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Recap

Input: K arms (possible actions), T rounds. µa := Er∼νa [r ] is the (unknown) expected
reward obtained by choosing action a.

Protocol: In each round t ∈ [T ], the bandit algorithm chooses action at ∈ [K ] and
observes reward Rt ∼ νat .

Objective: Minimize Regret(T ) :=
∑T

t=1 [µ
∗ − E[Rt ]] =

∑K
a=1 ∆a E[Na(T )].

Assumption: ηt := Rt − µat is 1 sub-Gaussian i.e. for all λ ∈ R, E[exp(ληt)] ≤ exp
(

λ2

2

)
.

Concentration for sub-Gaussian r.v.: If X is centered and σ sub-Gaussian, then for any
ϵ ≥ 0, Pr[X ≥ ϵ] ≤ exp

(
− ϵ2

2σ2

)
. For n i.i.d r.v’s Xi s.t. E[Xi ] = µ, if µ̂ := 1

n

∑n
i=1 Xi and

Xi − µ is σ sub-Gaussian, then Pr[|µ̂− µ| ≥ ϵ] ≤ exp
(
− nϵ2

2σ2

)
Explore-then-Commit (ETC): Under a sub-Gaussian assumption, ETC results in O(

√
KT )

regret when exploring for m = O
( 1
∆2

)
rounds, while it can only result in O(T 2/3) regret

when m is set indepndent of ∆.
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ϵ-greedy Algorithm

Algorithm ϵ-greedy (EG)

1: Input: {ϵt}Tt=1

2: for t = 1 → K do
3: Select arm at = t and observe Rt

4: end for
5: Calculate empirical mean reward for arm a ∈ [K ] as µ̂a(K ) :=

∑K
t=1 Rt I{at=a}

Na(K)

6: for t = K + 1 → T do

7: Select arm

{
at = argmaxa∈[K ] µ̂a(t − 1) w.p 1 − ϵt

at ∼ U{1, 2, . . . ,K} w.p ϵt
8: Observe reward Rt and update for a ∈ [K ]:

Na(t) = Na(t − 1) + I {at = a} ; µ̂a(t) =
Na(t − 1) µ̂a(t − 1) + Rt I {at = a}

Na(t)9: end for

EG with ϵt = ϵ can result in linear regret.

For K = 2, EG with ϵt = O
( 1
∆2 t

)
incurs O

(
log(T )

∆

)
regret.

Prove in Assignment 1!
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Upper Confidence Bound (UCB) Algorithm

Based on the principle of optimism in the face of uncertainty.

Algorithm Upper Confidence Bound
1: Input: δ

2: For each arm a ∈ [K ], initialize Ua(0, δ) := ∞.
3: for t = 1 → T do
4: Select arm at = argmaxa∈[K ] Ua(t − 1, δ) (Choose the lower-indexed arm in case of a tie)
5: Observe reward Rt and update for a ∈ [K ]:

Na(t) = Na(t − 1) + I {at = a} ; µ̂a(t) =
Na(t − 1) µ̂a(t − 1) + Rt I {at = a}

Na(t)

Ua(t, δ) = µ̂a(t) +

√
2 log(1/δ)

Na(t)

6: end for

Intuitively, UCB pulls a “promising” arm (with higher empirical mean µ̂a) or one that has
not been explored enough (with lower Na(t)). 3



UCB – Regret Analysis

Claim: UCB with δ = 1
T2 achieves the following problem-dependent bound on the regret,

Regret(UCB,T ) ≤ 2
K∑

a=1

∆a +
∑

a∈[K ]|∆a>0

16 log(T )

∆a

Proof : Without loss of generality, assume that arm 1 is the best arm. Using the regret
decomposition, we know that Regret(UCB,T ) =

∑
a ∆a E[Na(T )]. Define a threshold τa and

µ̂a,τa as the mean for arm a after pulling it for the first τa times. Define a “good” event Ga for
each a ̸= 1.

Ga =

{
µ1 < min

t∈[T ]
U1(t, δ)

}
∩

µ̂a,τa +

√
2 log(1/δ)

τa
< µ1


Consider two cases when bounding E[Na(T )]. Using the law of total expectation,

E[Na(T )] = E[Na(T )|Ga] Pr[Ga] + E[Na(T )|G c
a ] Pr[G

c
a ]

≤ E[Na(T )|Ga]︸ ︷︷ ︸
Term (i)

+T Pr[G c
a ]︸ ︷︷ ︸

Term (ii)

(Na(T ) ≤ T for all a, Pr[Ga] ≤ 1)

4



UCB – Regret Analysis

Recall that Ga =
{
µ1 < mint∈[T ] U1(t, δ)

}
∩
{
µ̂a,τa +

√
2 log(1/δ)

τa
< µ1

}
.

We will show that Term (i) = E[Na(T )|Ga] ≤ τa. To show this, we will prove (by contradiction)
that Pr[Na(T ) > τ |Ga] = 0. Suppose, conditioned on the event Ga, Na(T ) > τa, then there is a
round t s.t. Na(t − 1) = τa, at = a. Since at = argmaxa Ua(t − 1, δ), it follows that
Ua(t − 1, δ) > U1(t − 1, δ). However, we know that,

Ua(t − 1, δ) = µ̂a(t − 1) +

√
2 log(1/δ)
Na(t − 1)

= µ̂a(t − 1) +

√
2 log(1/δ)

τa

(By assumption, Na(t − 1) = τa)

= µ̂a,τa +

√
2 log(1/δ)

τa
(Since arm a has been pulled τa times)

≤ µ1 < U1(t − 1, δ) , (Since we are conditioning on Ga)

which is a contradiction. Since, Pr[Na(T ) > τ |Ga] = 0, it implies that
E[Na(T )|Ga] =

∑∞
n=0 Pr[Na(T ) > n|Ga] =

∑τa−1
n=0 Pr[Na(T ) > n|Ga] ≤ τa. 5



UCB – Regret Analysis

Bounding Term (ii) = Pr[G c
a ] ≤ Pr

[
µ1 ≥ mint∈[T ] U1(t, δ)

]
+ Pr

[
µ̂a,τa +

√
2 log(1/δ)

τa
≥ µ1

]
.

{
µ1 ≥ min

t∈[T ]
U1(t, δ)

}
=

{
µ1 ≥ min

t∈[T ]

{
µ̂1(t) +

√
2 log(1/δ)
N1(t)

}}

⊂

{
µ1 ≥ min

s∈[T ]

{
µ̂1,s +

√
2 log(1/δ)

s

}}

=
T⋃

s=1

{
µ1 ≥ µ̂1,s +

√
2 log(1/δ)

s

}

=⇒ Pr

[
µ1 ≥ min

t∈[T ]
U1(t, δ)

]
≤

T∑
s=1

Pr

[
µ1 ≥ µ̂1,s +

√
2 log(1/δ)

s

]
(Union Bound)

≤
T∑

s=1

δ = δT (Using concentration for sub-Gaussian r.v’s)
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UCB – Regret Analysis

Recall that Term (ii) = Pr[G c
a ] ≤ δT + Pr

[
µ̂a,τa +

√
2 log(1/δ)

τa
≥ µ1

]
. Assume that τa is chosen such

that ∆a −
√

2 log(1/δ)
τa

≥ ∆a

2 .

Pr

µ̂a,τa +

√
2 log(1/δ)

τa
≥ µ1

 = Pr

µ̂a,τa − µa +

√
2 log(1/δ)

τa
≥ ∆a

 ≤ Pr

[
µ̂a,τa − µa ≥

∆a

2

]

≤ exp

(
−τa ∆

2
a

8

)
(Using concentration for sub-Gaussian r.v’s)

Putting everything together,

=⇒ Pr[G c
a ] ≤ δT + exp

(
−τa ∆

2
a

8

)
=⇒ E[Na(T )] ≤ τa + T

[
δT + exp

(
−τa ∆

2
a

8

)]
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UCB – Regret Analysis

Recall that E[Na(T )] ≤ τa + T
[
δT + exp

(
− τa ∆

2
a

8

)]
.

E[Na(T )] ≤ 8 log(1/δ)
∆2

a

+ T [δT + δ] (Setting τa =
8 log(1/δ)

∆2
a

)

≤ 8 log(1/δ)
∆2

a

+ 2δ T 2

=
16 log(T )

∆2
a

+ 2 (Setting δ = 1/T2)

=⇒ Regret(UCB,T ) ≤
∑
a

∆a E[Na(T )] = 2
K∑

a=1

∆a +
K∑

a=2

16 log(T )

∆a
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UCB – Regret Analysis

Claim: For ∆ ≤ 1, UCB with δ = 1
T2 achieves the following worst-case regret,

Regret(UCB,T ) ≤ 2K + 8
√
K T log(T )

Proof : Define C > 0 to be a constant to be tuned later. From the regret decomposition result,

Regret(UCB,T ) =
K∑

a=1

∆a E[Na(T )] =
∑

a|∆a<C

∆a E[Na(T )] +
∑

a|∆a≥C

∆a E[Na(T )]

≤ CT +
∑

a|∆a≥C

∆a E[Na(T )] (Since
∑K

a=1 Na(T ) = T )

≤ CT +
∑

a|∆a≥C

[
16 log(T )

∆a
+ 2∆a

]
(From the previous slide)

≤ CT +

16K log(T )

C
+

∑
a|∆a≥C

2∆a

 (Setting C =
√

16K log(T )
T )

=⇒ Regret(UCB,T ) ≤ 8
√
K T log(T ) + 2K∆a ≤ 2K + 8

√
K T log(T )
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UCB vs ETC

Similar to best-tuned ETC, UCB results in an Õ(
√
KT ) problem-independent regret.

Unlike best-tuned ETC, UCB does not need to know the gaps ∆ to set algorithm
parameters, but does require knowledge of the horizon T .

Figure 1: For K = 2, T = 1000, Gaussian rewards, comparing UCB and ETC(m) as a function of the gap ∆.
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Improvements to UCB

Problem: UCB requires knowledge of T and hence, the number of rounds needs to be fixed.

Sol: Define UCB as µ̂a(t) +
√

2 log(f (t))
Na(t)

where f (t) := 1 + t log2(t). No dependence on T ,

but results in the same O(
√

KT log(T )) worst-case regret. (see [LS20, Chapter 8])

Lower-Bound: For a fixed T and for every bandit algorithm, there exists a stochastic bandit
problem with rewards in [0, 1] such that Regret(T ) = Ω(

√
KT ). (see [LS20, Chapter 15]).

Problem: UCB is sub-optimal by a
√
log(T ) factor compared to the lower-bound. Is it

possible to develop an algorithm that does not incur this log factor?

Sol: [Lat18, MG17] propose modifications of UCB that achieve O(
√
KT ) regret.
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Stochastic Linear Bandits
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Stochastic Linear Bandits

MAB treat each arm (e.g. drug choice) independently. But the arms (and their rewards) can
be dependent. E.g., drugs with similar chemical composition can have similar side-effects.
Stochastic Linear Bandits can model linear dependence between different arms. For this, we
require feature vectors Xa ∈ Rd for each arm a ∈ [K ].

Reward Model: For an unknown vector θ∗ ∈ Rd , the mean reward for arm a is given as:
µa = ⟨Xa, θ

∗⟩. Hence, arms with similar feature vectors will have similar mean rewards.
Similar to the MAB setting, on pulling arm at at round t, we observe the reward
Rt = µat + ηt = ⟨Xt , θ

∗⟩+ ηt . We will assume that ηt is conditionally 1 sub-Gaussian, i.e.
if Ht−1 := {X1,R1, . . . ,Xt} is the history of interactions until round t, then for all λ ∈ R,
E[exp(ληt)|Ht−1] ≤ exp(λ2/2).

Regret(T ) :=
∑T

t=1

[
maxa∈[K ]⟨Xa, θ

∗⟩ − E[Rt ]
]
= T maxa∈[K ]⟨Xa, θ

∗⟩ −
∑T

t=1 E[Rt ].
In the special case, when all the arms are independent, i.e. d = K and ∀a ∈ [K ], Xa = ea
where ∀i ∈ [d ], i ̸= a, ea[i ] = 0 and ea[a] = 1. Hence, µa = θ∗a and the linear bandit setup
strictly generalizes MAB.
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Stochastic Linear Bandits – Estimating µ̂a(t)

At round t, we have collected the following data: {Xs ,Rs}ts=1. Q: How do we estimate µ̂a(t)?

By solving regularized ridge regression, i.e. for a regularization parameter λ ≥ 0,

θ̂t := argmin
θ

{
1
2

t∑
s=1

[⟨Xs , θ⟩ − Rs ]
2 +

λ

2
∥θ∥2

}
Setting the derivative to zero to solve the above minimization problem,

t∑
s=1

[
Xs

[
⟨Xs , θ̂t⟩ − Rs

]]
+ λθ̂t = 0

=⇒

[
t∑

s=1

XsX
T
s + λId

]
︸ ︷︷ ︸

:=Vt∈Rd×d

θ̂t =
t∑

s=1

Xs Rs︸ ︷︷ ︸
:=bt∈Rd×1

=⇒ Vt θ̂t = bt =⇒ θ̂t = V−1
t bt

Hence, the empirical mean for each arm after t rounds: µ̂a = ⟨Xa, θ̂t⟩ = XT
a V−1

t bt
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Linear UCB

Algorithm Linear Upper Confidence Bound

1: Input: {βt}T+1
t=2 , V0 = λId ∈ Rd×d , b = 0 ∈ Rd

2: For each arm a ∈ [K ], initialize Ua(1, δ) := ∞.
3: for t = 1 → T do
4: Select arm at = argmaxa∈[K ] Ua(t, δ) (Choose the lower-indexed arm in case of a tie)
5: Observe reward Rt and update:

Vt = Vt−1 + Xt X
T
t ; bt = bt−1 + Rt Xt ; θ̂t = V−1

t bt

Ua(t + 1) = ⟨Xa, θ̂t⟩+
√
βt+1 ∥Xa∥V−1

t
(where ∥x∥A :=

√
xTAx)

6: end for

In the special case, when all the arms are independent, Linear UCB with βt = β = 2 log(1/δ) is
equivalent to UCB, and hence, Linear UCB strictly generalizes UCB.

Prove this in Assignment 1!
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Linear UCB – Regret Analysis

Claim: Ua(t + 1) := ⟨Xa, θ̂t⟩+
√
βt+1 ∥Xa∥V−1

t
= maxθ∈Ct+1⟨θ,Xa⟩ where

Ct+1 =

{
θ |
∥∥∥θ − θ̂t

∥∥∥2

Vt

≤ βt+1

}
.

Ct+1 is an ellipsoid centered at θ̂t with the principle axes being the eigenvectors of Vt and the
corresponding lengths being the reciprocal of the eigenvalues. As t increases, the eigenvalues of
matrix Vt increases and the volume of the ellipsoid decreases.

Prove this in Assignment 1! For the subsequent proof, we will use this equivalence.

Claim: Assuming (i) ∥θ∗∥ ≤ 1, (ii) ∥Xa∥ ≤ 1 for all a and (iii) Rt ∈ [0, 1], UCB with
√
βt =

√
d log

(
λd+t
λ d

)
+ 2 log(1/δ) +

√
λ achieves the following worst-case bound on the regret,

Regret(LinUCB,T ) ≤ O
(
d
√
T log(T )

)
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Linear UCB – Regret Analysis

Proof : Define a “good” event G := {∀t ∈ [T ]|θ∗ ∈ Ct :=
{
θ |
∥∥∥θ − θ̂t−1

∥∥∥2

Vt−1
≤ βt

}
, and

denote the instantaneous expected regret at round t as rt = maxa⟨Xa, θ
∗⟩ − ⟨Xt , θ

∗⟩. Using the
law of total expectation,

Regret(LinUCB,T ) = E[Regret(LinUCB,T )|G ] Pr[G ] + E[Regret(T )|G c ] Pr[G c ]

≤ E[Regret(LinUCB,T )|G ] + T Pr[G c ]

(Regret(LinUCB,T ) ≤ T and Pr[G ] ≤ 1)

=
T∑
t=1

E[rt |G ] + T Pr[G c ] ≤

√√√√T
T∑
t=1

[E[rt |G ]]2 + T Pr[G c ]

(Cauchy Schwarz inequality: ⟨x , y⟩ ≤ ∥x∥ ∥y∥ with x , y ∈ RT and x [t] = 1, y [t] = rt)

16



Linear UCB – Regret Analysis

Recall that Regret(LinUCB,T ) ≤
√

T
∑T

t=1 [E[rt |G ]]2 + T Pr[G c ]. Let us first bound E[rt |G ]. If
event G happens, then θ∗ ∈ Ct . Hence, for all a ∈ [K ],

⟨θ∗,Xa⟩ ≤ max
θ∈Ct

⟨θ,Xa⟩ = Ua(t) ≤ Uat (t)

(Using the equivalence on Slide 15 and the algorithm)

=⇒ max
a

⟨θ∗,Xa⟩ ≤ Uat (t) = max
θ∈Ct

⟨θ,Xt⟩ = ⟨θ̃t ,Xt⟩ (θ̃t := argmaxθ∈Ct
⟨θ,Xt⟩)

=⇒ E[rt |G ] = E[max
a

⟨Xa, θ
∗⟩ − ⟨Xt , θ

∗⟩|G ] ≤ E
[
⟨θ̃t − θ∗,Xt⟩|G

]
≤ E

[∥∥∥θ̃t − θ∗
∥∥∥
Vt−1

∥Xt∥V−1
t−1

|G
]

(Cauchy Schwarz inequality with x , y ∈ Rd and x = V
1/2
t−1 (θ̃t − θ∗), y = V

−1/2
t−1 Xt)

≤ E
[[∥∥∥θ̃t − θ̂t−1

∥∥∥
Vt−1

+
∥∥∥θ∗ − θ̂t−1

∥∥∥
Vt−1

]
∥Xt∥V−1

t−1
|G
]

(∆ inequality)

=⇒ E[rt |G ] ≤ 2
√
βt E

[
∥Xt∥V−1

t−1
|G
]

(Since θ∗, θ̃t ∈ Ct)
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Linear UCB – Regret Analysis

Putting everything together,

Regret(LinUCB,T ) ≤

√√√√T
T∑
t=1

[E[rt |G ]]2 + T Pr[G c ] ≤ 2

√√√√T
T∑
t=1

βt E
[
∥Xt∥2

V−1
t−1

]
+ T Pr[G c ]

≤ 2

√√√√T βT E

[
T∑
t=1

∥Xt∥2
V−1
t−1

|G

]
+ T Pr[G c ]

(Since βt ≤ βT for all t ∈ [T ])

We will prove the following results: (i)
∑T

t=1 ∥Xt∥2
V−1
t−1

≤ 2d log
(
λd+T
λd

)
deterministically and

(ii)
√
βt =

√
d log

(
λd+t
λd

)
+ 2 log(T ) +

√
λ, Pr[G c ] ≤ 1

T .

Given these results,

Regret(LinUCB,T ) ≤ 2

√
2d T βT log

(
λd + T

λd

)
+ 1 = O

(
d
√
T log(T )

)
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Linear UCB – Regret Analysis

Claim: If ∥Xa∥ ≤ 1 for all a,
∑T

t=1 ∥Xt∥2
V−1
t−1

≤ 2d log
(
λd+T
λd

)
.

Proof :
Vt = Vt−1 + Xt X

T
t = V

1/2
t−1

[
Id + V

−1/2
t−1 Xt X

T
t V

−1/2
t−1

]
V

1/2
t−1

=⇒ det[Vt ] = det[V
1/2
t−1] det

[
Id + V

−1/2
t−1 Xt X

T
t V

−1/2
t−1

]
det[V

1/2
t−1]

(det[XY ] = det[X ] det[Y ])

= det[Vt−1] det
[
Id + V

−1/2
t−1 Xt [V

−1/2
t−1 Xt ]

T
]

(det[X 1/2] =
√
det[X ])

= det[Vt−1]

(
1 +

∥∥∥V−1/2
t−1 Xt

∥∥∥2
)

= det[Vt−1]
(
1 + ∥Xt∥2

V−1
t−1

)
(Matrix Determinant Lemma: det[Id + x xT] = 1 + xTx = 1 + ∥x∥2)

=⇒ ln
(
1 + ∥Xt∥2

V−1
t−1

)
= ln

(
det[Vt ]

det[Vt−1]

)
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Linear UCB – Regret Analysis

Recall that ln
(
1 + ∥Xt∥2

V−1
t−1

)
= ln

(
det[Vt ]

det[Vt−1]

)
.

Hence,
∑T

t=1 ln
(
1 + ∥Xt∥2

V−1
t−1

)
= ln

(
det[VT ]
det[V0]

)
. For any x ≥ 0, x ≤ 2 ln(1 + x). Hence,∑T

t=1 ∥Xt∥2
V−1
t−1

≤ 2
∑T

t=1 ln(1 + ∥Xt∥2
V−1
t−1

), implying,

T∑
t=1

∥Xt∥2
V−1
t−1

≤ 2
T∑
t=1

ln(1 + ∥Xt∥2
V−1
t−1

) = 2 ln
(
det[VT ]

det[V0]

)

det[VT ] ≤
(
Tr[VT ]

d

)d

(det[A] =
∏

λi =
(
(
∏

λi )
1/d
)d

≤
(∑

λi

d

)d
=
(

Tr[A]
d

)d
)

=

(
Tr[V0 +

∑T
t=1 Xt X

T
t ]

d

)d

≤
(
Tr[V0] + T

d

)d

=

(
d λ+ T

d

)d

(Since ∥Xt∥ ≤ 1)

=⇒
T∑
t=1

∥Xt∥2
V−1
t−1

≤ 2 ln

((
(d λ+T )/d

(det[V0])1/d

)d
)

= 2d log

(
λd + T

λd

)
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