CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 4

Sharan Vaswani

September 29, 2023

Recap

- Given an MDP $M = (S, A, P, r, s_0)$, interacting with M using a fixed policy π results in a stochastic process (S_0, A_0, S_1, \ldots) over the state-action space and a corresponding reward process $(R_0, R_1, \ldots) = (r(S_0, A_0), r(S_1, A_1), \ldots)$.
- **Objective**: Find policy $\pi \in \Pi_{HR}$ that maximizes the value function $v^{\pi}(s_0) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t | S_0 = s_0\right]$.
- For each $s \in \mathcal{S}$, for a given policy $\pi = (\pi_0, \pi_1, \ldots) \in \Pi_{HR}$, there exists a policy $\pi' = (\pi'_0, \pi'_1, \ldots) \in \Pi_{MR}$ with the same value, conditioned on $S_0 = s_0$.
- Hence, considering the class Π_{MR} is sufficient when searching for the optimal policy.

Claim: For $\pi \in \Pi_{MR}$, if we define

$$\mathbf{r}_{\pi} \in \mathbb{R}^{S}$$
 s.t. $\mathbf{r}_{\pi}(s) := \sum_{a \in \mathcal{A}} r(s, a) \pi[a|s],$
 $\mathbf{P}_{\pi} \in \mathbb{R}^{S \times S}$ s.t. $\mathbf{P}_{\pi}[s, s'] = \Pr^{\pi}(s \to s') := \sum_{a \in \mathcal{A}} \Pr[s'|s, a] \pi(a|s),$

then, $v^{\pi} \in \mathbb{R}^{S}$ can be expressed as:

$$\mathbf{v}^{\pi} = \sum_{t=0}^{\infty} \gamma^t \, \left[\prod_{j=0}^{t-1} \mathbf{P}_{\pi_j}
ight] \, \mathbf{r}_{\pi_t} \, .$$

Furthermore, for a policy $\pi \in \Pi_{SR}$, $v^{\pi} = \mathbf{r}_{\pi} + \gamma \, \mathbf{P}_{\pi} \, v^{\pi}$. Examining each component,

$$v^{\pi}(s) = \mathbf{r}_{\pi}(s) + \gamma \sum_{s'} \mathbf{P}_{\pi}[s, s'] v^{\pi}(s') = \sum_{a \in \mathcal{A}} r(s, a) \pi[a|s] + \gamma \sum_{s' \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mathcal{P}[s'|s, a] \pi[a|s] v^{\pi}(s')$$

This is the **Bellman equation** for a fixed policy $\pi \in \Pi_{SR}$.

Proof: Starting from the definition of $v^{\pi}(s_0)$,

$$v^{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t | S_0 = s_0\right] = \sum_{t=0}^{\infty} \gamma^t \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} r(s, a) \ \mathsf{Pr}[S_t = s, A_t = a | S_0 = s_0]$$

Let us evaluate the first three terms in this sum,

For
$$t = 0$$
: $\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} r(s, a) \Pr[S_0 = s, A_0 = a | S_0 = s_0] = \sum_{a \in \mathcal{A}} r(s_0, a) \pi_0(a | s_0) = \mathbf{r}_{\pi_0}(s_0)$

For
$$t = 1$$
: $\gamma \sum_{s \in S} \sum_{a \in A} r(s, a) \Pr[A_1 = a | S_1 = s, S_0 = s_0] \Pr[S_1 = s | S_0 = s_0]$

$$= \gamma \sum_{s \in \mathcal{S}} \mathbf{r}_{\pi_{\mathbf{1}}}(s) \ \Pr[S_{1} = s | S_{0} = s_{0}] = \gamma \sum_{s \in \mathcal{S}} \mathbf{r}_{\pi_{\mathbf{1}}}(s) \sum_{a \in \mathcal{A}} \mathcal{P}[s | s_{0}, a] \pi_{0}(a | s_{0}) = \gamma \sum_{s \in \mathcal{S}} \mathbf{r}_{\pi_{\mathbf{1}}}(s) \mathbf{P}_{\pi_{\mathbf{0}}}[s_{0}, s]$$

$$\text{For } t = 2: \ \gamma^2 \sum_{s \in \mathcal{S}} \mathbf{r}_{\pi_2}(s) \ \Pr[S_2 = s | S_0 = s_0] = \gamma^2 \sum_{s \in \mathcal{S}} \mathbf{r}_{\pi_2}(s) \sum_{s_1 \in \mathcal{S}} \ \mathbf{P}_{\pi_1}[s_1, s] \ \mathbf{P}_{\pi_0}[s_0, s_1]$$

For a general
$$t: \gamma^t \sum_{s \in S} \mathbf{r}_{\pi_t}(s) \sum_{s_{t-1} \in S} \dots \sum_{s_1 \in S} \mathbf{P}_{\pi_{t-1}}[s_{t-1}, s] \mathbf{P}_{\pi_{t-2}}[s_{t-2}, s_{t-1}] \dots \mathbf{P}_{\pi_0}[s_0, s_1]$$

Recall that, $\mathbf{v}^{\pi}(s_0) = \sum_{t=0}^{\infty} \gamma^t \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} r(s, a) \Pr[S_t = s, A_t = a | S_0 = s_0]$, and that term t in the above sum is equal to $\gamma^t \sum_{s \in \mathcal{S}} \mathbf{r}_{\pi_t}(s) \sum_{s_{t-1} \in \mathcal{S}} \dots \sum_{s_1 \in \mathcal{S}} \mathbf{P}_{\pi_{t-1}}[s_{t-1}, s] \mathbf{P}_{\pi_{t-2}}[s_{t-2}, s_{t-1}] \cdots \mathbf{P}_{\pi_0}[s_0, s_1]$. Hence,

$$v^{\pi}(s_0) = \sum_{t=0}^{\infty} \gamma^t \sum_{s \in \mathcal{S}} \mathbf{r}_{\pi_t}(s) \sum_{s_{t-1} \in \mathcal{S}} \dots \sum_{s_1 \in \mathcal{S}} \mathbf{P}_{\pi_{t-1}}[s_{t-1}, s] \mathbf{P}_{\pi_{t-2}}[s_{t-2}, s_{t-1}] \dots \mathbf{P}_{\pi_0}[s_0, s_1]$$

$$\implies v^{\pi} = \sum_{t=0}^{\infty} \gamma^t \left[\prod_{j=0}^{t-1} \mathbf{P}_{\pi_j} \right] \mathbf{r}_{\pi_t} \qquad (v^{\pi}(s_0) \text{ is the } s_0 \text{ component of the vector } v^{\pi})$$

For a policy $\pi \in \Pi_{SR}$, $\mathbf{P}_{\pi_t} = \mathbf{P}_{\pi}$ and $\mathbf{r}_{\pi_t} = \mathbf{r}_{\pi}$ for all t. Hence,

$$v^{\pi} = \sum_{t=0}^{\infty} \gamma^{t} \left[\mathbf{P}_{\pi} \right]^{t} \mathbf{r}_{\pi} = \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{r}_{\pi} + \gamma^{2} \left[\mathbf{P}_{\pi} \right]^{2} \mathbf{r}_{\pi} + \dots$$

$$= \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \left[\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{r}_{\pi} + \gamma^{2} \left[\mathbf{P}_{\pi} \right]^{2} \mathbf{r}_{\pi} + \dots \right] = \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} v^{\pi}$$

$$\implies v^{\pi} = \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} v^{\pi} \quad \Box$$

For $\pi \in \Pi_{SR}$, we have seen that $v^{\pi} = \mathbf{r}_{\pi} + \gamma \, \mathbf{P}_{\pi} \, v^{\pi}$. This corresponds to a system of linear equations, and can be solved in closed form. Since $\gamma < 1$, and \mathbf{P}_{π} is a stochastic matrix (i.e. its elements correspond to probabilities, and rows and columns add up to one), the eigenvalues of $I_{S} - \gamma \mathbf{P}_{\pi}$ are strictly positive and hence it is invertible.

$$v^{\pi} = \mathbf{r}_{\pi} + \gamma \, \mathbf{P}_{\pi} \, v^{\pi} \implies (I_{S} - \gamma \mathbf{P}_{\pi}) \, v^{\pi} = \mathbf{r}_{\pi} \implies v^{\pi} = (I_{S} - \gamma \mathbf{P}_{\pi})^{-1} \, \mathbf{r}_{\pi} \, .$$

- By the Neumann series, $(I A)^{-1} = \sum_{t=0}^{\infty} A^t$. Hence, $(I_S \gamma \mathbf{P}_{\pi})^{-1} \mathbf{r}_{\pi} = \sum_{t=0}^{\infty} \gamma^t \left[\mathbf{P}_{\pi} \right]^t \mathbf{r}_{\pi}$ which recovers the expression for v^{π} from the previous slide.
- Q: For a vector $x \ge 0$, prove that $(I_S \gamma \mathbf{P}_{\pi})^{-1} x \ge x \ge 0$ Ans: Use the Neumann series
- Q: For vectors $u \ge v$, prove that $(I_S \gamma \mathbf{P}_{\pi})^{-1} u \ge (I_S \gamma \mathbf{P}_{\pi})^{-1} v$ Ans: x = u v above.

Bellman policy evaluation operator for π : $\mathcal{T}_{\pi}: \mathbb{R}^{S} \to \mathbb{R}^{S}$ s.t. for vector $u \in \mathbb{R}^{S}$ $\mathcal{T}_{\pi}u = \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}u$ and $(\mathcal{T}_{\pi}u)(s) = \mathbf{r}_{\pi}(s) + \gamma \sum_{s'} \mathbf{P}_{\pi}[s, s'] u(s')$.

Bellman Optimality Operator

Define the **Bellman optimality operator** $\mathcal{T}: \mathbb{R}^S \to \mathbb{R}^S$. For a vector $u \in R^S$,

$$(\mathcal{T}u)(s) = \max_{a \in \mathcal{A}} \left\{ r(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a)u(s') \right\}$$

Consider $w := \max_{\pi \in \Pi_{SD}} \{ \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} u \}$,

$$w(s) = \max_{\pi \in \Pi_{SD}} \left\{ \mathbf{r}_{\pi}(s) + \gamma \sum_{s'} \mathbf{P}_{\pi}[s, s'] u(s') \right\}$$

$$= \max_{\substack{\pi(\cdot \mid s) \\ \exists a^* \text{ s.t } \pi(a^* \mid s) = 1}} \left\{ \sum_{a} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s'} \mathcal{P}(s' \mid s, a) u(s') \right] \right\}$$

(Optimization over degenerate distributions)

$$= \max_{a} \left\{ r(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a) u(s') \right\} = (\mathcal{T}u)(s)$$

$$\implies \mathcal{T}u = \max_{\pi \in \Pi_{\mathbf{S}\mathbf{D}}} \{ \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}u \}$$

Bellman Optimality Operator

Claim: \mathcal{T} is a contraction mapping with modulus γ , i.e. for any 2 vectors $u, w \in \mathbb{R}^S$ $\|\mathcal{T}u - \mathcal{T}w\|_{\infty} \leq \gamma \|u - w\|_{\infty}$.

Proof: For a fixed s, without loss of generality, consider the case when $(\mathcal{T}w)(s) \geq (\mathcal{T}u)(s)$. By the definition of \mathcal{T} , if $a^*(s) = \arg\max\{r(s,a) + \gamma \sum_{s'} \mathcal{P}(s'|s,a)w(s')\}$, then,

$$(\mathcal{T}w)(s) = r(s, a^{*}(s)) + \gamma \sum_{s'} \mathcal{P}(s'|s, a^{*}(s))w(s')$$

$$r(s, a^{*}(s)) + \gamma \sum_{s'} \mathcal{P}(s'|s, a^{*}(s))u(s') \leq \max_{a} \{r(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a)u(s')\} = (\mathcal{T}u)(s)$$

$$\implies (\mathcal{T}w)(s) - (\mathcal{T}u)(s) \leq \gamma \sum_{s'} \mathcal{P}(s'|s, a^{*}(s))[w(s') - u(s')]$$

$$\leq \gamma \|\mathcal{P}(\cdot|s, a^{*}(s))\|_{1} \|w - u\|_{\infty} = \gamma \|w - u\|_{\infty}$$

Similarly, $(\mathcal{T}w)(s) - (\mathcal{T}u)(s) \leq \gamma \|w - u\|_{\infty}$. Since this result is true for an arbitrary s,

$$\|\mathcal{T}u - \mathcal{T}w\|_{\infty} \leq \gamma \|u - w\|_{\infty} \quad \Box$$

Banach's Fixed Point Theorem

Fact: Under certain technical assumptions, if L is a contraction mapping, then,

- There exists a unique fixed point u^* such that $Lu^* = u^*$.
- For any vector u_0 , $u_{n+1} = Lu_n = L^{n+1}u_0$ converges to u^* i.e $\|u_n u^*\|_{\infty} \to 0$ as $n \to \infty$.

Since the Bellman optimality operator, \mathcal{T} is a contraction mapping, using Banach's Fixed Point Theorem above, there exists a fixed point $u^* \in \mathbb{R}^S$ s.t. $\mathcal{T}u^* = u^*$.

Claim: For $u_0 \in \mathbb{R}^5$, $||u^* - \mathcal{T}^n u_0||_{\infty} \le \gamma^n ||u^* - u_0||_{\infty}$ i.e. $u_n := \mathcal{T}^n u_0$ converges to u^* at a linear rate.

Q: Proof? Ans: For any $s \leq n$,

$$||u^* - u_s||_{\infty} = ||\mathcal{T}u^* - \mathcal{T}u_{s-1}||_{\infty} \le \gamma ||u^* - u_{s-1}||_{\infty}$$

$$\implies ||u^* - u_n||_{\infty} \le \gamma ||u^* - u_{n-1}||_{\infty} \le \gamma^n ||u^* - u_0||_{\infty} \quad \Box$$

Similarly, \mathcal{T}_{π} is a γ -contraction, and converges to a unique fixed point equal to v^{π} at a linear rate. Prove in Assignment 2!

Fundamental Theorem

Claim: There exists a policy $\pi^* \in \Pi_{SD}$ s.t. $v^{\pi^*}(s) = \max_{\pi \in \Pi_{HR}} v^{\pi}(s)$ for all $s \in S$.

Hence, for MDPs, it is sufficient to only consider the class of stationary, deterministic
policies in order to compute the optimal policy.

Proof: We know the following:

- (a) From Slide 19 in Lecture 3, $\max_{\pi \in \Pi_{HR}} v^{\pi}(s) = \max_{\pi \in \Pi_{MR}} v^{\pi}(s)$.
- (b) If v^* is the fixed point of \mathcal{T} and $\pi^* \in \Pi_{SD}$ is the *greedy* policy s.t. $\pi^*(s) = \arg\max_a \{r(s,a) + \gamma \sum_{s'} \mathcal{P}(s'|s,a) \ v^*(s')\}$, then,

$$\mathbf{v}^* = \mathcal{T}\mathbf{v}^* = \max_{\pi \in \Pi_{\text{SD}}} \{\mathbf{r}_\pi + \gamma \mathbf{P}_\pi \mathbf{v}^*\} = \mathcal{T}_{\pi^*} \mathbf{v}^* = \mathbf{r}_{\pi^*} + \gamma \mathbf{P}_{\pi^*} \mathbf{v}^*$$

(c) $\max_{\pi \in \Pi_{SD}} \{ \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} v^* \} = \max_{\pi \in \Pi_{SR}} \{ \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} v^* \}$ i.e. randomized policies cannot increase the value. (Prove in Assignment 2!)

We will prove that for a v s.t. $v = \mathcal{T}v$, $v = \max_{\pi \in \Pi_{\mathsf{HR}}} v^{\pi}$. Together with (b), this implies that $v^* = \max_{\pi \in \Pi_{\mathsf{HR}}} v^{\pi}$ and that this value function corresponds to the policy $\pi^* \in \Pi_{\mathsf{SD}}$.

Fundamental Theorem

We will now prove that:

- (i) If $v \geq \mathcal{T}v$, then $v \geq \max_{\pi \in \Pi_{HR}} v^{\pi}$.
- (ii) If $v \leq \mathcal{T}v$, then $v \leq \max_{\pi \in \Pi_{\mathsf{HR}}} v^{\pi}$.

Hence, if $v = \mathcal{T}v$, then $v = \max_{\pi \in \Pi_{HR}} v^{\pi}$.

Let us first prove (i). Define an arbitrary $\pi' := \{\pi'_1, \pi'_2, \dots, \} \in \Pi_{MR}$. For an arbitrary i, define $\pi_i := \{\pi'_i, \pi'_i, \dots\} \in \Pi_{SR}$.

$$v \ge \mathcal{T}v = \max_{\pi \in \Pi_{SD}} \{ \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}v \} = \max_{\pi \in \Pi_{SR}} \{ \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}v \} \ge \mathbf{r}_{\pi_{i}} + \gamma \mathbf{P}_{\pi_{i}}v$$
 (Using (c))

$$\implies v \ge \mathbf{r_{\pi_0}} + \gamma \mathbf{P_{\pi_0}} v \ge \mathbf{r_{\pi_0}} + \gamma \mathbf{P_{\pi_0}} [\mathbf{r_{\pi_1}} + \gamma \mathbf{P_{\pi_1}} v] \implies v \ge \sum_{t=0}^{\infty} \gamma^t \left[\prod_{j=0}^{t-1} \mathbf{P_{\pi_j}} \right] \mathbf{r_{\pi_t}}$$
(Recursing)

$$\implies v \ge v^{\pi'} \implies v \ge \max_{\pi \in \Pi_{MR}} v^{\pi} = \max_{\pi \in \Pi_{HR}} v^{\pi}$$
 (Using def of $v^{\pi'}$ for $\pi' \in \Pi_{MR}$, and then (a))

Fundamental Theorem

Now let us prove (ii): if $v \leq Tv$, then $v \leq \max_{\pi \in \Pi_{HR}} v^{\pi}$. For a specific $\pi \in \Pi_{SD}$,

$$v \leq \mathcal{T}v = \mathcal{T}_{\pi}v = \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}v \leq \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \left[\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}v\right] \implies v \leq \sum_{t=0}^{\infty} \gamma^{t} \left[\mathbf{P}_{\pi}\right]^{t} \mathbf{r}_{\pi}$$

$$(\text{Recursing})$$

$$\implies v \leq v^{\pi} \leq \max_{\pi \in \Pi_{\text{SD}}} v^{\pi}$$

$$= \max_{\pi \in \Pi_{\text{SR}}} v^{\pi} \leq \max_{\pi \in \Pi_{\text{MR}}} v^{\pi} \implies v \leq \max_{\pi \in \Pi_{\text{HR}}} v^{\pi} \quad \Box \quad \text{(Using (c) and then (a))}$$

The fundamental theorem immediately suggests a way to calculate π^* :

- Starting from an arbitrary vector $v_0 \in \mathbb{R}^S$, iterate $v = \mathcal{T}v$ to converge to a fixed point v^* .
- Once we have computed v^* , compute the greedy policy in each state $s \in \mathcal{S}$: $\pi^*(s) = \arg\max_a \{r(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a) \ v^*(s')\}.$

This is value iteration!

Algorithm Value Iteration

- 1: **Input**: MDP $M = (S, A, P, r, \rho), v_0 = 0.$
- 2: for $k = 1 \rightarrow K$ do
- 3: $\forall s \in \mathcal{S}, \ v_k(s) = \max_{a \in \mathcal{A}} \{r(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a) v_{k-1}(s')\} = (\mathcal{T}v_{k-1})(s)$
- 4: end for
- 5: $\forall s \in \mathcal{S}$, return $\hat{\pi}(s) = \arg\max_{a} \{r(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a) v_K(s')\}$
- Q: What is the computational complexity of VI? Ans: $O(S^2AK)$
- **Claim**: After $K \geq \frac{\log(1/\epsilon(1-\gamma))}{1-\gamma}$ iterations, value iteration returns a v_K s.t. $\|v_K v^*\|_{\infty} \leq \epsilon$.

Proof: By using the contraction property of \mathcal{T} ,

$$\|v_{K} - v^{*}\|_{\infty} \le \gamma^{K} \|v_{0} - v^{*}\|_{\infty} = \gamma^{K} \|v^{*}\|_{\infty} \le \gamma^{K} \frac{1}{1 - \gamma}$$

Setting $K \geq \frac{\log(1/\epsilon \, (1-\gamma))}{1-\gamma} \geq \frac{\log(1/\epsilon \, (1-\gamma))}{\log(1/\gamma)}$ ensures that $\|v_K - v^*\|_{\infty} \leq \epsilon$. $(\because 1-\gamma \leq \log(1/\gamma))$

Recall that the greedy step w.r.t v_K can also be written as: $\mathcal{T}v_K = \mathcal{T}_{\hat{\pi}}v_K$.

- The previous result gives a bound on the quality of v_K .
- Since $\hat{\pi}$ is the policy returned by VI, we want a bound on $\|v^* v^{\hat{\pi}}\|_{\infty}$.
- ullet We will prove a general result bounding the error for the greedy policy inferred from v.

Claim: For an arbitrary $v \in \mathbb{R}^S$ if (i) π is the greedy policy w.r.t v, i.e. $\pi(s) = \arg\max_a \{r(s,a) + \gamma \sum_{s'} \mathcal{P}(s'|s,a) \ v(s')\}$, (ii) v^{π} is the value function corresponding to policy π i.e. $v^{\pi} = \mathcal{T}_{\pi} v^{\pi} = \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} v^{\pi}$, then,

$$v^{\pi} \geq v^* - rac{2\gamma \, \left\| v - v^*
ight\|_{\infty}}{1 - \gamma} \, \mathbf{1}$$

- Hence, the error in $\|v-v^*\|_{\infty}$ "blows up" when inferring policy π .
- ullet This result is sharp meaning that the constant $\frac{2\gamma}{1-\gamma}$ cannot be improved.
- Using this result, we conclude that VI requires $K \geq \frac{\log(2\gamma/\epsilon(1-\gamma)^2)}{1-\gamma}$ iterations to obtain a greedy policy $\hat{\pi}$ s.t. $v^* v^{\hat{\pi}} \leq \epsilon \mathbf{1}$.

- We have seen that VI requires $O\left(\frac{S^2 A \log(1/\epsilon)}{1-\gamma}\right)$ operations to produce an ϵ -optimal policy π that guarantees $v^{\pi} \geq v^* \epsilon \mathbf{1}$.
- Lower Bound: For $\epsilon \in [0, \gamma/1-\gamma)$, any algorithm guaranteed to produce ϵ -optimal policies in an MDP with finite state-action spaces (with sizes S and A respectively) and bounded (in [0,1]) rewards requires $\Omega(S^2A)$ operations (no dependence on ϵ) (see Csaba's notes, Lecture 3 for details).
- ullet Is our VI analysis loose or is the $O(\log(1/\epsilon))$ dependence necessary?
- There exists a family of MDPs with deterministic transitions, three states, two actions and bounded (in [0,1]) rewards such that the worst-case iteration complexity of VI to find an exactly optimal policy is infinite. (see Csaba's notes, Lecture 4 for details).
- In the next class, we will study Policy Iteration (PI) which can converge to the optimal policy with finite operations.