
CMPT 419/983: Theoretical Foundations of
Reinforcement Learning

Lecture 3

Sharan Vaswani

September 22, 2023

Recap

Stochastic Linear Bandits: For arm a ∈ [K], µa = ⟨Xa, θ
∗⟩.

On pulling arm a, we observe reward Rt = µat + ηt , E[ηt] = 0 and ηt is conditional 1
sub-Gaussian, i.e. for λ ∈ R, E[exp(ληt)|Ht−1] ≤ exp(λ2/2).

Algorithm LinUCB: Blue for finite number of arms, Red for infinitely many arms

1: Input: {βt}T+1
t=2 , V0 = λId ∈ Rd×d , b = 0 ∈ Rd

2: For each arm a ∈ [K], initialize Ua(1, δ) := ∞.
3: for t = 1 → T do
4: Select arm at = argmaxa∈[K] Ua(t, δ) = argmaxa∈A Ua(t, δ)

5: Observe reward Rt and update:
Vt = Vt−1 + Xt X

T
t ; bt = bt−1 + Rt Xt ; θ̂t = V−1

t bt

Ua(t + 1) = max
θ∈Ct+1

⟨θ,Xa⟩ = ⟨Xa, θ̂t⟩+
√
βt+1 ∥Xa∥V−1

t

6: end for

1

Recap

Claim: Assuming (i) ∥θ∗∥ ≤ 1, (ii) ∥Xa∥ ≤ 1 for all a and (iii) Rt ∈ [0, 1], UCB with
√
βt =

√
d log

(
λd+t
λ d

)
+ 2 log(1/δ) +

√
λ achieves the following worst-case bound on the regret,

Regret(LinUCB,T) ≤ O
(
d
√
T log(T)

)
Last time we showed the following results: if

G := {∀t ∈ [T]|θ∗ ∈ Ct :=
{
θ |

∥∥∥θ − θ̂t−1

∥∥∥2

Vt−1
≤ βt

}
,

(1): Regret(LinUCB,T) ≤ 2

√√√√T βT E

[
T∑
t=1

∥Xt∥2
V−1
t−1

|G

]
+ T Pr[G c]

(2):
T∑
t=1

∥Xt∥2
V−1
t−1

≤ 2d log

(
λd + T

λd

)
Today, we will prove: (3): For

√
βt =

√
d log

(
λd+t
λd

)
+ 2 log(T) +

√
λ, Pr[G c] ≤ 1

T , and thus
finish the proof.

2

Digression – (Super)-Martingales

Martingale: Sequence of random variables for which, at a particular time, the conditional
expectation of the next value in the sequence is equal to the present value, regardless of all prior
values.

A sequence of random variables – M1,M2, . . . is a discrete-time martingale if for all t,

E[|Mt |] < ∞ ; E[Mt |M1,M2, . . .Mt−1] = Mt−1

Example 1 : An unbiased random walk
Example 2 : Gambler’s fortune: Suppose Mt is a gambler’s fortune after t tosses of a fair coin,
where the gambler wins $1 if the coin comes up heads and loses $1 if it comes up tails.

Super-Martingale: A sequence of random variables – M1,M2, . . . is a discrete-time
super-martingale if for all t,

E[|Mt |] < ∞ ; E[Mt |M1,M2, . . .Mt−1] ≤ Mt−1

3

Linear UCB – Regret Analysis

Claim: If (i) ∥θ∗∥ ≤ 1 and (ii) ∥Xa∥ ≤ 1 for all a, for
√
βt =

√
d log

(
λd+t
λd

)
+ 2 log(T) +

√
λ

and G := {∀t ∈ [T]|θ∗ ∈ Ct :=
{
θ |

∥∥∥θ − θ̂t−1

∥∥∥2

Vt−1
≤ βt

}
, Pr[G c] ≤ 1

T .

Proof : Define St :=
∑t

s=1 ηs Xs and Kt :=
∑t

s=1 Xs X
T
s . We will prove the claim in 4 steps:

(i)
∥∥∥θ − θ̂t

∥∥∥
Vt

≤ ∥St∥V−1
t

+
√
λ.

(ii) Mt(z) = exp
(
⟨z ,St⟩ − 1

2 ∥z∥2
Kt

)
is a non-negative super-martingale with M0(z) = 1.

(iii) Use the fact that a mixture of super-martingales given by M̄t =
∫
z
Mt(z)h(z) dz is also a

non-negative super-martingale for any probability density function h(z).

(iv) Use the maximal inequality for super-martingales to bound
Pr

[
supt∈[T] log(M̄t(z)) ≥ log(1/δ)

]
and hence bound

∥∥∥θ − θ̂t

∥∥∥
Vt

.

4

Linear UCB – Regret Analysis

Part (i): If St :=
∑t

s=1 ηs Xs and Kt :=
∑t

s=1 Xs X
T
s , then

∥∥∥θ∗ − θ̂t

∥∥∥
Vt

≤ ∥St∥V−1
t

+
√
λ.

Proof :
bt =

t∑
s=1

Xs Rs =
t∑

s=1

Xs [⟨Xs , θ
∗⟩+ ηs]

=
t∑

s=1

XT
s Xsθ

∗ +
t∑

s=1

Xsηs = St +
t∑

s=1

XT
s Xsθ

∗.

=⇒ θ̂t = V−1
t bt = V−1

t St + V−1
t

[
t∑

s=1

XT
s Xs

]
θ∗ = V−1

t St + V−1
t Ktθ

∗

∥∥∥θ∗ − θ̂t

∥∥∥
Vt

=
∥∥V−1

t St +
(
V−1
t Kt − Id

)
θ∗
∥∥
Vt

≤ ∥St∥V−1
t

+
√
θ∗T

(
V−1
t Kt − Id

)
(Kt − Vt)︸ ︷︷ ︸

=−λId

θ∗

= ∥St∥V−1
t

+
√
λ
√
θ∗T

(
Id − Vt

−1
Kt

)
θ∗ (Since θ∗T [Vt

−1
Kt] θ

∗ ≥ 0)

=⇒
∥∥∥θ∗ − θ̂t

∥∥∥
Vt

≤ ∥St∥V−1
t

+
√
λ ∥θ∗∥ ≤ ∥St∥V−1

t
+

√
λ

5

Linear UCB – Regret Analysis

Part (ii): If St :=
∑t

s=1 ηs Xs and Kt :=
∑t

s=1 Xs X
T
s , Mt(z) = exp

(
⟨z ,St⟩ − 1

2 ∥z∥2
Kt

)
is a

non-negative super-martingale with M0(z) = 1.

Proof : It is clear that Mt(z) = exp
(
⟨z ,St⟩ − 1

2 ∥z∥2
Kt

)
is non-negative and M0(z) = 1. By our

assumption on the noise, E[exp(ωηt)|Ht−1] ≤ exp
(

ω2

2

)
. Setting ω = ⟨z ,Xt⟩, implies that

E[exp(⟨z ,Xt⟩ηt)|Ht−1] ≤ exp

(
∥z∥2

XtX
T
t

2

)
=⇒ E

[
exp

(
⟨z ,Xt⟩ηt −

∥z∥2
XtX

T
t

2

)
|Ht−1

]
≤ 1 (*).

E[Mt(z)|Ht−1] = E
[
exp

(
⟨z ,St−1 + ηt Xt⟩ −

1
2
∥z∥2

Kt−1+XtXT
t

)
|Ht−1

]
= E

[
exp

(
⟨z , ηt Xt⟩ −

1
2
∥z∥2

XtXT
t

)
|Ht−1

]
exp

(
⟨z ,St−1⟩ −

1
2
∥z∥2

Kt−1

)
= Mt−1(z) E

[
exp

(
⟨z , ηt Xt⟩ −

1
2
∥z∥2

XtXT
t

)
|Ht−1

]
=⇒ E[Mt(z)|Ht−1] ≤ Mt−1(z) (Using (*))

6

Linear UCB – Regret Analysis

Fact 1: For a probability density h, if Mt(z) is a non-negative super-martingale with M0(z) = 1,
the “mixture” M̄t :=

∫
z
Mt(z) h(z) dz is also a non-negative super-martingale with M̄0 = 1.

Fact 2: For a non-negative super-martingale M̄t s.t. M̄0 = 1, for any ϵ > 0,
Pr[supt∈[T] M̄t ≥ ϵ] ≤ 1

ϵ .

In order to construct M̄t , we will choose h = N (0,H−1
) and H = λId .

M̄t =

∫
z

Mt(z) h(z) dz =
1√

(2π)d det[H
−1
]

∫
z

exp

(
⟨z ,St⟩ −

1
2
∥z∥2

Kt
− 1

2
∥z∥2

H

)
dz

From Fact 1, M̄t is a non-negative super-martingale, and hence using Fact 2 with ϵ = 1/δ

Pr

[
sup
t∈[T]

M̄t ≥ ϵ

]
= Pr

[
sup
t∈[T]

log(M̄t) ≥ log(ϵ)

]
= Pr

[
sup
t∈[T]

log(M̄t) ≥ log(1/δ)

]
≤ δ

In the last part of the proof, we will relate M̄t to ∥St∥Vt
−1.

7

Linear UCB – Regret Analysis

Recall that M̄t =
∫
z
Mt(z) h(z) dz = 1√

(2π)d det[H−1]

∫
z
exp

(
⟨z , St⟩ − 1

2 ∥z∥2
Kt

− 1
2 ∥z∥2

H

)
dz .

Simplifying the term inside exp,

⟨z ,St⟩ −
1
2
∥z∥2

Kt
− 1

2
∥z∥2

H =
1
2
∥St∥2

(Kt+H)−1 −
1
2

∥∥z − (Kt + H)−1St
∥∥2
(Kt+H)

=⇒
∫
z

Mt(z) h(z) dz =
exp

(
1
2 ∥St∥

2
V−1
t

)
√
(2π)d det[H

−1
]

∫
z

exp

(
−1

2

∥∥z − Vt
−1
St
∥∥2
Vt

)
dz

The integral corresponds to the integral of the PDF for a multivariate Gaussian with mean
Vt

−1
St and covariance Vt

−1. For a Gaussian with mean µ and covariance Σ
−1,

1√
(2π)d det[Σ−1]

∫
z
exp

(
− 1

2 ∥z − µ∥2
Σ

)
dz = 1. Hence,

M̄t =
exp

(
1
2 ∥St∥

2
V−1
t

)
√
(2π)d det[H

−1
]

√
(2π)d det[Vt

−1
] =

√
det[H]

det[Vt]
exp

(
1
2
∥St∥2

V−1
t

)

8

Linear UCB – Regret Analysis

Putting everything together, we know that for all t ∈ [T], w.p 1 − δ, log(M̄t) ≤ log(1/δ). Using
the result from the previous slide, w.p 1 − δ, for all t ∈ [T]

1
2
∥St∥2

V−1
t

+
1
2
log

(
det[H]

det[Vt]

)
≤ log(1/δ) =⇒ ∥St∥V−1

t
≤

√
log

(
det[Vt]

λd

)
+ 2 log(1/δ)

=⇒ ∥St∥V−1
t

≤

√
d log

(
λd + t

λd

)
+ 2 log(1/δ)

From Part (i), we know that,

∥∥∥θ∗ − θ̂t

∥∥∥
Vt

≤ ∥St∥V−1
t

+
√
λ ≤

√
d log

(
λd + t

λd

)
+ 2 log(1/δ) +

√
λ︸ ︷︷ ︸

:=
√
βt

We have shown that w.p. 1 − 1
T , for all t ∈ [T]

∥∥∥θ∗ − θ̂t

∥∥∥2

Vt

≤ βt , and hence Pr[G c] ≤ 1
T

9

Improvements to LinUCB

LinUCB results in O(d
√
T log(T)) regret. Importantly, the same regret analysis works for

infinitely many arms and even for a potentially changing set of actions At .

When the number of arms is finite, fixed and equal to K , a phase-based elimination
algorithm can achieve O(

√
dT log(KT)) regret (see [LS20, Chapter 22]).

Lower Bound: For any bandit algorithm, there exists a linear bandit instance (with the set
of actions A equal to a unit hyper-cube or a unit sphere) such that Regret(T) = Ω(d

√
T)

(see [LS20, Chapter 24]).

LinUCB maintain confidence intervals, and ensures optimism. An alternative set of
strategies that work better in practice is Posterior Sampling of which Thompson Sampling
is the most common (see [LS20, Chapter 36]).

10

Markov Decision Processes

10

Markov Decision Processes (MDPs)

In bandit problems, the “state” of the environment does not change as a result of an action.

Applications in robotics, operations research or conversational agents require explicitly
modelling the current information available in a round.

Example 1 : A robot needs to model what is its position, velocity in order to take an action
at the next round. This information is summarized as the “state” of the environment. The
robot’s action changes its velocity, position and hence the “state”.

Example 2 : A conversational agent requires context (the past conversation, who it is
speaking to) in order to decide what to respond to a particular user. The agent’s action can
change the context of the conversation, and hence the “state”.

Markov Decision Processes (MDPs) is the standard approach to sequential decision-making
in such applications.

11

Markov Decision Processes (MDPs)

An MDP can be described by 5 elements: the state space (S), action space (A), starting state
distribution (ρ), transition probabilities (P) and rewards (r).

State space S
A state summarizes all the relevant information available to the agent. We will assume that
the states are fully observable.
Example: Position of the rover on Mars, Inventory level of products.
States are mutually exclusive and exhaustive.
We will assume that the state space is discrete and finite, and |S| = S .

Starting state distribution ρ ∈ ∆S :
ρ(s) corresponds to the probability that the agent starts in state s.

∑
s∈S ρ(s) = 1.

Action space A:
Consists of the actions an agent can take. The action space can be different in each state.
Example: Move north for the Mars rover, buy more stock of a particular product.
We will assume that A is fixed, discrete and finite, and |A| = A.

12

Markov Decision Processes (MDPs)

Transition probabilities P:
Model the inherent stochasticity in the system.
P(s ′|s, a) is the probability of moving to a state s ′ when taking action a in state s.∑

s′∈S P(s ′|s, a) = 1 ; P(s ′|s, a) ≥ 0.
Markov property: P(s ′|s, a) only depends on the current state s and action a.
In some examples, such as robotics, transitions can be deterministic.
If P does not change, the transition probabilities are referred to as stationary.

Rewards r : Model how much the agent has moved towards achieving its goal.
r(s, a) is the reward obtained on taking action a in state s.
The reward can depend on s ′, the state to which the agent transitioned to and is denoted as
r(s ′, a, s). In this case, r(s, a) =

∑
s′∈S r(s ′, a, s)P(s ′|s, a).

Protocol: At round (epoch) t, the agent observes state
st and takes action at , transitions to state st+1 and
receives reward rt .

13

Markov Decision Processes (MDPs)

Decision Rule: Describes the information and mechanism an agent uses to select an action in a
given state and round. Can be classified as follows:

Information: History dependent vs Markovian
A history-dependent decision rule uses some or all of the previous states and actions up to and
including the current state when choosing an action.
A Markovian decision rule uses only the current state to select actions.

Mechanism: Randomized vs Deterministic
A randomized decision rule maintains a probability distribution over the actions that can be
taken in each state.
A deterministic decision rule corresponds to a degenerate distribution and consists of a
deterministic mapping from states to actions.

We define πt to be the decision-rule at round t.
A policy π is a sequence of decision rules, one for each round t, i.e. π = (π0, π1, π2, . . .).

Q: Why are history dependent policies computationally expensive to implement in general? Ans:
Need to look at the whole sequence of states and actions to decide which action to take. 14

Markov Decision Processes (MDPs)

The policy class depends on the decision rule it uses.

A policy can be in ΠHR, ΠHD, ΠMR, ΠMD depending on
whether the decision rule is history-dependent (H) or
Markovian (M); randomized (R) or deterministic (D).

Example: If Ht = {S0,A0,S1, . . . ,St} is the history of
interactions until round t, then, ΠHR = {π0, π1, π2, . . .}
where πt : Ht → ∆A,

Example: ΠMD = {π0, π1, π2, . . .} where πt : St → A.

A policy is stationary if it uses the same decision rule in
every round, i.e. π = {π0, π0, . . .}.
We will only consider stationary policies that are
Markovian, and define ΠSR ⊂ ΠMR ⊂ ΠHR and
ΠSD ⊂ ΠMD ⊂ ΠHD.

15

Markov Decision Processes (MDPs)

Specifying ρ and choosing a policy π results in a stochastic process over the state and
action space. We will denote this trajectory as (S0,A0,S1, . . .).
When π ∈ ΠMR, the stochastic process is a discrete-time Markov chain.

Q: For a policy π ∈ ΠMR, calculate the probability of the trajectory (s0, a0, s1, a1, . . .) Ans:
Pr[(s0, a0, s1, a1, . . .)] = ρ(s0)π0(a0|s0)P(s1|s0, a0)π1(a1|s1) . . .

The trajectory over states and actions generates a reward process:
(R0,R1, . . . ,) = (r(S0,A0), r(S1,A1), . . .).
When the stochastic process over states-actions is a Markov chain, the corresponding
reward process is a Markov reward process.

Q: How do we judge whether one reward process is “better” than the other?

We need some notion of utility. Common choice of utility functions is additive, i.e. the utility of
a reward process is (r0, r1, . . . ,) is given by: E [

∑
i=0 Ui (Ri)] where Ui : R → R and the

expectation is over the different trajectories produced by the policy.
16

Markov Decision Processes (MDPs)

Choosing a policy gives rise to a reward process, and we can design additive utility functions to
compare different reward processes. This gives different optimality criterion w.r.t to policies:

(a) For a finite horizon H, maxπ∈ΠHR E
[∑H

t=1 Rt

]
. [Finite Horizon Total Reward]

(b) For an infinite horizon, maxπ∈ΠHR E [
∑∞

t=0 γ
tRt] where γ ∈ (0, 1) is the discount factor.

[Infinite Horizon Discounted Reward]

(c) For an infinite horizon, maxπ∈ΠHR limT→∞
E[

∑T
t=0 Rt]
T . [Infinite Horizon Average Reward]

We will focus mainly on (b) infinite horizon discounted reward setting and towards the end,
consider (a) finite horizon total reward setting.

Infinite Horizon Discounted Reward: The discount factor γ models the fact that near-term
rewards are preferable to future rewards. For example, it models inflation meaning that a penny
today is worth 10 in the future.

17

Infinite-horizon Discounted Setting

Objective: For a starting state s0, find policy π ∈ ΠHR that maximizes the value function
vπ(s0)

vπ(s0) := E

[∞∑
t=0

γtRt |S0 = s0

]
,

where the expectation is over the randomness in the reward process induced by policy π. For a
starting state distribution ρ, the related objective is to maximize vπ(ρ) := Es∼ρv

π(s).

Assumptions:

The reward function does not change across rounds.

The rewards are bounded in [0, 1].

Q: What are the upper and lower-bounds on the value function? Ans: 1
1−γ and 0

18

Infinite-horizon Discounted Setting

Claim: For each s ∈ S, for a given policy π = (π0, π1, . . .) ∈ ΠHR, there exists a policy
π′ = (π′

0, π
′
1, . . .) ∈ ΠMR with the same value, conditioned on S0 = s0.

Since there exists a Markov policy that has the same value as every history-dependent
policy, we only need to consider ΠMR when we optimize for the optimal policy.
Markov policies only need to maintain the knowledge of the current state, and are hence
computationally tractable.

Proof : Using the definition of the value function,

vπ(s0) := E

[∞∑
t=0

γtRt |S0 = s0

]
= E

[∞∑
t=0

γtr(St ,At)|S0 = s0

]

=
∞∑
t=0

γt
∑
s∈S

∑
a∈A

r(s, a)Prπ[St = s,At = a|S0 = s0]

Here, Prπ corresponds to the probability distribution induced by policy π.

19

Infinite-horizon Discounted Setting

Recall that vπ(s0) =
∑∞

t=0 γ
t ∑

s∈S
∑

a∈A r(s, a)Prπ[St = s,At = a|S0 = s0]

Construct π′ ∈ ΠMR as follows: π′
t(At = a|St = s) = Prπ[At = a|St = st ,S0 = s0].

We will prove (by induction) that Prπ[St = s,At = a|S0 = s0] = Prπ
′
[St = s,At = a|S0 = s0],

and hence, vπ(s0) = vπ′
(s0).

vπ(s0) =
∞∑
t=0

γt
∑
s∈S

∑
a∈A

r(s, a)Prπ[At = a|St = s,S0 = s0]Prπ[St = s|S0 = s0]

Base Case: For t = 0,
∑

a π0[A0 = a|S0 = s0] =
∑

a π
′
0(A0 = a|S0 = s) by def. of π′.

Inductive Hypothesis: For t ≥ 1, assume that
Prπ[St = s,At = a|S0 = s0] = Prπ

′
[St = s,At = a|S0 = s0]. Let us now prove it for t + 1.

20

Infinite-horizon Discounted Setting

Recall that π′
t(At = a|St = s) = Prπ[At = a|St = st , S0 = s0] by def. of π′, and by the inductive

hypothesis, Prπ[St = s,At = a|S0 = s0] = Prπ
′
[St = s,At = a|S0 = s0].

For a fixed (s, a), using the definition of π′,

Prπ[At+1 = a|St+1 = s,S0 = s0]Prπ[St+1 = s|S0 = s0]

= Prπ
′
[At+1 = a|St+1 = s,S0 = s0]Prπ[St+1 = s|S0 = s0]

We need to show that Prπ[St+1 = s|S0 = s0] = Prπ
′
[St+1 = s|S0 = s0]. For an arbitrary s ′ ∈ S,

Prπ[St+1 = s ′|S0 = s0] =
∑
s

∑
a

P[s ′|s, a]Prπ[St = s,At = a|S0 = s0]

=
∑
s

∑
a

P[s ′|s, a]Prπ
′
[St = s,At = a|S0 = s0] (Inductive Hypothesis)

= Prπ
′
[St+1 = s ′|S0 = s0]

Hence, Prπ[St+1 = s,At+1 = a|S0 = s0] = Prπ
′
[St+1 = s,At+1 = a|S0 = s0]. Using the

definition of vπ, vπ(s0) = vπ′
(s0).

21

References i

Tor Lattimore and Csaba Szepesvári, Bandit algorithms, Cambridge University Press, 2020.

22

