CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 2

Sharan Vaswani
September 15, 2023

Recap

- Input: K arms (possible actions), T rounds. $\mu_{a}:=\mathbb{E}_{r \sim \nu_{a}}[r]$ is the (unknown) expected reward obtained by choosing action a.
- Protocol: In each round $t \in[T]$, the bandit algorithm chooses action $a_{t} \in[K]$ and observes reward $R_{t} \sim \nu_{a_{t}}$.
- Objective: Minimize $\operatorname{Regret}(T):=\sum_{t=1}^{T}\left[\mu^{*}-\mathbb{E}\left[R_{t}\right]\right]=\sum_{a=1}^{K} \Delta_{\mathrm{a}} \mathbb{E}\left[N_{a}(T)\right]$.
- Assumption: $\eta_{t}:=R_{t}-\mu_{a_{t}}$ is 1 sub-Gaussian i.e. for all $\lambda \in \mathbb{R}, \mathbb{E}\left[\exp \left(\lambda \eta_{t}\right)\right] \leq \exp \left(\frac{\lambda^{2}}{2}\right)$.
- Concentration for sub-Gaussian r.v.: If X is centered and σ sub-Gaussian, then for any $\epsilon \geq 0, \operatorname{Pr}[X \geq \epsilon] \leq \exp \left(-\frac{\epsilon^{2}}{2 \sigma^{2}}\right)$. For n i.i.d r.v's X_{i} s.t. $\mathbb{E}\left[X_{i}\right]=\mu$, if $\hat{\mu}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $X_{i}-\mu$ is σ sub-Gaussian, then $\operatorname{Pr}[|\hat{\mu}-\mu| \geq \epsilon] \leq \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}}\right)$
- Explore-then-Commit (ETC): Under a sub-Gaussian assumption, ETC results in $O(\sqrt{K T})$ regret when exploring for $m=O\left(\frac{1}{\Delta^{2}}\right)$ rounds, while it can only result in $O\left(T^{2 / 3}\right)$ regret when m is set indepndent of Δ.

ϵ-greedy Algorithm

Algorithm ϵ-greedy (EG)

1: Input: $\left\{\epsilon_{t}\right\}_{t=1}^{T}$
2: for $t=1 \rightarrow K$ do
3: \quad Select arm $a_{t}=t$ and observe R_{t}
4: end for
5: Calculate empirical mean reward for $\operatorname{arm} a \in[K]$ as $\hat{\mu}_{a}(K):=\frac{\sum_{t=1}^{K} R_{t} I\left\{a_{t}=a\right\}}{N_{a}(K)}$
6: for $t=K+1 \rightarrow T$ do
7: \quad Select arm $\left\{\begin{array}{l}a_{t}=\arg \max _{a \in[K]} \hat{\mu}_{a}(t-1) w . p 1-\epsilon_{t} \\ a_{t} \sim \mathcal{U}\{1,2, \ldots, K\} \text { w.p } \epsilon_{t}\end{array}\right.$
8: Observe reward R_{t} and update for $a \in[K]$:

$$
\begin{aligned}
& N_{a}(t)=N_{a}(t-1)+\mathcal{I}\left\{a_{t}=a\right\} \quad ; \quad \hat{\mu}_{a}(t)=\frac{N_{a}(t-1) \hat{\mu}_{a}(t-1)+R_{t} \mathcal{I}\left\{a_{t}=a\right\}}{N_{a}(t)} \\
& \text { for }
\end{aligned}
$$

- EG with $\epsilon_{t}=\epsilon$ can result in linear regret.
- For $K=2$, EG with $\epsilon_{t}=O\left(\frac{1}{\Delta^{2} t}\right)$ incurs $O\left(\frac{\log (T)}{\Delta}\right)$ regret.

Upper Confidence Bound (UCB) Algorithm

- Based on the principle of optimism in the face of uncertainty.
Algorithm Upper Confidence Bound

1: Input: δ
2: For each arm $a \in[K]$, initialize $U_{a}(0, \delta):=\infty$.
3: for $t=1 \rightarrow T$ do
4: \quad Select arm $a_{t}=\arg \max _{a \in[K]} U_{a}(t-1, \delta) \quad$ (Choose the lower-indexed arm in case of a tie)
5: \quad Observe reward R_{t} and update for $a \in[K]$:

$$
\begin{aligned}
N_{a}(t) & =N_{a}(t-1)+\mathcal{I}\left\{a_{t}=a\right\} \quad ; \quad \hat{\mu}_{a}(t)=\frac{N_{a}(t-1) \hat{\mu}_{a}(t-1)+R_{t} \mathcal{I}\left\{a_{t}=a\right\}}{N_{a}(t)} \\
U_{a}(t, \delta) & =\hat{\mu}_{a}(t)+\sqrt{\frac{2 \log (1 / \delta)}{N_{a}(t)}}
\end{aligned}
$$

6: end for

- Intuitively, UCB pulls a "promising" arm (with higher empirical mean $\hat{\mu}_{a}$) or one that has not been explored enough (with lower $N_{a}(t)$).

UCB - Regret Analysis

Claim: UCB with $\delta=\frac{1}{T^{2}}$ achieves the following problem-dependent bound on the regret,

$$
\operatorname{Regret}(\mathrm{UCB}, T) \leq 2 \sum_{a=1}^{K} \Delta_{a}+\sum_{a \in[K] \mid \Delta_{a}>0} \frac{16 \log (T)}{\Delta_{a}}
$$

Proof: Without loss of generality, assume that arm 1 is the best arm. Using the regret decomposition, we know that $\operatorname{Regret}(\mathrm{UCB}, T)=\sum_{a} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]$. Define a threshold τ_{a} and $\hat{\mu}_{a, \tau_{a}}$ as the mean for arm a after pulling it for the first τ_{a} times. Define a "good" event G_{a} for each $a \neq 1$.

$$
G_{a}=\left\{\mu_{1}<\min _{t \in[T]} U_{1}(t, \delta)\right\} \cap\left\{\hat{\mu}_{a, \tau_{a}}+\sqrt{\frac{2 \log (1 / \delta)}{\tau_{a}}}<\mu_{1}\right\}
$$

Consider two cases when bounding $\mathbb{E}\left[N_{a}(T)\right]$. Using the law of total expectation,

$$
\begin{array}{rlrl}
\mathbb{E}\left[N_{a}(T)\right] & =\mathbb{E}\left[N_{a}(T) \mid G_{a}\right] \operatorname{Pr}\left[G_{a}\right]+\mathbb{E}\left[N_{a}(T) \mid G_{a}^{c}\right] & \operatorname{Pr}\left[G_{a}^{c}\right] \\
& \leq \underbrace{\mathbb{E}\left[N_{a}(T) \mid G_{a}\right]}_{\text {Term (i) }}+T \underbrace{\operatorname{Pr}\left[G_{a}^{c}\right]}_{\text {Term (ii) }} \quad\left(N_{a}(T) \leq T \text { for all a, } \operatorname{Pr}\left[G_{a}\right] \leq 1\right)
\end{array}
$$

UCB - Regret Analysis

Recall that $G_{a}=\left\{\mu_{1}<\min _{t \in[T]} U_{1}(t, \delta)\right\} \cap\left\{\hat{\mu}_{a, \tau_{a}}+\sqrt{\frac{2 \log (1 / \delta)}{\tau_{a}}}<\mu_{1}\right\}$.
We will show that Term $(\mathrm{i})=\mathbb{E}\left[N_{a}(T) \mid G_{a}\right] \leq \tau_{a}$. To show this, we will prove (by contradiction) that $\operatorname{Pr}\left[N_{a}(T)>\tau \mid G_{a}\right]=0$. Suppose, conditioned on the event $G_{a}, N_{a}(T)>\tau_{a}$, then there is a round t s.t. $N_{a}(t-1)=\tau_{a}, a_{t}=a$. Since $a_{t}=\arg \max _{a} U_{a}(t-1, \delta)$, it follows that $U_{a}(t-1, \delta)>U_{1}(t-1, \delta)$. However, we know that,

$$
U_{a}(t-1, \delta)=\hat{\mu}_{a}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{N_{a}(t-1)}}=\hat{\mu}_{a}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{\tau_{a}}}
$$

$\left(\right.$ By assumption, $\left.N_{a}(t-1)=\tau_{a}\right)$

$$
\begin{aligned}
& =\hat{\mu}_{a, \tau_{a}}+\sqrt{\frac{2 \log (1 / \delta)}{\tau_{a}}} \\
& \leq \mu_{1}<U_{1}(t-1, \delta),
\end{aligned}
$$

(Since arm a has been pulled τ_{a} times)
(Since we are conditioning on G_{a})
which is a contradiction. Since, $\operatorname{Pr}\left[N_{a}(T)>\tau \mid G_{a}\right]=0$, it implies that $\mathbb{E}\left[N_{a}(T) \mid G_{a}\right]=\sum_{n=0}^{\infty} \operatorname{Pr}\left[N_{a}(T)>n \mid G_{a}\right]=\sum_{n=0}^{\tau_{a}-1} \operatorname{Pr}\left[N_{a}(T)>n \mid G_{a}\right] \leq \tau_{a}$.

UCB - Regret Analysis

Bounding Term (ii) $=\operatorname{Pr}\left[G_{a}^{c}\right] \leq \operatorname{Pr}\left[\mu_{1} \geq \min _{t \in[T]} U_{1}(t, \delta)\right]+\operatorname{Pr}\left[\hat{\mu}_{a, \tau_{a}}+\sqrt{\frac{2 \log (1 / \delta)}{\tau_{a}}} \geq \mu_{1}\right]$.

$$
\begin{aligned}
\left\{\mu_{1} \geq \min _{t \in[T]} U_{1}(t, \delta)\right\} & =\left\{\mu_{1} \geq \min _{t \in[T]}\left\{\hat{\mu}_{1}(t)+\sqrt{\frac{2 \log (1 / \delta)}{N_{1}(t)}}\right\}\right\} \\
& \subset\left\{\mu_{1} \geq \min _{s \in[T]}\left\{\hat{\mu}_{1, s}+\sqrt{\frac{2 \log (1 / \delta)}{s}}\right\}\right\} \\
& =\bigcup_{s=1}^{T}\left\{\mu_{1} \geq \hat{\mu}_{1, s}+\sqrt{\frac{2 \log (1 / \delta)}{s}}\right\} \\
\Longrightarrow \operatorname{Pr}\left[\mu_{1} \geq \min _{t \in[T]} U_{1}(t, \delta)\right] & \leq \sum_{s=1}^{T} \operatorname{Pr}\left[\mu_{1} \geq \hat{\mu}_{1, s}+\sqrt{\frac{2 \log (1 / \delta)}{s}}\right] \quad \text { (Union Bound) } \\
& \leq \sum_{s=1}^{T} \delta=\delta T \quad \text { (Using concentration for sub-Gaussian r.v's) }
\end{aligned}
$$

UCB - Regret Analysis

Recall that Term (ii) $=\operatorname{Pr}\left[G_{a}^{c}\right] \leq \delta T+\operatorname{Pr}\left[\hat{\mu}_{a, \tau_{a}}+\sqrt{\frac{2 \log (1 / \delta)}{\tau_{a}}} \geq \mu_{1}\right]$. Assume that τ_{a} is chosen such that $\Delta_{a}-\sqrt{\frac{2 \log (1 / \delta)}{\tau_{a}}} \geq \frac{\Delta_{a}}{2}$.

$$
\begin{aligned}
\operatorname{Pr}\left[\hat{\mu}_{a, \tau_{a}}+\sqrt{\frac{2 \log (1 / \delta)}{\tau_{a}}} \geq \mu_{1}\right] & =\operatorname{Pr}\left[\hat{\mu}_{a, \tau_{a}}-\mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{\tau_{a}}} \geq \Delta_{a}\right] \leq \operatorname{Pr}\left[\hat{\mu}_{a, \tau_{a}}-\mu_{a} \geq \frac{\Delta_{a}}{2}\right] \\
& \leq \exp \left(-\frac{\tau_{a} \Delta_{a}^{2}}{8}\right)
\end{aligned}
$$

(Using concentration for sub-Gaussian r.v's)
Putting everything together,

$$
\begin{gathered}
\Longrightarrow \operatorname{Pr}\left[G_{a}^{c}\right] \leq \delta T+\exp \left(-\frac{\tau_{a} \Delta_{a}^{2}}{8}\right) \\
\Longrightarrow \mathbb{E}\left[N_{a}(T)\right] \leq \tau_{a}+T\left[\delta T+\exp \left(-\frac{\tau_{a} \Delta_{a}^{2}}{8}\right)\right]
\end{gathered}
$$

UCB - Regret Analysis

Recall that $\mathbb{E}\left[N_{a}(T)\right] \leq \tau_{a}+T\left[\delta T+\exp \left(-\frac{\tau_{a} \Delta_{a}^{2}}{8}\right)\right]$.

$$
\begin{array}{rlr}
\mathbb{E}\left[N_{a}(T)\right] & \leq \frac{8 \log (1 / \delta)}{\Delta_{a}^{2}}+T[\delta T+\delta] \quad\left(\text { Setting } \tau_{a}=\frac{8 \log (1 / \delta)}{\Delta_{a}^{2}}\right) \\
& \leq \frac{8 \log (1 / \delta)}{\Delta_{a}^{2}}+2 \delta T^{2} \\
& =\frac{16 \log (T)}{\Delta_{a}^{2}}+2 \\
\Longrightarrow \operatorname{Regret}(U C B, T) & \leq \sum_{a} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]=2 \sum_{a=1}^{K} \Delta_{a}+\sum_{a=2}^{K} \frac{16 \log (T)}{\Delta_{a}} \quad \square
\end{array}
$$

UCB - Regret Analysis

Claim: For $\Delta \leq 1$, UCB with $\delta=\frac{1}{T^{2}}$ achieves the following worst-case regret,

$$
\operatorname{Regret}(\mathrm{UCB}, T) \leq 2 K+8 \sqrt{K T \log (T)}
$$

Proof: Define $C>0$ to be a constant to be tuned later. From the regret decomposition result,

$$
\begin{aligned}
\operatorname{Regret}(\mathrm{UCB}, T)= & \sum_{a=1}^{K} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]=\sum_{a \mid \Delta_{a}<C} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]+\sum_{a \mid \Delta_{a} \geq C} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right] \\
& \left.\leq C T+\sum_{a \mid \Delta_{a} \geq C} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right] \quad \begin{array}{l}
\text { (Since } \left.\sum_{a=1}^{K} N_{a}(T)=T\right) \\
\\
\leq C T+\sum_{a \mid \Delta_{a} \geq C}\left[\frac{16 \log (T)}{\Delta_{a}}+2 \Delta_{a}\right] \quad \text { (From the previous slide) } \\
\\
\left.\leq C T+\left[\frac{16 K \log (T)}{C}+\sum_{a \mid \Delta_{a} \geq C} 2 \Delta_{a}\right] \quad \text { (Setting } C=\sqrt{\frac{16 K \log (T)}{T}}\right) \\
\Longrightarrow \operatorname{Regret}(U C B, T)
\end{array}\right)=8 \sqrt{K T \log (T)}+2 K \Delta_{a} \leq 2 K+8 \sqrt{K T \log (T)}
\end{aligned}
$$

UCB vs ETC

- Similar to best-tuned ETC, UCB results in an $\tilde{O}(\sqrt{K T})$ problem-independent regret.
- Unlike best-tuned ETC, UCB does not need to know the gaps Δ to set algorithm parameters, but does require knowledge of the horizon T.

Figure 1: For $K=2, T=1000$, Gaussian rewards, comparing UCB and $\operatorname{ETC}(m)$ as a function of the gap Δ.

Improvements to UCB

- Problem: UCB requires knowledge of T and hence, the number of rounds needs to be fixed.
- Sol: Define UCB as $\hat{\mu}_{a}(t)+\sqrt{\frac{2 \log (f(t))}{N_{a}(t)}}$ where $f(t):=1+t \log ^{2}(t)$. No dependence on T, but results in the same $O(\sqrt{K T \log (T)})$ worst-case regret. (see [LS20, Chapter 8])
- Lower-Bound: For a fixed T and for every bandit algorithm, there exists a stochastic bandit problem with rewards in $[0,1]$ such that $\operatorname{Regret}(T)=\Omega(\sqrt{K T})$. (see [LS20, Chapter 15]).
- Problem: UCB is sub-optimal by a $\sqrt{\log (T)}$ factor compared to the lower-bound. Is it possible to develop an algorithm that does not incur this log factor?
- Sol: [Lat18, MG17] propose modifications of UCB that achieve $O(\sqrt{K T})$ regret.

Stochastic Linear Bandits

Stochastic Linear Bandits

- MAB treat each arm (e.g. drug choice) independently. But the arms (and their rewards) can be dependent. E.g., drugs with similar chemical composition can have similar side-effects.
- Stochastic Linear Bandits can model linear dependence between different arms. For this, we require feature vectors $X_{a} \in \mathbb{R}^{d}$ for each arm $a \in[K]$.
- Reward Model: For an unknown vector $\theta^{*} \in \mathbb{R}^{d}$, the mean reward for arm a is given as: $\mu_{a}=\left\langle X_{a}, \theta^{*}\right\rangle$. Hence, arms with similar feature vectors will have similar mean rewards.
- Similar to the MAB setting, on pulling arm a_{t} at round t, we observe the reward $R_{t}=\mu_{\mathrm{a}_{t}}+\eta_{t}=\left\langle X_{t}, \theta^{*}\right\rangle+\eta_{t}$. We will assume that η_{t} is conditionally 1 sub-Gaussian, i.e. if $\mathcal{H}_{t-1}:=\left\{X_{1}, R_{1}, \ldots, X_{t}\right\}$ is the history of interactions until round t, then for all $\lambda \in \mathbb{R}$, $\mathbb{E}\left[\exp \left(\lambda \eta_{t}\right) \mid \mathcal{H}_{t-1}\right] \leq \exp \left(\lambda^{2} / 2\right)$.
- $\operatorname{Regret}(T):=\sum_{t=1}^{T}\left[\max _{a \in[K]}\left\langle X_{a}, \theta^{*}\right\rangle-\mathbb{E}\left[R_{t}\right]\right]=T \max _{a \in[K]}\left\langle X_{a}, \theta^{*}\right\rangle-\sum_{t=1}^{T} \mathbb{E}\left[R_{t}\right]$.
- In the special case, when all the arms are independent, i.e. $d=K$ and $\forall a \in[K], X_{a}=e_{a}$ where $\forall i \in[d], i \neq a, e_{a}[i]=0$ and $e_{a}[a]=1$. Hence, $\mu_{a}=\theta_{a}^{*}$ and the linear bandit setup strictly generalizes MAB.

Stochastic Linear Bandits - Estimating $\hat{\mu}_{a}(t)$

At round t, we have collected the following data: $\left\{X_{s}, R_{s}\right\}_{s=1}^{t}$. Q: How do we estimate $\hat{\mu}_{a}(t)$? By solving regularized ridge regression, i.e. for a regularization parameter $\lambda \geq 0$,

$$
\hat{\theta}_{t}:=\underset{\theta}{\arg \min }\left\{\frac{1}{2} \sum_{s=1}^{t}\left[\left\langle X_{s}, \theta\right\rangle-R_{s}\right]^{2}+\frac{\lambda}{2}\|\theta\|^{2}\right\}
$$

Setting the derivative to zero to solve the above minimization problem,

$$
\begin{aligned}
\sum_{s=1}^{t} & {\left[X_{s}\left[\left\langle X_{s}, \hat{\theta}_{t}\right\rangle-R_{s}\right]\right]+\lambda \hat{\theta}_{t}=0 } \\
& \Longrightarrow \underbrace{\left[\sum_{s=1}^{t} X_{s} X_{s}^{T}+\lambda I_{d}\right]}_{:=V_{t} \in \mathbb{R}^{d \times d}} \hat{\theta}_{t}=\underbrace{\sum_{s=1}^{t} X_{s} R_{s}}_{:=b_{t} \in \mathbb{R}^{d \times 1}} \Longrightarrow V_{t} \hat{\theta}_{t}=b_{t} \Longrightarrow \hat{\theta}_{t}=V_{t}^{-1} b_{t}
\end{aligned}
$$

Hence, the empirical mean for each arm after t rounds: $\hat{\mu}_{a}=\left\langle X_{a}, \hat{\theta}_{t}\right\rangle=X_{a}^{\top} V_{t}^{-1} b_{t}$

Linear UCB

Algorithm Linear Upper Confidence Bound

1: Input: $\left\{\beta_{t}\right\}_{t=2}^{T+1}, V_{0}=\lambda I_{d} \in \mathbb{R}^{d \times d}, b=0 \in \mathbb{R}^{d}$
2: For each arm $a \in[K]$, initialize $U_{a}(1, \delta):=\infty$.
for $t=1 \rightarrow T$ do
4: \quad Select $\operatorname{arm} a_{t}=\arg \max _{a \in[K]} U_{a}(t, \delta) \quad$ (Choose the lower-indexed arm in case of a tie)
5: Observe reward R_{t} and update:

$$
\begin{aligned}
V_{t} & =V_{t-1}+X_{t} X_{t}^{\top} ; \quad b_{t}=b_{t-1}+R_{t} X_{t} & & ; \quad \hat{\theta_{t}}=V_{t}^{-1} b_{t} \\
U_{a}(t+1) & =\left\langle X_{a}, \hat{\theta}_{t}\right\rangle+\sqrt{\beta_{t+1}}\left\|X_{a}\right\|_{V_{t}^{-1}} & & \left(\text { where }\|x\|_{A}:=\sqrt{x^{\top} A x}\right)
\end{aligned}
$$

6: end for
In the special case, when all the arms are independent, Linear UCB with $\beta_{t}=\beta=2 \log (1 / \delta)$ is equivalent to UCB, and hence, Linear UCB strictly generalizes UCB.

Prove this in Assignment 1!

Linear UCB - Regret Analysis

Claim: $U_{a}(t+1):=\left\langle X_{a}, \hat{\theta}_{t}\right\rangle+\sqrt{\beta_{t+1}}\left\|X_{a}\right\|_{V_{t}^{-1}}=\max _{\theta \in \mathcal{C}_{t+1}}\left\langle\theta, X_{a}\right\rangle$ where $\mathcal{C}_{t+1}=\left\{\theta \mid\left\|\theta-\hat{\theta}_{t}\right\|_{V_{t}}^{2} \leq \beta_{t+1}\right\}$.
\mathcal{C}_{t+1} is an ellipsoid centered at $\hat{\theta}_{t}$ with the principle axes being the eigenvectors of V_{t} and the corresponding lengths being the reciprocal of the eigenvalues. As t increases, the eigenvalues of matrix V_{t} increases and the volume of the ellipsoid decreases.

Prove this in Assignment 1! For the subsequent proof, we will use this equivalence.
Claim: Assuming (i) $\left\|\theta^{*}\right\| \leq 1$, (ii) $\left\|X_{a}\right\| \leq 1$ for all a and (iii) $R_{t} \in[0,1]$, UCB with $\sqrt{\beta_{t}}=\sqrt{d \log \left(\frac{\lambda d+t}{\lambda d}\right)+2 \log (1 / \delta)}+\sqrt{\lambda}$ achieves the following worst-case bound on the regret,

$$
\operatorname{Regret}(\operatorname{LinUCB}, T) \leq O(d \sqrt{T} \log (T))
$$

Linear UCB - Regret Analysis

Proof: Define a "good" event $G:=\left\{\forall t \in[T] \mid \theta^{*} \in \mathcal{C}_{t}:=\left\{\theta \mid\left\|\theta-\hat{\theta}_{t-1}\right\|_{V_{t-1}}^{2} \leq \beta_{t}\right\}\right.$, and denote the instantaneous expected regret at round t as $r_{t}=\max _{a}\left\langle X_{a}, \theta^{*}\right\rangle-\left\langle X_{t}, \theta^{*}\right\rangle$. Using the law of total expectation,

$$
\begin{aligned}
\operatorname{Regret}(\operatorname{LinUCB}, T)= & \mathbb{E}[\operatorname{Regret}(\operatorname{LinUCB}, T) \mid G] \operatorname{Pr}[G]+\mathbb{E}\left[\operatorname{Regret}(T) \mid G^{c}\right] \operatorname{Pr}\left[G^{c}\right] \\
\leq & \mathbb{E}[\operatorname{Regret}(\operatorname{LinUCB}, T) \mid G]+T \operatorname{Pr}\left[G^{c}\right] \\
& (\operatorname{Regret}(\operatorname{Lin} U C B, T) \leq T \text { and } \operatorname{Pr}[G] \leq 1) \\
= & \sum_{t=1}^{T} \mathbb{E}\left[r_{t} \mid G\right]+T \operatorname{Pr}\left[G^{c}\right] \leq \sqrt{T \sum_{t=1}^{T}\left[\mathbb{E}\left[r_{t} \mid G\right]\right]^{2}}+T \operatorname{Pr}\left[G^{c}\right]
\end{aligned}
$$

(Cauchy Schwarz inequality: $\langle x, y\rangle \leq\|x\|\|y\|$ with $x, y \in \mathbb{R}^{T}$ and $x[t]=1, y[t]=r_{t}$)

Linear UCB - Regret Analysis

Recall that $\operatorname{Regret}(\operatorname{LinUCB}, T) \leq \sqrt{T \sum_{t=1}^{T}\left[\mathbb{E}\left[r_{t} \mid G\right]\right]^{2}}+T \operatorname{Pr}\left[G^{c}\right]$. Let us first bound $\mathbb{E}\left[r_{t} \mid G\right]$. If event G happens, then $\theta^{*} \in \mathcal{C}_{t}$. Hence, for all $a \in[K]$,

$$
\left\langle\theta^{*}, X_{a}\right\rangle \leq \max _{\theta \in \mathcal{C}_{t}}\left\langle\theta, X_{a}\right\rangle=U_{a}(t) \leq U_{a_{t}}(t)
$$

(Using the equivalence on Slide 15 and the algorithm)

$$
\begin{aligned}
\Longrightarrow \max _{a}\left\langle\theta^{*}, X_{a}\right\rangle & \leq U_{a_{t}}(t)=\max _{\theta \in \mathcal{C}_{t}}\left\langle\theta, X_{t}\right\rangle=\left\langle\tilde{\theta}_{t}, X_{t}\right\rangle \quad\left(\tilde{\theta}_{t}:=\arg \max _{\theta \in \mathcal{C}_{t}}\left\langle\theta, X_{t}\right\rangle\right) \\
\Longrightarrow \mathbb{E}\left[r_{t} \mid G\right] & =\mathbb{E}\left[\max _{a}\left\langle X_{a}, \theta^{*}\right\rangle-\left\langle X_{t}, \theta^{*}\right\rangle \mid G\right] \leq \mathbb{E}\left[\left\langle\tilde{\theta}_{t}-\theta^{*}, X_{t}\right\rangle \mid G\right] \\
& \leq \mathbb{E}\left[\left\|\tilde{\theta}_{t}-\theta^{*}\right\|_{V_{t-1}}\left\|X_{t}\right\|_{V_{t-1}^{-1}} \mid G\right]
\end{aligned}
$$

(Cauchy Schwarz inequality with $x, y \in \mathbb{R}^{d}$ and $x=V_{t-1}^{1 / 2}\left(\tilde{\theta}_{t}-\theta^{*}\right), y=V_{t-1}^{-1 / 2} X_{t}$)

$$
\leq \mathbb{E}\left[\left[\left\|\tilde{\theta}_{t}-\hat{\theta}_{t-1}\right\|_{V_{t-1}}+\left\|\theta^{*}-\hat{\theta}_{t-1}\right\|_{V_{t-1}}\right]\left\|X_{t}\right\|_{V_{t-1}^{-1}} \mid G\right]
$$

(Δ inequality)

$$
\Longrightarrow \mathbb{E}\left[r_{t} \mid G\right] \leq 2 \sqrt{\beta_{t}} \mathbb{E}\left[\left\|X_{t}\right\|_{v_{t-1}^{-1}} \mid G\right]
$$

Linear UCB - Regret Analysis

Putting everything together,
$\operatorname{Regret}(\operatorname{LinUCB}, T) \leq \sqrt{T \sum_{t=1}^{T}\left[\mathbb{E}\left[r_{t} \mid G\right]\right]^{2}}+T \operatorname{Pr}\left[G^{c}\right] \leq 2 \sqrt{T \sum_{t=1}^{T} \beta_{t} \mathbb{E}\left[\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}\right]}+T \operatorname{Pr}\left[G^{c}\right]$

$$
\leq 2 \sqrt{T \beta_{T} \mathbb{E}\left[\sum_{t=1}^{T}\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2} \mid G\right]}+T \operatorname{Pr}\left[G^{c}\right]
$$

(Since $\beta_{t} \leq \beta_{T}$ for all $t \in[T]$)
We will prove the following results: (i) $\sum_{t=1}^{T}\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2} \leq 2 d \log \left(\frac{\lambda d+T}{\lambda d}\right)$ deterministically and
(ii) $\sqrt{\beta_{t}}=\sqrt{d \log \left(\frac{\lambda d+t}{\lambda d}\right)+2 \log (T)}+\sqrt{\lambda}, \operatorname{Pr}\left[G^{c}\right] \leq \frac{1}{T}$.

Given these results,

$$
\operatorname{Regret}(\operatorname{LinUCB}, T) \leq 2 \sqrt{2 d T \beta_{T} \log \left(\frac{\lambda d+T}{\lambda d}\right)}+1=O(d \sqrt{T} \log (T))
$$

Linear UCB - Regret Analysis

Claim: If $\left\|X_{a}\right\| \leq 1$ for all $a, \sum_{t=1}^{T}\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2} \leq 2 d \log \left(\frac{\lambda d+T}{\lambda d}\right)$.
Proof:

$$
\begin{aligned}
& V_{t}= V_{t-1}+X_{t} X_{t}^{\top}=V_{t-1}^{1 / 2}\left[I_{d}+V_{t-1}^{-1 / 2} X_{t} X_{t}^{\top} V_{t-1}^{-1 / 2}\right] V_{t-1}^{1 / 2} \\
& \Longrightarrow \operatorname{det}\left[V_{t}\right]= \operatorname{det}\left[V_{t-1}^{1 / 2}\right] \operatorname{det}\left[I_{d}+V_{t-1}^{-1 / 2} X_{t} X_{t}^{\top} V_{t-1}^{-1 / 2}\right] \operatorname{det}\left[V_{t-1}^{1 / 2}\right] \\
& \quad(\operatorname{det}[X Y]=\operatorname{det}[X] \operatorname{det}[Y]) \\
&= \operatorname{det}\left[V_{t-1}\right] \operatorname{det}\left[I_{d}+V_{t-1}^{-1 / 2} X_{t}\left[V_{t-1}^{-1 / 2} X_{t}\right]^{\top}\right] \quad\left(\operatorname{det}\left[X^{1 / 2}\right]=\sqrt{\operatorname{det}[X]}\right) \\
&= \operatorname{det}\left[V_{t-1}\right]\left(1+\left\|V_{t-1}^{-1 / 2} X_{t}\right\|^{2}\right)=\operatorname{det}\left[V_{t-1}\right]\left(1+\left\|X_{t}\right\|_{v_{t-1}^{-1}}^{2}\right) \\
&\text { (Matrix Determinant Lemma: } \left.\operatorname{det}\left[I_{d}+x x^{\top}\right]=1+x^{\top} x=1+\|x\|^{2}\right)
\end{aligned}
$$

$$
\Longrightarrow \ln \left(1+\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}\right)=\ln \left(\frac{\operatorname{det}\left[V_{t}\right]}{\operatorname{det}\left[V_{t-1}\right]}\right)
$$

Linear UCB - Regret Analysis

Recall that $\ln \left(1+\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}\right)=\ln \left(\frac{\operatorname{det}\left[V_{t}\right]}{\operatorname{det}\left[V_{t-1}\right]}\right)$.
Hence, $\sum_{t=1}^{T} \ln \left(1+\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}\right)=\ln \left(\frac{\operatorname{det}\left[V_{T}\right]}{\operatorname{det}\left[V_{0}\right]}\right)$. For any $x \geq 0, x \leq 2 \ln (1+x)$. Hence, $\sum_{t=1}^{T}\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2} \leq 2 \sum_{t=1}^{T} \ln \left(1+\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}\right)$, implying,

$$
\begin{aligned}
\sum_{t=1}^{T}\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2} & \leq 2 \sum_{t=1}^{T} \ln \left(1+\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}\right)=2 \ln \left(\frac{\operatorname{det}\left[V_{T}\right]}{\operatorname{det}\left[V_{0}\right]}\right) \\
\operatorname{det}\left[V_{T}\right] & \leq\left(\frac{\operatorname{Tr}\left[V_{T}\right]}{d}\right)^{d}\left(\operatorname{det}[A]=\prod \lambda_{i}=\left(\left(\prod \lambda_{i}\right)^{1 / d}\right)^{d} \leq\left(\frac{\sum \lambda_{i}}{d}\right)^{d}=\left(\frac{\operatorname{Tr}[A]}{d}\right)^{d}\right) \\
& =\left(\frac{\operatorname{Tr}\left[V_{0}+\sum_{t=1}^{T} X_{t} X_{t}^{T}\right]}{d}\right)^{d} \leq\left(\frac{\operatorname{Tr}\left[V_{0}\right]+T}{d}\right)^{d}=\left(\frac{d \lambda+T}{d}\right)^{d}
\end{aligned}
$$

(Since $\left\|X_{t}\right\| \leq 1$)

$$
\Longrightarrow \sum_{t=1}^{T}\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2} \leq 2 \ln \left(\left(\frac{(d \lambda+T) / d}{\left(\operatorname{det}\left[V_{0}\right]\right)^{1 / d}}\right)^{d}\right)=2 d \log \left(\frac{\lambda d+T}{\lambda d}\right)
$$

References i

R Tor Lattimore, Refining the confidence level for optimistic bandit strategies, The Journal of Machine Learning Research 19 (2018), no. 1, 765-796.
围 Tor Lattimore and Csaba Szepesvári, Bandit algorithms, Cambridge University Press, 2020.
Pierre Ménard and Aurélien Garivier, A minimax and asymptotically optimal algorithm for stochastic bandits, International Conference on Algorithmic Learning Theory, PMLR, 2017, pp. 223-237.

