Zpﬁ[s SIv(s') = r(s,a)mlals]+7 Y > Pls'|s, a] n[als] v(s)

ac A s’eS acA

This is the Bellman equation for a fixed policy w € lNsg.



Infinite-horizon Discounted Setting

Proof: Starting from the definition of v™(sp),

=E Z’tht|So = 50] Z’y ZZ r(s,a) Pr[S: = s, A: = a|So = s0]
t=0

= seS acA

Let us evaluate the first three terms in this sum,

For t =0: Z Z r(s,a) Pr[So = s, Ao = a|So = s0] = Z r(so, @) mo(also) = rre(S0)

s€SacA acA
Fort=1: ’yZ Z r(s,a) Pr[A1 = a|S1 = s, So = so] Pr[S1 = 5|So = s0]
seSacA
_ferm Pr[S1 = s|So = s0] —WZ"m ZP[s\so,a]ﬂo also) ’erm (s) P50, 5]
sES seS acA seS
For t =2: ~2 Z rr.(s) Pr[Sy = s|Sp = s0] = 72 Z r(s) Z P, [51, 5] Prols0, 51]
seS seS s1€S
For a general ¢t : wtz rr(s) Z Z Pr .[5t—1,5] Pr, s[St—2,5t—1] - -+ Pro[50, 51]
seS st—1€S s1€S



Infinite-horizon Discounted Setting

Recall that, v7(s0) = Y7207 D oecs Doaca (S; @) Pr[S: = s, At = a|So = 0], and that term ¢ in the

above sum is equal to v >3- s rr(S) 2o, s+ Doqes Prealsi—1,8] Pr, o[st—2,5:-1] -+ Pro 50, 51].

Hence,
oo

Vi(s0) =3 Y re(s) Do D Prlse1,8]Pruse-2,5e-1] -+ Prglso, 1]
t=0 seS§ si_1E€S s51€S
[es) t—1
— V"= Zyt H Pr| r. (v™(so) is the sy component of the vector v™)

t=0 Jj=0

For a policy m € MNsgr, P, = P, and r;, = r, for all t. Hence,

v :Zf Polire =t +yPor + 92 [PoPrs + ...
t=0

:rﬂ'—"_’ypﬂ' [rﬂ+’ypwrﬂ+’72[P7r]2r7r+---] =|'7r+’YP7rVTr
= v =r,+yP,v" O



Infinite-horizon Discounted Setting

For € Msr, we have seen that v™ = r; + v P, v™. This corresponds to a system of linear
equations, and can be solved in closed form. Since v < 1, and P is a stochastic matrix (i.e. its
elements correspond to probabilities, and rows and columns add up to one), the eigenvalues of
Is — vP are strictly positive and hence it is invertible.

Vi=r, + 9P v = (ls =P v  =r, = v" =(Is —’yPﬂ)_lrﬂ.
o By the Neumann series, (/ —A)~* = S22° At. Hence, (Is —/P) " re = 30007 [Pr]’ 1
which recovers the expression for v™ from the previous slide.
@ Q: For a vector x > 0, prove that (Is — yP;)™*x > x > 0 Ans: Use the Neumann series

@ Q: For vectors u > v, prove that (Is — yP,) Y u > (Is —yP,)"1 v Ans: x = u— v above.

Bellman policy evaluation operator for 7: 7, : R° — R s.t. for vector u € R®
Tru=r; +~Pruand (Tru)(s) =rz(s) + 7> . Pxls, s u(s").



Bellman Optimality Operator

Define the Bellman optimality operator 7 : R> — R®. For a vector u € R,

ac

(Tu)(s) = max {r(& a)+7) P(sls, a)U(S’)}

Consider w := maxycngp {r= + 7P},

w(s) = max {rw(s) + 'yz P.[s, s’]u(s/)}

m€lsp

= ;T(\:liz) {Z m(als) [r(s, a)+y Z P(s|s, a)u(s’)] }
32* st m(a*|s)=1 * ? s

(Optimization over degenerate distributions)

= max {r(s, a) + 7273(5’\5, a)u(s’)} = (Tu)(s)

a

= Tu= maxzengp{rr +Pru}



Bellman Optimality Operator

Claim: 7 is a contraction mapping with modulus +, i.e. for any 2 vectors u, w € R®

ITu=Twlo <7llu—wlly,

Proof: For a fixed s, without loss of generality, consider the case when (7 w)(s) > (T u)(s). By

the definition of T, if a*(s) = argmax{r(s,a) +~ >, P(s'|s,a)w(s’)}, then,
(T)(9) = rls ") +7 PS5 2"(S)wls)

+vZP s'ls,a"(s))u(s') < max{r(s, a) +VZ7’ s'|s,a)u(s')} = (Tu)(s)
= (Tw)(s) — (Tu)(s) < WZP s'|s,a*(s)) [w(s") — u(s")]
<A IPCIs,a* (<Dl 1w = ullog =7 I = vl
Similarly, (Tw)(s) — (Tu)(s) <~ ||w — ul|. Since this result is true for an arbitrary s,

[Tu=Twl <y llu-wl, O



Banach’s Fixed Point Theorem

Fact: Under certain technical assumptions, if L is a contraction mapping, then,
*

@ There exists a unique fixed point u* such that Lu* = u*.
e For any vector up, up+1 = Lu, = L™ ug converges to u* i.e ||u, — u*||, — 0 as n — oo.

Since the Bellman optimality operator, T is a contraction mapping, using Banach's Fixed Point
Theorem above, there exists a fixed point u* € RS st. Tu* = u*.

Claim: For up € R®, ||u* — T"uol|, <" ||u* — wol|., i.e. un:=T"ug converges to u* at a
linear rate.

Q: Proof? Ans: For any s < n,
||U* - us”oo = HTU* - Tus—l”oo S Y ||U* - uS—lHoo

= U = upll o S0 =t <" 0" - woll o O

Similarly, T is a y-contraction, and converges to a unique fixed point equal to v™ at a linear
rate. Prove in Assignment 2!



Fundamental Theorem

Claim: There exists a policy 7* € Msp s.t. v (s) = Maxzemyg V7 (s) for all s € S.

@ Hence, for MDPs, it is sufficient to only consider the class of stationary, deterministic
policies in order to compute the optimal policy.

Proof: We know the following:

(a) From Slide 19 in Lecture 3, maxremug V™ (S) = MaxXremnye V™ (S)-
(b) If v* is the fixed point of 7 and 7* € TNgp is the greedy policy s.t.
w*(s) = argmax,{r(s,a) +v >, P(s'|s,a) v¥(s')}, then,
vi=Tv" = mlglx {r‘n' + ’YPWV*} = Tr~ v = s + ,)/PTF* v*
mellsp
(€) maxrengp {rr + YPxv*} = Maxrenge {rx + 7P~ v*} i.e. randomized policies cannot

increase the value. (Prove in Assignment 2!)

We will prove that for a v s.t. v ="Tv, v =maxecn,g v"- Together with (b), this implies that
v* = maxzenu V™ and that this value function corresponds to the policy 7* € lsp.



Fundamental Theorem

We will now prove that:

(i) If v>Tv, then v > maxzen,e v™-
(i) If v < Tv, then v < maxzenug V"

Hence, if v = Tv, then v = max;ecnue V™

Let us first prove (i). Define an arbitrary 7’ := {n], 75, ..., } € MNur. For an arbitrary i, define
mi={ml, 7w, ...} € MNsr.

v>Tv= max {r; + YPrv} = max {r; + YP v} > r. + P v (Using (¢))
wElgp welgr
oo t—1
= v > + VPV > e + VP, + P v] = v > Z’yt H P | rr,
t=0 Jj=0

(Recursing)

— v>Vv" = v> max v = max v" (Using def of v for / € Mug, and then (a))
melNur LIS

10



Fundamental Theorem

Now let us prove (ii): if v < Tv, then v < maxzenyg V™. For a specific 7 € MNsp,

v<Tv=Tev=r+vPv<r.+vP, [t + P v] = VSZ'yt[PW]trﬂ

t=0
(Recursing)
= v<v" < max v" (By def of v™ for 7 € Nsp)
mElsp
= max v" < max v© = v< max v O (Using (c) and then (a))
melMsr mEMNmR TEMNHR

The fundamental theorem immediately suggests a way to calculate 7*:

e Starting from an arbitrary vector vy € R, iterate v = T v to converge to a fixed point v*.
@ Once we have computed v*, compute the greedy policy in each state s € S:
7*(s) = argmax,{r(s,a) +7 X_, P(s'ls,a) v*(s)}-
This is value iteration!

11



Value lteration



Value lteration

Algorithm Value lteration
1. Input: MDP M = (S, A, P,r,p), vo =0.
2: fork=1— K do
33 VseS, vi(s) =maxasea{r(s,a) +v> o P(s'ls, a)vk—1(s")} = (T vik—1)(5)
4: end for
5 Vs € S, return #(s) = argmax,{r(s,a) +v > . P(s'|s,a) vk(s')}

Q: What is the computational complexity of VI? Ans: O(S?AK)

Claim: After K > w iterations, value iteration returns a vk s.t. [jvk — v*|| <e.
Proof: By using the contraction property of T,

1
lvic = vl <7 Vo = vl = 7 IVl < VKE

Setting K > Iog(ll/e_:—w)) > Iogﬁ:éfl(/l;)ﬂ) ensures that |Jvk — v*|| <e. (. 1—7v <log(1/7))

Recall that the greedy step w.r.t vk can also be written as: T vk = Tz vk.
12



Value lteration

@ The previous result gives a bound on the quality of vk.
@ Since 7 is the policy returned by VI, we want a bound on Hv* — vﬁHOO.

@ We will prove a general result bounding the error for the greedy policy inferred from v.

Claim: For an arbitrary v € R® if (i) 7 is the greedy policy w.r.t v, i.e.
m(s) = argmax,{r(s,a) +v > . P(s'[s,a) v(s')}, (ii) v™ is the value function corresponding to
policy wi.e. v = T v™ =r, +yP,v™, then,

@ Hence, the error in ||[v — v*|| _ “blows up” when inferring policy 7.

@ This result is sharp meaning that the constant % cannot be improved.

iterations to obtain a

@ Using this result, we conclude that VI requires K > w

1
greedy policy 7 s.t. v* — v <el.

13



Value lteration

52 A log(1/€)

@ We have seen that VI requires O ( T

) operations to produce an e-optimal policy 7
that guarantees v™ > v* — ¢l.

e Lower Bound: For ¢ € [0,7/1—~), any algorithm guaranteed to produce e-optimal policies
in an MDP with finite state-action spaces (with sizes S and A respectively) and bounded (in
[0,1]) rewards requires (52 A) operations (no dependence on ¢) (see Csaba’s notes,
Lecture 3 for details).

@ Is our VI analysis loose or is the O(log(1/€)) dependence necessary?

@ There exists a family of MDPs with deterministic transitions, three states, two actions and
bounded (in [0, 1]) rewards such that the worst-case iteration complexity of VI to find an
exactly optimal policy is infinite. (see Csaba's notes, Lecture 4 for details).

@ In the next class, we will study Policy Iteration (PI) which can converge to the optimal
policy with finite operations.
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https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/
https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/
https://rltheory.github.io/lecture-notes/planning-in-mdps/lec4/

