CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 2

Sharan Vaswani September 15, 2023

Recap

- Input: K arms (possible actions), T rounds. μ_a := E_{r∼ν_a}[r] is the (unknown) expected reward obtained by choosing action a.
- Protocol: In each round t ∈ [T], the bandit algorithm chooses action a_t ∈ [K] and observes reward R_t ~ ν_{at}.
- **Objective**: Minimize Regret $(T) := \sum_{t=1}^{T} [\mu^* \mathbb{E}[R_t]] = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$
- Assumption: $\eta_t := R_t \mu_{a_t}$ is 1 sub-Gaussian i.e. for all $\lambda \in \mathbb{R}$, $\mathbb{E}[\exp(\lambda \eta_t)] \le \exp\left(\frac{\lambda^2}{2}\right)$.
- Concentration for sub-Gaussian r.v.: If X is centered and σ sub-Gaussian, then for any $\epsilon \ge 0$, $\Pr[X \ge \epsilon] \le \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right)$. For n i.i.d r.v's X_i s.t. $\mathbb{E}[X_i] = \mu$, if $\hat{\mu} := \frac{1}{n} \sum_{i=1}^n X_i$ and $X_i \mu$ is σ sub-Gaussian, then $\Pr[|\hat{\mu} \mu| \ge \epsilon] \le \exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right)$
- Explore-then-Commit (ETC): Under a sub-Gaussian assumption, ETC results in $O(\sqrt{KT})$ regret when exploring for $m = O\left(\frac{1}{\Delta^2}\right)$ rounds, while it can only result in $O(T^{2/3})$ regret when *m* is set independent of Δ .

$\epsilon\text{-}\mathsf{greedy}$ Algorithm

Algorithm ϵ -greedy (EG)

- 1: **Input**: $\{\epsilon_t\}_{t=1}^{T}$
- 2: for t=1
 ightarrow K do
- 3: Select arm $a_t = t$ and observe R_t
- 4: end for
- 5: Calculate empirical mean reward for arm $a \in [K]$ as $\hat{\mu}_a(K) := \frac{\sum_{t=1}^{K} R_t \mathcal{I}\{a_t=a\}}{N_a(K)}$
- 6: for $t = K + 1 \rightarrow T$ do 7: Select arm $\begin{cases} a_t = \arg \max_{a \in [K]} \hat{\mu}_a(t-1) \text{ w.p } 1 - \epsilon_t \\ a_t \sim \mathcal{U}\{1, 2, \dots, K\} \text{ w.p } \epsilon_t \end{cases}$ 8: Observe reward R_t and update for $a \in [K]$: $N_a(t) = N_a(t-1) + \mathcal{I}\{a_t = a\}$; $\hat{\mu}_a(t) = \frac{N_a(t-1)\hat{\mu}_a(t-1) + R_t \mathcal{I}\{a_t = a\}}{N_a(t)}$ 9: end for
- EG with $\epsilon_t = \epsilon$ can result in linear regret.
- For K = 2, EG with $\epsilon_t = O\left(\frac{1}{\Delta^2 t}\right)$ incurs $O\left(\frac{\log(T)}{\Delta}\right)$ regret.

Prove in Assignment 1!

Upper Confidence Bound (UCB) Algorithm

• Based on the principle of *optimism in the face of uncertainty*.

Algorithm Upper Confidence Bound

- 1: Input: δ
- 2: For each arm $a \in [K]$, initialize $U_a(0, \delta) := \infty$.
- 3: for $t=1
 ightarrow {\mathcal T}$ do
- 4: Select arm $a_t = \arg \max_{a \in [K]} U_a(t-1, \delta)$ (Choose the lower-indexed arm in case of a tie)
- 5: Observe reward R_t and update for $a \in [K]$:

$$N_{a}(t) = N_{a}(t-1) + \mathcal{I} \{a_{t} = a\} \quad ; \quad \hat{\mu}_{a}(t) = \frac{N_{a}(t-1)\hat{\mu}_{a}(t-1) + R_{t}\mathcal{I}\{a_{t} = a\}}{N_{a}(t)}$$
$$U_{a}(t,\delta) = \hat{\mu}_{a}(t) + \sqrt{\frac{2\log(1/\delta)}{N_{a}(t)}}$$

6: end for

• Intuitively, UCB pulls a "promising" arm (with higher empirical mean $\hat{\mu}_a$) or one that has not been explored enough (with lower $N_a(t)$).

Claim: UCB with $\delta = \frac{1}{T^2}$ achieves the following problem-dependent bound on the regret,

$$\mathsf{Regret}(\mathsf{UCB}, T) \leq 2\sum_{a=1}^K \Delta_a + \sum_{a \in [K] \mid \Delta_a > 0} rac{16 \, \log(T)}{\Delta_a}$$

Proof: Without loss of generality, assume that arm 1 is the best arm. Using the regret decomposition, we know that Regret(UCB, T) = $\sum_{a} \Delta_{a} \mathbb{E}[N_{a}(T)]$. Define a threshold τ_{a} and $\hat{\mu}_{a,\tau_{a}}$ as the mean for arm a after pulling it for the first τ_{a} times. Define a "good" event G_{a} for each $a \neq 1$.

$$G_{a} = \left\{ \mu_{1} < \min_{t \in [T]} U_{1}(t,\delta) \right\} \cap \left\{ \hat{\mu}_{a,\tau_{a}} + \sqrt{\frac{2\log(1/\delta)}{\tau_{a}}} < \mu_{1} \right\}$$

Consider two cases when bounding $\mathbb{E}[N_a(T)]$. Using the law of total expectation,

$$\begin{split} \mathbb{E}[N_a(T)] &= \mathbb{E}[N_a(T)|G_a] \; \Pr[G_a] + \mathbb{E}[N_a(T)|G_a^c] \; \Pr[G_a^c] \\ &\leq \underbrace{\mathbb{E}[N_a(T)|G_a]}_{\text{Term (i)}} + T \; \underbrace{\Pr[G_a^c]}_{\text{Term (ii)}} \qquad (N_a(T) \leq T \text{ for all } a, \; \Pr[G_a] \leq 1) \end{split}$$

Recall that
$$G_a = \left\{ \mu_1 < \min_{t \in [T]} U_1(t, \delta) \right\} \cap \left\{ \hat{\mu}_{a, \tau_a} + \sqrt{\frac{2 \log(1/\delta)}{\tau_a}} < \mu_1 \right\}.$$

We will show that Term (i) = $\mathbb{E}[N_a(T)|G_a] \leq \tau_a$. To show this, we will prove (by contradiction) that $\Pr[N_a(T) > \tau|G_a] = 0$. Suppose, conditioned on the event G_a , $N_a(T) > \tau_a$, then there is a round t s.t. $N_a(t-1) = \tau_a$, $a_t = a$. Since $a_t = \arg \max_a U_a(t-1,\delta)$, it follows that $U_a(t-1,\delta) > U_1(t-1,\delta)$. However, we know that,

$$U_{a}(t-1,\delta) = \hat{\mu}_{a}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} = \hat{\mu}_{a}(t-1) + \sqrt{\frac{2\log(1/\delta)}{\tau_{a}}}$$
(By assumption, $N_{a}(t-1) = \tau_{a}$)

$$= \hat{\mu}_{a,\tau_{a}} + \sqrt{\frac{2\log(1/\delta)}{\tau_{a}}}$$
 (Since arm *a* has been pulled τ_{a} times)
$$\leq \mu_{1} < U_{1}(t-1,\delta),$$
 (Since we are conditioning on G_{a})

which is a contradiction. Since, $\Pr[N_a(T) > \tau | G_a] = 0$, it implies that $\mathbb{E}[N_a(T)|G_a] = \sum_{n=0}^{\infty} \Pr[N_a(T) > n|G_a] = \sum_{n=0}^{\tau_a - 1} \Pr[N_a(T) > n|G_a] \le \tau_a$.

Bounding Term (ii) =
$$\Pr[G_a^c] \leq \Pr\left[\mu_1 \geq \min_{t \in [T]} U_1(t, \delta)\right] + \Pr\left[\hat{\mu}_{a,\tau_a} + \sqrt{\frac{2\log(1/\delta)}{\tau_a}} \geq \mu_1\right].$$

$$\left\{ \mu_1 \geq \min_{t \in [T]} U_1(t, \delta) \right\} = \left\{ \mu_1 \geq \min_{t \in [T]} \left\{ \hat{\mu}_1(t) + \sqrt{\frac{2\log(1/\delta)}{N_1(t)}} \right\} \right\}$$

$$\subset \left\{ \mu_1 \geq \min_{s \in [T]} \left\{ \hat{\mu}_{1,s} + \sqrt{\frac{2\log(1/\delta)}{s}} \right\} \right\}$$

$$= \bigcup_{s=1}^T \left\{ \mu_1 \geq \hat{\mu}_{1,s} + \sqrt{\frac{2\log(1/\delta)}{s}} \right\}$$

$$\implies \Pr\left[\mu_1 \geq \min_{t \in [T]} U_1(t, \delta) \right] \leq \sum_{s=1}^T \Pr\left[\mu_1 \geq \hat{\mu}_{1,s} + \sqrt{\frac{2\log(1/\delta)}{s}} \right] \qquad (Union Bound)$$

$$\leq \sum_{s=1}^T \delta = \delta T \qquad (Using concentration for sub-Gaussian r.v's)$$

Recall that Term (ii) = $\Pr[G_a^c] \leq \delta T + \Pr\left[\hat{\mu}_{a,\tau_a} + \sqrt{\frac{2\log(1/\delta)}{\tau_a}} \geq \mu_1\right]$. Assume that τ_a is chosen such that $\Delta_a - \sqrt{\frac{2\log(1/\delta)}{\tau_a}} \geq \frac{\Delta_a}{2}$. $\Pr\left[\hat{\mu}_{a,\tau_a} + \sqrt{\frac{2\log(1/\delta)}{\tau_a}} \geq \mu_1\right] = \Pr\left[\hat{\mu}_{a,\tau_a} - \mu_a + \sqrt{\frac{2\log(1/\delta)}{\tau_a}} \geq \Delta_a\right] \leq \Pr\left[\hat{\mu}_{a,\tau_a} - \mu_a \geq \frac{\Delta_a}{2}\right]$ $\leq \exp\left(-\frac{\tau_a\Delta_a^2}{8}\right)$ (Using concentration for sub-Gaussian r.v's)

Putting everything together,

$$\implies \Pr[G_a^c] \le \delta T + \exp\left(-\frac{\tau_a \,\Delta_a^2}{8}\right)$$
$$\implies \mathbb{E}[N_a(T)] \le \tau_a + T \left[\delta T + \exp\left(-\frac{\tau_a \,\Delta_a^2}{8}\right)\right]$$

Recall that
$$\mathbb{E}[N_{a}(T)] \leq \tau_{a} + T \left[\delta T + \exp\left(-\frac{\tau_{a}\Delta_{a}^{2}}{8}\right)\right].$$

 $\mathbb{E}[N_{a}(T)] \leq \frac{8\log(1/\delta)}{\Delta_{a}^{2}} + T \left[\delta T + \delta\right] \qquad (\text{Setting } \tau_{a} = \frac{8\log(1/\delta)}{\Delta_{a}^{2}})$
 $\leq \frac{8\log(1/\delta)}{\Delta_{a}^{2}} + 2\delta T^{2}$
 $= \frac{16\log(T)}{\Delta_{a}^{2}} + 2 \qquad (\text{Setting } \delta = 1/\tau^{2})$
 $\implies \text{Regret}(\text{UCB}, T) \leq \sum_{a}\Delta_{a}\mathbb{E}[N_{a}(T)] = 2\sum_{a=1}^{K}\Delta_{a} + \sum_{a=2}^{K}\frac{16\log(T)}{\Delta_{a}}$

Claim: For $\Delta \leq 1$, UCB with $\delta = \frac{1}{T^2}$ achieves the following worst-case regret, Regret(UCB, T) $\leq 2K + 8\sqrt{KT \log(T)}$

Proof: Define C > 0 to be a constant to be tuned later. From the regret decomposition result, $\operatorname{Regret}(\operatorname{UCB}, T) = \sum_{a=1}^{n} \Delta_{a} \mathbb{E}[N_{a}(T)] = \sum_{a \mid \Delta_{a} < C} \Delta_{a} \mathbb{E}[N_{a}(T)] + \sum_{a \mid \Delta_{a} \geq C} \Delta_{a} \mathbb{E}[N_{a}(T)]$ $\leq CT + \sum_{a \mid \Delta_{a} \in \mathbb{E}[N_{a}(T)]} \Delta_{a} \mathbb{E}[N_{a}(T)] \qquad (\operatorname{Since} \sum_{a=1}^{K} N_{a}(T) = T)$ $a | \Delta_a > C$ $\leq CT + \sum_{a \mid \Delta \rangle \geq C} \left[\frac{16 \log(T)}{\Delta_a} + 2\Delta_a \right]$ (From the previous slide) $\leq CT + \left[\frac{16K \log(T)}{C} + \sum_{a \mid \Delta_a \geq C} 2\Delta_a \right]$ (Setting $C = \sqrt{\frac{16K \log(T)}{T}}$) \implies Regret(UCB, T) $< 8\sqrt{KT \log(T)} + 2K\Delta_a < 2K + 8\sqrt{KT \log(T)}$

UCB vs ETC

- Similar to best-tuned ETC, UCB results in an $\tilde{O}(\sqrt{\kappa T})$ problem-independent regret.
- Unlike best-tuned ETC, UCB does not need to know the gaps Δ to set algorithm parameters, but does require knowledge of the horizon T.

Figure 1: For K = 2, T = 1000, Gaussian rewards, comparing UCB and ETC(m) as a function of the gap Δ .

- Problem: UCB requires knowledge of T and hence, the number of rounds needs to be fixed.
- Sol: Define UCB as $\hat{\mu}_a(t) + \sqrt{\frac{2 \log(f(t))}{N_a(t)}}$ where $f(t) := 1 + t \log^2(t)$. No dependence on T, but results in the same $O(\sqrt{KT \log(T)})$ worst-case regret. (see [LS20, Chapter 8])
- Lower-Bound: For a fixed T and for every bandit algorithm, there exists a stochastic bandit problem with rewards in [0, 1] such that Regret(T) = $\Omega(\sqrt{KT})$. (see [LS20, Chapter 15]).
- Problem: UCB is sub-optimal by a √log(T) factor compared to the lower-bound. Is it possible to develop an algorithm that does not incur this log factor?
- Sol: [Lat18, MG17] propose modifications of UCB that achieve $O(\sqrt{KT})$ regret.

Stochastic Linear Bandits

Stochastic Linear Bandits

- MAB treat each arm (e.g. drug choice) independently. But the arms (and their rewards) can be dependent. E.g., drugs with similar chemical composition can have similar side-effects.
- Stochastic Linear Bandits can model linear dependence between different arms. For this, we require *feature vectors* $X_a \in \mathbb{R}^d$ for each arm $a \in [K]$.
- Reward Model: For an unknown vector $\theta^* \in \mathbb{R}^d$, the mean reward for arm *a* is given as: $\mu_a = \langle X_a, \theta^* \rangle$. Hence, arms with similar feature vectors will have similar mean rewards.
- Similar to the MAB setting, on pulling arm a_t at round t, we observe the reward $R_t = \mu_{a_t} + \eta_t = \langle X_t, \theta^* \rangle + \eta_t$. We will assume that η_t is conditionally 1 sub-Gaussian, i.e. if $\mathcal{H}_{t-1} := \{X_1, R_1, \dots, X_t\}$ is the *history* of interactions until round t, then for all $\lambda \in \mathbb{R}$, $\mathbb{E}[\exp(\lambda \eta_t)|\mathcal{H}_{t-1}] \leq \exp(\lambda^2/2)$.
- Regret(T) := $\sum_{t=1}^{T} \left[\max_{a \in [K]} \langle X_a, \theta^* \rangle \mathbb{E}[R_t] \right] = T \max_{a \in [K]} \langle X_a, \theta^* \rangle \sum_{t=1}^{T} \mathbb{E}[R_t].$
- In the special case, when all the arms are independent, i.e. d = K and $\forall a \in [K]$, $X_a = e_a$ where $\forall i \in [d], i \neq a, e_a[i] = 0$ and $e_a[a] = 1$. Hence, $\mu_a = \theta_a^*$ and the linear bandit setup strictly generalizes MAB.

Stochastic Linear Bandits – Estimating $\hat{\mu}_a(t)$

At round t, we have collected the following data: $\{X_s, R_s\}_{s=1}^t$. **Q**: How do we estimate $\hat{\mu}_a(t)$?

By solving regularized ridge regression, i.e. for a regularization parameter $\lambda \geq$ 0,

$$\hat{\theta}_{t} := \arg\min_{\theta} \left\{ \frac{1}{2} \sum_{s=1}^{t} \left[\langle X_{s}, \theta \rangle - R_{s} \right]^{2} + \frac{\lambda}{2} \left\| \theta \right\|^{2} \right\}$$

Setting the derivative to zero to solve the above minimization problem,

$$\sum_{s=1}^{t} \left[X_s \left[\langle X_s, \hat{\theta}_t \rangle - R_s \right] \right] + \lambda \hat{\theta}_t = 0$$

$$\implies \underbrace{\left[\sum_{s=1}^{t} X_s X_s^T + \lambda I_d \right]}_{:=V_t \in \mathbb{R}^{d \times d}} \hat{\theta}_t = \underbrace{\sum_{s=1}^{t} X_s R_s}_{:=b_t \in \mathbb{R}^{d \times 1}} \implies V_t \hat{\theta}_t = b_t \implies \hat{\theta}_t = V_t^{-1} b_t$$

Hence, the empirical mean for each arm after t rounds: $\hat{\mu}_a = \langle X_a, \hat{\theta}_t \rangle = X_a^T V_t^{-1} b_t$

Linear UCB

Algorithm Linear Upper Confidence Bound

- 1: Input: $\{\beta_t\}_{t=2}^{T+1}$, $V_0 = \lambda I_d \in \mathbb{R}^{d \times d}$, $b = 0 \in \mathbb{R}^d$
- 2: For each arm $a \in [K]$, initialize $U_a(1, \delta) := \infty$.
- 3: for $t=1
 ightarrow {\mathcal T}$ do
- 4: Select arm $a_t = \arg \max_{a \in [K]} U_a(t, \delta)$ (Choose the lower-indexed arm in case of a tie)
- 5: Observe reward R_t and update:

$$V_{t} = V_{t-1} + X_{t} X_{t}^{T} ; \quad b_{t} = b_{t-1} + R_{t} X_{t} ; \quad \hat{\theta}_{t} = V_{t}^{-1} b_{t}$$
$$U_{a}(t+1) = \langle X_{a}, \hat{\theta}_{t} \rangle + \sqrt{\beta_{t+1}} \|X_{a}\|_{V_{t}^{-1}} \qquad (\text{where } \|x\|_{A} := \sqrt{x^{T} A x})$$

6: end for

In the special case, when all the arms are independent, Linear UCB with $\beta_t = \beta = 2 \log(1/\delta)$ is equivalent to UCB, and hence, Linear UCB strictly generalizes UCB.

Prove this in Assignment 1!

$$\begin{array}{l} \textbf{Claim: } U_{a}(t+1) := \langle X_{a}, \hat{\theta}_{t} \rangle + \sqrt{\beta_{t+1}} \, \left\| X_{a} \right\|_{V_{t}^{-1}} = \max_{\theta \in \mathcal{C}_{t+1}} \langle \theta, X_{a} \rangle \text{ where } \\ \mathcal{C}_{t+1} = \bigg\{ \theta \mid \left\| \theta - \hat{\theta}_{t} \right\|_{V_{t}}^{2} \leq \beta_{t+1} \bigg\}. \end{array}$$

 C_{t+1} is an ellipsoid centered at $\hat{\theta}_t$ with the principle axes being the eigenvectors of V_t and the corresponding lengths being the reciprocal of the eigenvalues. As t increases, the eigenvalues of matrix V_t increases and the volume of the ellipsoid decreases.

Prove this in Assignment 1! For the subsequent proof, we will use this equivalence.

Claim: Assuming (i) $\|\theta^*\| \le 1$, (ii) $\|X_a\| \le 1$ for all *a* and (iii) $R_t \in [0, 1]$, UCB with

 $\sqrt{\beta_t} = \sqrt{d \log(\frac{\lambda d+t}{\lambda d}) + 2 \log(1/\delta)} + \sqrt{\lambda}$ achieves the following worst-case bound on the regret,

 $\mathsf{Regret}(\mathsf{LinUCB}, T) \leq O\left(d\sqrt{T}\log(T)\right)$

Proof: Define a "good" event $G := \{\forall t \in [T] | \theta^* \in C_t := \left\{ \theta \mid \left\| \theta - \hat{\theta}_{t-1} \right\|_{V_{t-1}}^2 \leq \beta_t \right\}$, and denote the instantaneous expected regret at round t as $r_t = \max_a \langle X_a, \theta^* \rangle - \langle X_t, \theta^* \rangle$. Using the law of total expectation,

 $\begin{aligned} \text{Regret}(\text{LinUCB}, \mathcal{T}) &= \mathbb{E}[\text{Regret}(\text{LinUCB}, \mathcal{T})|G] \, \Pr[G] + \mathbb{E}[\text{Regret}(\mathcal{T})|G^c] \, \Pr[G^c] \\ &\leq \mathbb{E}[\text{Regret}(\text{LinUCB}, \mathcal{T})|G] + \mathcal{T} \, \Pr[G^c] \\ &\quad (\text{Regret}(\text{LinUCB}, \mathcal{T}) \leq \mathcal{T} \text{ and } \Pr[G] \leq 1) \end{aligned}$ $&= \sum_{t=1}^{\mathcal{T}} \mathbb{E}[r_t|G] + \mathcal{T} \, \Pr[G^c] \leq \sqrt{\mathcal{T} \, \sum_{t=1}^{\mathcal{T}} [\mathbb{E}[r_t|G]]^2} + \mathcal{T} \, \Pr[G^c] \\ &\quad (\text{Cauchy Schwarz inequality: } \langle x, y \rangle \leq ||x|| \, ||y|| \text{ with } x, y \in \mathbb{R}^{\mathcal{T}} \text{ and } x[t] = 1, y[t] = r_t) \end{aligned}$

Recall that Regret(LinUCB, T) $\leq \sqrt{T \sum_{t=1}^{T} [\mathbb{E}[r_t|G]]^2 + T \Pr[G^c]}$. Let us first bound $\mathbb{E}[r_t|G]$. If event G happens, then $\theta^* \in C_t$. Hence, for all $a \in [K]$,

$$\langle heta^*, X_{\mathsf{a}}
angle \leq \max_{ heta \in \mathcal{C}_t} \langle heta, X_{\mathsf{a}}
angle = U_{\mathsf{a}}(t) \leq U_{\mathsf{a}_t}(t)$$

(Using the equivalence on Slide 15 and the algorithm)

$$\Longrightarrow \max_{a} \langle \theta^*, X_a \rangle \leq U_{a_t}(t) = \max_{\theta \in C_t} \langle \theta, X_t \rangle = \langle \tilde{\theta}_t, X_t \rangle \qquad (\tilde{\theta}_t := \arg \max_{\theta \in C_t} \langle \theta, X_t \rangle)$$

$$\Longrightarrow \mathbb{E}[r_t|G] = \mathbb{E}[\max_{a} \langle X_a, \theta^* \rangle - \langle X_t, \theta^* \rangle |G] \leq \mathbb{E}\left[\langle \tilde{\theta}_t - \theta^*, X_t \rangle |G \right]$$

$$\leq \mathbb{E}\left[\left\| \tilde{\theta}_t - \theta^* \right\|_{V_{t-1}} \|X_t\|_{V_{t-1}^{-1}} |G \right]$$
(Cauchy Schwarz inequality with $x, y \in \mathbb{R}^d$ and $x = V_{t-1}^{1/2}(\tilde{\theta}_t - \theta^*), y = V_{t-1}^{-1/2}X_t)$

$$\leq \mathbb{E}\left[\left\| \tilde{\theta}_t - \hat{\theta}_{t-1} \right\|_{V_{t-1}} + \left\| \theta^* - \hat{\theta}_{t-1} \right\|_{V_{t-1}} \right] \|X_t\|_{V_{t-1}^{-1}} |G \right]$$
(Δ inequality)
$$\Longrightarrow \mathbb{E}[r_t|G] \leq 2\sqrt{\beta_t} \mathbb{E}\left[\|X_t\|_{V_{t-1}^{-1}} |G \right]$$
(Since $\theta^*, \tilde{\theta}_t \in C_t$)

Putting everything together,

We will prove the following results: (i) $\sum_{t=1}^{T} ||X_t||_{V_{t-1}^{-1}}^{2} \leq 2d \log(\frac{\lambda d+T}{\lambda d})$ deterministically and (ii) $\sqrt{\beta_t} = \sqrt{d \log(\frac{\lambda d+t}{\lambda d}) + 2\log(T)} + \sqrt{\lambda}$, $\Pr[G^c] \leq \frac{1}{T}$. Given these results,

$$\mathsf{Regret}(\mathsf{LinUCB}, T) \leq 2\sqrt{2d \ T \ \beta_T \ \log\left(\frac{\lambda d + T}{\lambda d}\right)} + 1 = O\left(d\sqrt{T}\log(T)\right) \quad \Box$$

Recall that
$$\ln\left(1 + \|X_t\|_{V_{t-1}^{-1}}^2\right) = \ln\left(\frac{\det[V_t]}{\det[V_{t-1}]}\right).$$

Hence, $\sum_{t=1}^{T} \ln\left(1 + \|X_t\|_{V_{t-1}^{-1}}^2\right) = \ln\left(\frac{\det[V_T]}{\det[V_0]}\right).$ For any $x \ge 0, x \le 2\ln(1+x).$ Hence,
 $\sum_{t=1}^{T} \|X_t\|_{V_{t-1}^{-1}}^2 \le 2\sum_{t=1}^{T} \ln(1 + \|X_t\|_{V_{t-1}^{-1}}^2), \text{ implying,}$
 $\sum_{t=1}^{T} \|X_t\|_{V_{t-1}^{-1}}^2 \le 2\sum_{t=1}^{T} \ln(1 + \|X_t\|_{V_{t-1}^{-1}}^2) = 2\ln\left(\frac{\det[V_T]}{\det[V_0]}\right)$
 $\det[V_T] \le \left(\frac{\operatorname{Tr}[V_T]}{d}\right)^d \quad (\det[A] = \prod \lambda_i = \left((\prod \lambda_i)^{1/d}\right)^d \le \left(\frac{\sum \lambda_i}{d}\right)^d = \left(\frac{\operatorname{Tr}[A]}{d}\right)^d$)
 $= \left(\frac{\operatorname{Tr}[V_0 + \sum_{t=1}^{T} X_t X_t^T]}{d}\right)^d \le \left(\frac{\operatorname{Tr}[V_0] + T}{d}\right)^d = \left(\frac{d\lambda + T}{d}\right)^d$
(Since $\|X_t\| \le 1$)

$$\implies \sum_{t=1} \|X_t\|_{V_{t-1}^{-1}}^2 \le 2\ln\left(\left(\frac{1}{(\det[V_0])^{1/d}}\right)\right) = 2d\log\left(\frac{1}{\lambda d}\right) \quad \Box$$

- Tor Lattimore, *Refining the confidence level for optimistic bandit strategies*, The Journal of Machine Learning Research **19** (2018), no. 1, 765–796.
- Tor Lattimore and Csaba Szepesvári, *Bandit algorithms*, Cambridge University Press, 2020.
- Pierre Ménard and Aurélien Garivier, A minimax and asymptotically optimal algorithm for stochastic bandits, International Conference on Algorithmic Learning Theory, PMLR, 2017, pp. 223–237.