
CMPT 419/983: Theoretical Foundations of
Reinforcement Learning

Lecture 12

Sharan Vaswani

November 24, 2023

Trust Region Policy Optimization

Both softmax PG and NPG need to compute the policy gradient for each update to the
policy. In scenarios where computing the (approximate) PG is computationally expensive
(e.g. involves interaction with a real-world environment or an expensive simulator), these
methods can be inefficient.

PG methods used in practice use the policy gradient to iteratively construct surrogate
functions, and update the policy parameters in order to maximize these surrogates.

While forming the surrogate function requires computing the policy gradient, maximizing it
and updating the policy parameters does not. Hence, these PG methods can do multiple
parameter updates and better re-use the data acquired from the environment.

Trust Region Policy Optimization (TRPO) is one of the most common PG methods that
iteratively constructs such a surrogate function.

1

Trust Region Policy Optimization

Given a set of feasible policies Πθ (e.g. those that can be expressed using a model parameterized
by θ), TRPO maximizes the following surrogate function (β, δ are parameters) at iteration t:

πt+1 = argmax
π∈Πθ

ht(π) :=

[
vπt (ρ) +

Es∼dπtEa∼π(·|s)a
πt (s, a)

1 − γ
− β max

s
KL(πt(·|s)||π(·|s))

]
(v1)

πt+1 = argmax
π∈Πθ

ht(π) :=

[
vπt (ρ) +

Es∼dπtEa∼π(·|s)a
πt (s, a)

1 − γ

]
s.t. Es∼dπt KL(πt(·|s)||π(·|s)) ≤ δ (v2)

The set Πθ depends on the policy parameterization, and solving maxπ∈Πθ
ht(π) by an

iterative method such as gradient ascent results in multiple policy updates.
Theoretical guarantees are proved for (v1), whereas (v2) is used in practice (using (v1) in
practice results in overly conservative updates.)
β in (v1) will be determined theoretically, whereas δ in (v2) needs to be tuned empirically.
For the tabular parameterization, using a linear approximation of Es∼dπtEa∼π(·|s)a

πt (s, a)

and a quadratic approximation of KL(πt(·|s)||π(·|s)) leads to a closed-form solution and the
resulting update is the same as NPG. (Prove in Assignment 4!).

2

Trust Region Policy Optimization

Given the exact advantage, (v1) has monotonic policy improvement guarantees, i.e.
vπt+1(ρ) ≥ vπt (ρ) for all t. Since the function is upper-bounded from above by 1

1−γ , (v1)
results in convergence to a local maximum.

Proving monotonic policy improvement relies on the fact that:
(i) ht(π) is a minorization of vπ(ρ), meaning that, for all π, vπ(ρ) ≥ ht(π),
(ii) the inequality is tight at πt , i.e. ht(πt) = vπt (ρ).
(iii) Since πt+1 is the maximizer of ht(π), ht(πt+1) ≥ ht(πt).
Putting these results together,

vπt+1(ρ)
(i)

≥ ht(πt+1)
(iii)

≥ ht(πt)
(ii)
= vπt (ρ)

In order to show monotonic policy improvement for (v1), we now show that vπ(ρ) ≥ h(π).

3

Trust Region Policy Optimization

Claim: For any policies π and π̃, β = 4γ
(1−γ)3 ,

vπ(ρ) ≥ h(π) :=

[
v π̃(ρ) +

Es∼d π̃Ea∼π(·|s)a
π̃(s, a)

1 − γ
− β max

s
KL(π̃(·|s)||π(·|s))

]
.

For iteration t of TRPO, π̃ = πt and hence h(π) = ht(π).

Proof : The proof relies on the following lemma that bounds the difference in the values of
arbitrary policies π, π̃: vπ(ρ)− v π̃(ρ) = 1

1−γ Es∼dπEa∼π(·|s)[a
π̃(s, a)] (Prove in Assignment 4!).

vπ(ρ)− v π̃(ρ) =
1

1 − γ
Es∼dπEa∼π(·|s)a

π̃(s, a)

=
1

1 − γ

[
Es∼d π̃Ea∼π(·|s)a

π̃(s, a) + Es∼dπEa∼π(·|s)a
π̃(s, a)− Es∼d π̃Ea∼π(·|s)a

π̃(s, a)
]

(Add/Subtract Es∼d π̃Ea∼π(·|s)a
π̃(s, a))

≥ 1
1 − γ

[
Es∼d π̃Ea∼π(·|s)a

π̃(s, a)− |Es∼dπEa∼π(·|s)a
π̃(s, a)− Es∼d π̃Ea∼π(·|s)a

π̃(s, a)|
]

(Since x ≥ −|x |) 4

Trust Region Policy Optimization

vπ(ρ)− v π̃(ρ) ≥ 1
1−γ

[
Es∼dπ̃Ea∼π(·|s)a

π̃(s, a)− |Es∼dπEa∼π(·|s)a
π̃(s, a)− Es∼dπ̃Ea∼π(·|s)a

π̃(s, a)|
]
.

vπ(ρ)− v π̃(ρ) ≥
Es∼d π̃Ea∼π(·|s)a

π̃(s, a)

1 − γ
−

|maxs
{
Ea∼π(·|s)a

π̃(s, a)
}
|
∥∥dπ − d π̃

∥∥
1

1 − γ

(By Holder’s inequality, |Ex∼P [f (x)]− Ex∼Q [f (x)]| ≤ |maxx f (x)| ∥P − Q∥1)

=
Es∼d π̃Ea∼π(·|s)a

π̃(s, a)

1 − γ
−

|maxs
{
Ea∼π(·|s)a

π̃(s, a)− Ea∼π̃(·|s)a
π̃(s, a)

}
|
∥∥dπ − d π̃

∥∥
1

1 − γ

(Since Ea∼π̃(·|s)a
π̃(s, a) = 0)

≥
Es∼d π̃Ea∼π(·|s)a

π̃(s, a)

1 − γ
−

∥∥dπ − d π̃
∥∥

1 maxs,a |aπ̃(s, a)| maxs ∥π(·|s)− π̃(·|s)∥1

(1 − γ)

(By Holder’s inequality, |Ex∼P [f (x)]− Ex∼Q [f (x)]| ≤ |maxx f (x)| ∥P − Q∥1)

≥
Es∼d π̃Ea∼π(·|s)a

π̃(s, a)

1 − γ
−

2
∥∥dπ − d π̃

∥∥
1 maxs ∥π(·|s)− π̃(·|s)∥1

(1 − γ)2
(*) (aπ(s, a) ≤ 2

1−γ)

Next, we will express
∥∥dπ − d π̃

∥∥
1 in terms of ∥π(·|s)− π̃(·|s)∥1, and combine it with (*).

5

Trust Region Policy Optimization

Prπ(Sτ = s ′)− Prπ
′
(Sτ = s ′) =

∑
s

Prπ(Sτ−1 = s)Pπ(s, s
′)−

∑
s

Prπ̃(Sτ−1 = s)Pπ̃(s, s
′)

=
∑
s,a

[
P(s ′|s, a)

[
Prπ(Sτ−1 = s)π(a|s)− Prπ̃(Sτ−1 = s) π̃(a|s)

]]
=

∑
s,a

[
P(s ′|s, a)

[
Prπ(Sτ−1 = s) (π(a|s)− π̃(a|s)) + π̃(a|s)

(
Prπ(Sτ−1 = s)− Prπ̃(Sτ−1 = s)

)]]
Taking absolute values, using the triangle inequality and summing over s ′,

=⇒
∑
s′

|Prπ(Sτ = s ′)− Prπ
′
(Sτ = s ′)|

≤
∑
s′

∑
s,a

P(s ′|s, a)|Prπ(Sτ−1 = s) (π(a|s)− π̃(a|s)) |︸ ︷︷ ︸
(i)

+
∑
s′

∑
s,a

P(s ′|s, a)π̃(a|s) |Prπ(Sτ−1 = s)− Prπ̃(Sτ−1 = s)|︸ ︷︷ ︸
(ii) 6

Trust Region Policy Optimization

(i) =
∑
s,a

|Prπ(Sτ−1 = s) (π(a|s)− π̃(a|s)) |
∑
s′

P(s ′|s, a) =
∑
s,a

|Prπ(Sτ−1 = s) (π(a|s)− π̃(a|s)) |

=
∑
s

Prπ(Sτ−1 = s)
∑
a

| (π(a|s)− π̃(a|s)) | =
∑
s

Prπ(Sτ−1 = s) ∥π(·|s)− π̃(·|s)∥1

≤ max
s

∥π(·|s)− π̃(·|s)∥1

(ii) =
∑
s

|Prπ(Sτ−1 = s)− Prπ̃(Sτ−1 = s)|
∑
a

π̃(a|s)
∑
s′

P(s ′|s, a)

=
∑
s

|Prπ(Sτ−1 = s)− Prπ̃(Sτ−1 = s)|

Hence,
∑

s′ |Prπ(Sτ = s ′)− Prπ
′
(Sτ = s ′)| ≤ maxs ∥π(·|s)− π̃(·|s)∥1

+
∑

s |Prπ(Sτ−1 = s)− Prπ̃(Sτ−1 = s)|. By recursing over τ , we get that,∑
s′

|Prπ(Sτ = s ′)− Prπ
′
(Sτ = s ′)| ≤ τ max

s
{∥π(·|s)− π̃(·|s)∥1}

7

Trust Region Policy Optimization

Recall that
∑

s′ |Prπ(Sτ = s ′)− Prπ
′
(Sτ = s ′)| ≤ τ maxs

{
∥π(·|s)− π̃(·|s)∥1

}
.

[dπ − d π̃](s ′)

= (1 − γ)
∑
s0∈S

ρ(s0)
∞∑
τ=0

γτ Prπ[Sτ = s ′|S0 = s0]− (1 − γ)
∑
s0∈S

ρ(s0)
∞∑
τ=0

γt Prπ̃[Sτ = s ′|S0 = s0]

∥∥dπ − d π̃
∥∥

1 =
∑
s′

∣∣∣∣∣(1 − γ)
∑
s0∈S

ρ(s0)
∞∑
τ=0

γτ
[
Prπ[Sτ = s ′|S0 = s0]− Prπ̃[Sτ = s ′|S0 = s0]

]∣∣∣∣∣
≤ (1 − γ)

∑
s0∈S

ρ(s0)
∞∑
τ=0

γτ
∑
s′

|Prπ(Sτ = s ′)− Prπ
′
(Sτ = s ′)| (Triangle inequality)

≤ (1 − γ)
∞∑
τ=0

γττ max
s

{∥π(·|s)− π̃(·|s)∥1} = (1 − γ) max
s

{∥π(·|s)− π̃(·|s)∥1}
∞∑
τ=0

γττ

≤
γ maxs {∥π(·|s)− π̃(·|s)∥1}

1 − γ
(Since

∑∞
τ=0 γ

ττ ≤ γ
(1−γ)2)

8

Trust Region Policy Optimization

Recalling inequality (*), vπ(ρ)− v π̃(ρ) ≥ Es∼dπ̃Ea∼π(·|s)a
π̃(s,a)

1−γ −
2∥dπ−d π̃∥1

maxs∥π(·|s)−π̃(·|s)∥1
(1−γ)2 .

We also know that
∥∥dπ − d π̃

∥∥
1 ≤ γ maxs{∥π(·|s)−π̃(·|s)∥1}

1−γ . Hence,

vπ(ρ)− v π̃(ρ) ≥
Es∼d π̃Ea∼π(·|s)a

π̃(s, a)

1 − γ
−

2γ [maxs ∥π(·|s)− π̃(·|s)∥1]
2]

(1 − γ)3

=⇒ vπ(ρ) ≥

[
v π̃(ρ) +

Es∼d π̃Ea∼π(·|s)a
π̃(s, a)

1 − γ
− 4 γ maxs KL(π̃(·|s)||π(·|s))

(1 − γ)3

]
(By Pinsker’s inequality, 2 KL(π̃(·|s)||π(·|s)) ≥ ∥π(·|s)− π̃(·|s)∥2

1)

=⇒ vπ(ρ) ≥ h(π)

• For the tabular policy parameterization, a variant of TRPO that uses KL(π(·|s)||πt(·|s))
(instead of KL(πt(·|s)||π(·|s))) can be shown to converge to the optimal policy at an O(1/

√
T)

rate [SEM20, Theorem 16]. However, the rate still involves the distribution mismatch ratio.

9

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an alternative to TRPO. It is computationally more
efficient, typically results in better performance, and is hence widely used in practice.
PPO maximizes the following surrogate function (ϵ is a parameter) at iteration t:

πt+1 = argmax
π∈Πθ

{
Es∼dπt Ea∼πt(·|s)

[
aπt (s, a) min

{
π(a|s)
πt(a|s)

, clip
(

π(a|s)
πt(a|s)

, 1 − ϵ, 1 + ϵ

)}]}
where clip(x , a, b) = min{max{x , a}, b} projects x onto the [a, b] interval.
Compared to the TRPO surrogate: Es∼dπtEa∼πt(·|s)

π(a|s)
πt(a|s) a

πt (s, a), s.t

Es∼dπt KL(πt(·|s)||π(·|s)) ≤ δ which ensures that the importance sampling ratio π(a|s)
πt(a|s) does

not become too large by controlling KL(πt(·|s)||π(·|s)), PPO directly ensures that the
importance sampling ratio is bounded by clipping it.
There is no theoretical justification for the clipped PPO surrogate (even with tabular policy
parameterization). In fact, PPO can fail on simple problems [HMDH20].
Recent literature [EIS+20] suggests that code-level implementation details are responsible
for most of PPO’s gain over TRPO.

10

Exploration in Tabular MDPs

10

Exploration in Tabular MDPs

In Lectures 7-8, we have seen that Approximate Policy Iteration and Politex resolved the
exploration problem by using G experimental design.
In Lectures 10-11, we saw that Policy Gradient methods that do not handle exploration
explicitly can incur a dependence on the concentrability coefficient, especially when using
function approximation.
In Lectures 1-3, we saw systematic ways of handling exploration for bandit problems.
For the last topic, we will design similar explicit exploration schemes for tabular MDPs.

For today’s lecture, we will focus on a simplified case:

Rewards are deterministic and known, but the transition probabilities are not. It is
straightforward to extend to unknown rewards.
Finite-horizon episodic setting where the agent interacts with the environment in episodes,
and each episode has a finite length H. H = 1 recovers the bandit setting. Similar
techniques work for the infinite-horizon discounted setting, but the analysis more
complicated [HZG21].

11

Finite Horizon MDPs

The MDP is given as: M = (S,A, {Ph}H−1
h=0 , {rh}

H−1
h=0), where H is the finite horizon.

The transition probabilities and rewards both depend on the step h. In particular, Ph(s
′|s, a)

is the probability of transitioning into state s ′ when taking action a in state s at step h.
Similarly, rh(s, a) ∈ [0, 1] is the reward obtained when taking action a in state s at step h.
Value functions: For a fixed policy π and state s ∈ S,

vπ
h (s) := E

[
H−1∑
i=h

rh(si , ai)|sh = s

]
; qπh (s, a) = E

[
H−1∑
i=h

rh(si , ai)|sh = s, ah = a

]
,

where the expectation is over the randomness in the reward process induced by policy.
Bellman policy evaluation: For a fixed policy π, the Bellman equation can be written as:

qπh (s, a) := rh(s, a) +
∑
s′

Ph(s
′|s, a) vπ

h+1(s
′) = rh(s, a) + ⟨Ph(·|s, a), vπ

h+1⟩ .

We define qπH(s, a) = vπ
H (s) = 0 for all policies π and s, a.

12

Finite Horizon MDPs

Objective: Given a starting state s0, find a policy π∗ that maximizes the value, i.e.

π∗ = argmax vπ(s0) := vπ
0 (s0)

Bellman optimality: q∗ is the optimal action-value function iff for all s, a, h,

q∗h (s, a) = rh(s, a) + Es′∼Ph(·|s,a)

[
max
a′

q∗h+1(s
′, a′)

]
The optimal policy and value function is given as:

π∗
h(s) = argmax

a∈A
q∗h (s, a) ; v∗

h (s) = max
a∈A

q∗h (s, a) ; v∗(s0) := vπ∗

0 (s0)

Similar to the infinite-horizon discounted case, the optimal policy is deterministic and
Markov (given s, h, it does not depend on the history).
Unlike the infinite-horizon discounted case, the optimal action in state s depends on the
step h. Hence, the optimal policy is non-stationary [Chapter 4, PC’23].
For finite-horizon MDPs, the optimal policy can be found by dynamic programming (does
not require solving fixed point equations like in the discounted setting).

13

Exploration in Tabular MDPs

The agent episodically interacts with a finite-horizon MDP M = (S,A, {Ph}H−1
h=0 , {rh}

H−1
h=0)

where the transitions {Ph}H−1
h=0 are unknown.

In particular, in each episode t ∈ [T], the agent chooses a policy πt := {πt
h}

H−1
h=0 , generates

a trajectory τ t = {sth, ath}
H−1
h=0 and receives the cumulative reward

∑H−1
h=0 r(sth, a

t
h).

Objective: Minimize the cumulative regret defined as:
Regret(T) := E

[∑T−1
t=0

[
v∗(s0)−

∑H−1
h=0 r(sth, a

t
h)
]]

= E
[∑T−1

t=0 [v∗(s0)− vπt
0 (s0)]

]
,

where the expectation is with respect to the randomness in the MDP and the algorithm.
We will use a model-based approach which uses the collected data to build a model of the
environment (the MDP in this case). Specifically, in each episode t, we build the
approximate MDP: M̂ t = (S,A, {P̂ t

h}
H−1
h=0 , {r̂ th}

H−1
h=0) where

N t
h(s, a, s

′) :=
t−1∑
i=0

I
{
(s ih, a

i
h, s

i
h+1) = (s, a, s ′)

}
; N t

h(s, a) :=
t−1∑
i=0

I
{
(s ih, a

i
h) = (s, a)

}
= P̂ t

h(s
′|s, a) := N t

h(s, a, s
′)

N t
h(s, a)

; r̂ th(s, a) = rh(s, a) + bth(s, a) ; bth(s, a) = 2H

√
ln(SAHT/δ)

N t
h(s, a) 14

Exploration in Tabular MDPs

Algorithm UCB-VI
1: Input: MDP M, π0

2: for t = 1 → T − 1 do
3: Rollout policy πt−1 in MDP M and generate the trajectory τ t = {sth, ath}

H−1
h=0 .

4: Use the collected data to build M̂ t = (S,A, {P̂ t
h}

H−1
h=0 , {r̂ th}

H−1
h=0)

5: Run value iteration (dynamic programming) in M̂ t i.e. setting q̂tH(s, a) = 0 and v̂ t
H(s) = 0

for all s, a and recursing from h = (H − 1) → 0, calculate
q̂th(s, a) = min{r̂ th(s, a) +

∑
s′

P̂ t
h(s

′|s, a) max
a′∈A

q̂th+1(s
′, a′)⟩,H}

πt
h(s) = argmax

a∈A
q̂th(s, a) ; v̂ t

h(s) := v̂πt

h (s) = max
a∈A

q̂th(s, a)

6: end for

The bonus bth in the rewards r̂ th is similar to the UCB term for bandits and results in
optimism in the q functions, inducing sufficient exploration.
For the proof, we will use the fact that q̂th(s, a) = min{r̂ th(s, a) + ⟨P̂ t

h(·|s, a), v̂ t
h+1⟩,H}.

15

Exploration in Tabular MDPs

Claim: UCB-VI incurs Regret(T) = O
(
H2 S

√
AT

√
ln(SAH2 T 2)

)
.

Similar to the bandit setting in Lecture 2, the regret scales as O(
√
T).

If S = 1 and H = 1, UCB-VI is similar to UCB and incurs the same O(
√
AT) regret.

Proof : We will do the proof in 4 steps:

(i) Concentration: Define a good event E on which the estimated transitions P̂ t
h(·|s, a) are

“close” to the true transitions Ph(·|s, a) with high probability for all s, a, t, h.
(ii) Optimism: Conditioned on E , prove that for all episodes t, v̂ t

0(s0) ≥ v∗
0 (s0) for starting

state s0, i.e. the value function for policy πt in M̂ is larger than that of π∗ in M.
(iii) Regret decomposition: Conditioned on E , decompose the regret and prove that

Regret(T) = O
(∑T−1

t=0
∑H−1

h=0
1/
√

Nt
h(s

t
h,a

t
h)

)
.

(iv) Wrapping up: Wrap up the proof by bounding
∑T−1

t=0
∑H−1

h=0
1/
√

Nt
h(s

t
h,a

t
h) deterministically

and use the law of total expectation.

16

Exploration in Tabular MDPs – Concentration

Define the good event E = E1 ∩ E2, where

E1 := |⟨Ph(·|s, a)− P̂ t
h(·|s, a), f ⟩| ≤ 8H

√
S ln(SAHT/δ)/Nt

h(s,a) (∀s, a, h, t and f : S → [0,H])

E2 := |⟨Ph(·|s, a)− P̂ t
h(·|s, a), v∗

h+1⟩| ≤ 2H
√

ln(SAHT/δ)/Nt
h(s,a) (∀s, a, h, t)

We use two facts to bound Pr[E] (see [AJKS19, Lemmas 7.2, 7.3] for the corresponding proofs)

Fact 1: For δ ∈ (0, 1), for all t, h, s, a, Pr[E1] ≥ 1 − δ.
Fact 2: For δ ∈ (0, 1), for all t, h, s, a, Pr[E2] ≥ 1 − δ.
For both statements, since N t

h(s, a) is itself a random quantity, we cannot directly use the
Hoeffding bound. We need to define an appropriate martingale difference sequence followed
by the use of the Azuma-Hoeffding inequality.
Fact 1 is concerned with bounding the inner-product for any f , including those that are
random and depend on the collected samples. The proof involves a covering argument
followed by a union bound. This results in an additional S dependence.

By a union bound, Pr[E] ≥ 1 − 2δ.
17

Exploration in Tabular MDPs – Optimism

Claim: Conditioned on E , for all episodes t, v̂ t
0(s0) ≥ v∗

0 (s0) for starting state s0.

Proof : We will prove that ∀s, v̂ t
h(s) ≥ v∗

h (s) by backward induction on h from h = H to h = 0.

Base case: ∀s, t, v̂ t
H(s) = v∗

H(s) = 0, and hence, v̂ t
H(s) ≥ v∗

H(s).

Inductive case: Assuming that v̂ t
h+1(s) ≥ v∗

h+1(s), we want to prove that v̂ t
h(s) ≥ v∗

h (s).
Case (a): Recall that q̂th(s, a) = min{r̂ th(s, a) + ⟨P̂ t

h(·|s, a), v̂ t
h+1⟩,H}. If for any t, s, a,

q̂th(s, a) = H, then, q̂th(s, a) ≥ q∗h (s, a), v̂
t
h(s) = maxa∈A q̂th(s, a) ≥ maxa∈A q∗h (s, a) = v∗

h (s).
Case (b): If q̂th(s, a) = r̂ th(s, a) + ⟨P̂ t

h(·|s, a), v̂ t
h+1⟩ = r th(s, a) + bth(s, a) + ⟨P̂ t

h(·|s, a), v̂ t
h+1⟩,

q̂th(s, a)− q∗h (s, a) = bth(s, a) + ⟨P̂ t
h(·|s, a), v̂ t

h+1⟩ − ⟨Ph(·|s, a), v∗
h+1⟩

≥ bth(s, a) + ⟨P̂ t
h(·|s, a), v∗

h+1⟩ − ⟨Ph(·|s, a), v∗
h+1⟩ (Inductive hypothesis)

≥ bth(s, a)− 2H
√

ln(SAHT/δ)/Nt
h(s,a) (Since we are conditioning on E)

=⇒ q̂th(s, a) ≥ q∗h (s, a) (Since bth(s, a) = 2H
√

ln(SAHT/δ)/Nt
h(s,a))

Hence, v̂ t
h(s) = maxa∈A q̂th(s, a) ≥ maxa∈A q∗h (s, a) = v∗

h (s) =⇒ v̂ t
0(s0) ≥ v∗

0 (s0)

18

Exploration in Tabular MDPs – Regret Decomposition

Claim: Conditioned on E , Regret(T) ≤ 10H
√

S ln(SAHT/δ)
Nt

h(s,a)
E
∑T−1

t=0
∑H=1

h=0
1√

Nt
h(s

t
h,a

t
h)

.

Proof : Consider episode t. By using the optimism result from the previous slide,
v∗
0 (s0)− vπt

0 (s0) ≤ v̂ t
0(s0)− vπt

0 (s0) = v̂πt
0 (s0)− vπt (s0). Hence, we need to bound the

difference in the value functions of the same policy but on different MDPs.

Claim: For the same deterministic policy π on M = (S,A, {Ph}H−1
h=0 , {rh}

H−1
h=0) and

M̃ = (S,A, {P̃h}H−1
h=0 , {r̃h}

H−1
h=0), for starting state s0,

vπ,M
0 (s0)− vπ,M̃

0 (s0) = Esh+1∼P̃h(·|shah)
ah=πh(sh)

H−1∑
h=0

[
[rh(sh, ah)− r̃h(sh, ah)] + ⟨Ph(·|sh, ah)− P̃h(·|sh, ah), vπ,M

h+1 ⟩
]

Prove in Assignment 4! Using the above lemma with M = M̂, M̃ = M, π = πt and since
v∗
0 (s0) ≤ v̂πt (s0),

v∗
0 (s0)− vπt

0 (s0) ≤ E
H−1∑
h=0

[
bth(s

t
h, a

t
h) + |⟨Ph(·|(sth, ath)− P̂ t

h(·|(sth, ath), v̂ t
h+1⟩|

]
,

where the expectation is w.r.t the trajectory generated by policy πt . 19

Exploration in Tabular MDPs – Regret Decomposition

Recall that v∗
0 (s0)− vπt

0 (s0) ≤ E
∑H−1

h=0

[
bt
h(s

t
h, a

t
h) + |⟨Ph(·|(s th, ath)− P̂ t

h(·|(s th, ath), v̂ t
h+1⟩|

]
. Since we

are conditioning on E , |⟨Ph(·|(sth, ath)− P̂ t
h(·|(sth, ath), v̂ t

h+1⟩| ≤ 8H
√

S ln(SAHT/δ)
Nt

h(s,a)
. Hence,

v∗
0 (s0)− vπt

0 (s0) ≤ E
H−1∑
h=0

[
bth(s

t
h, a

t
h) + 8H

√
S ln(SAHT/δ)

N t
h(s

t
h, a

t
h)

]

≤ 10H
√
S ln(SAHT/δ)

[
E

H−1∑
h=0

1√
N t

h(s
t
h, a

t
h)

]
(Since bth(s, a) = 2H

√
ln(SAHT/δ)

Nt
h(s,a)

)

Summing from t = 0 to T − 1,

=⇒ Regret(T) =
T−1∑
t=0

[v∗
0 (s0)− vπt

0 (s0)] ≤ 10H
√

S ln(SAHT/δ)

[
E

T−1∑
t=0

H−1∑
h=0

1√
N t

h(s
t
h, a

t
h)

]

20

Exploration in Tabular MDPs – Wrapping up

Regret(T) ≤ 10H
√

S ln(SAHT/δ)
Nt
h
(st
h
,at

h
)

[
E
∑T−1

t=0
∑H−1

h=0
1√

Nt
h
(st
h
,at

h
)

]
Fact 3:

∑T−1
t=0

∑H−1
h=0

1√
Nt

h(s
t
h,a

t
h)

≤ 2H
√
SAT . (see [AJKS19, Lemma 7.5] for a proof)

Putting everything together and using the law of total expectation,

E[Regret(T)] = E[Regret(T)|E] Pr[E] + E[Regret(T)|Ec] Pr[Ec]

≤ E[Regret(T)|E] + T H Pr[Ec] ≤ 20H2 S
√
AT

√
ln(SAHT/δ) + 2δ T H

≤ 20H2 S
√
AT

√
ln(SAH2 T 2) + 2 = O

(
H2 S

√
AT

√
ln(SAH2 T 2)

)
(Setting δ = 1

TH)

By designing better bonuses, the regret for UCB-VI can be improved to Θ(H3/2
√
SAT).

UCB-VI uses a standard planning algorithm (VI) but on a model of the MDP. Similarly, we
can use policy optimization such as NPG with a model of the MDP [SERM20, CYJW20]
and handle exploration in a systematic manner.
Given a set of features Φ and under appropriate linearity assumptions about the transitions
and rewards, LSVI-UCB [JYWJ20] can attain an O(d3/2 H2

√
T) regret bound.

21

Wrapping up

21

What we covered

Handling the exploration-exploitation trade-off in (linear) bandit problems.

Markov Decision Processes and the Fundamental Theorem

Given a known MDP, value Iteration, policy Iteration, linear programming for planning

When the MDP is not known, Monte-Carlo estimation and Temporal difference learning to
estimate a policy’s value.

When the MDP is not known, approximate policy iteration and Politex for learning good
policies under linear function approximation.

(Natural) policy gradient methods and global convergence to optimal policies, TRPO/PPO

Systematically handling exploration in MDPs

22

What we could not cover

Sample complexity for computing the optimal policy with access to a generative model
(simulator) (see [AKY20] for a nice related work section and near-optimal bounds)

Actor-Critic Methods and their analysis (see [XWL20] for theoretical bounds)

Q-learning and its analysis (see [JAZBJ18] for theoretical bounds)

Other important topics in sequential decision-making

RL with constraints [GYD+22] and multiple objectives [HRB+22]

Batch/Offline RL [LKTF20]

Continual learning [WZSZ23]

Imitation learning [ZVZ+21]

23

References i

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun, Reinforcement learning: Theory
and algorithms, CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep 32 (2019).

Alekh Agarwal, Sham Kakade, and Lin F Yang, Model-based reinforcement learning with a
generative model is minimax optimal, Conference on Learning Theory, PMLR, 2020,
pp. 67–83.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang, Provably efficient exploration in policy
optimization, International Conference on Machine Learning, PMLR, 2020, pp. 1283–1294.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry, Implementation matters in deep policy gradients: A case
study on ppo and trpo, arXiv preprint arXiv:2005.12729 (2020).

24

References ii

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang,
and Alois Knoll, A review of safe reinforcement learning: Methods, theory and applications,
arXiv preprint arXiv:2205.10330 (2022).

Chloe Ching-Yun Hsu, Celestine Mendler-Dünner, and Moritz Hardt, Revisiting design
choices in proximal policy optimization, arXiv preprint arXiv:2009.10897 (2020).

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew
Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley,
Fredrik Heintz, et al., A practical guide to multi-objective reinforcement learning and
planning, Autonomous Agents and Multi-Agent Systems 36 (2022), no. 1, 26.

Jiafan He, Dongruo Zhou, and Quanquan Gu, Nearly minimax optimal reinforcement
learning for discounted mdps, Advances in Neural Information Processing Systems 34
(2021), 22288–22300.

25

References iii

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan, Is q-learning provably
efficient?, Advances in neural information processing systems 31 (2018).

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan, Provably efficient
reinforcement learning with linear function approximation, Conference on Learning Theory,
PMLR, 2020, pp. 2137–2143.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu, Offline reinforcement learning:
Tutorial, review, and perspectives on open problems, arXiv preprint arXiv:2005.01643 (2020).

Lior Shani, Yonathan Efroni, and Shie Mannor, Adaptive trust region policy optimization:
Global convergence and faster rates for regularized mdps, Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, 2020, pp. 5668–5675.

26

References iv

Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor, Optimistic policy
optimization with bandit feedback, International Conference on Machine Learning, PMLR,
2020, pp. 8604–8613.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu, A comprehensive survey of continual
learning: Theory, method and application, arXiv preprint arXiv:2302.00487 (2023).

Tengyu Xu, Zhe Wang, and Yingbin Liang, Improving sample complexity bounds for
(natural) actor-critic algorithms, Advances in Neural Information Processing Systems 33
(2020), 4358–4369.

Boyuan Zheng, Sunny Verma, Jianlong Zhou, Ivor Tsang, and Fang Chen, Imitation
learning: Progress, taxonomies and challenges, arXiv preprint arXiv:2106.12177 (2021).

27

