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Recap

Tabular softmax policy parameterization: There are SA parameters such that
πθ(·|s) = h(θ(s, ·)). In this case, [∇J(θ)]s,a =

∂vπθ (ρ)
∂θ(s,a) = dπθ (s)

1−γ πθ(a|s) aπθ (s, a), where
aπ(s, a) = qπ(s, a)− vπ(s) is the advantage function.

Softmax PG: For the bandit setting with deterministic rewards, softmax PG with the
tabular parameterization has the following update: θt+1 = θt + η πθt (a) [r(a)− ⟨πθt , r⟩].
With exact gradients, softmax PG with the tabular parameterization converges to the
optimal policy at an O(1/T ) rate for both bandits and general MDPs.

Natural policy gradient (NPG): It preconditions the policy gradient by the inverse Fisher
information matrix (F †

θ ) and results in faster convergence.

For the tabular softmax parameterization, the preconditioned gradient direction is:
[F †

θ ∇J(θ)]s,a =
aπθ (s,a)

1−γ , and the corresponding NPG update for (s, a) is given as:

θt+1(s, a) = θt(s, a) + η aπt (s,a)
1−γ .
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Natural Policy Gradient for Softmax Parametrization

Defining πt := πθt , the NPG update corresponding to the tabular softmax parameterization, for
each (s, a) ∈ S ×A is given by: θt+1(s, a) = θt(s, a) + η aπt (s,a)

1−γ . Exponentiating both sides,

exp(θt+1(s, a)) = exp(θt(s, a)) exp

(
η aπt (s, a)

1 − γ

)

πt+1(a|s) =
exp(θt+1(s, a))∑
a′ exp(θt+1(s, a′))

=
exp(θt(s, a)) exp

(
η aπt (s,a)

1−γ

)
∑

a′ exp(θt(s, a
′)) exp

(
η aπt (s,a′)

1−γ

)
=

exp(θt(s, a))∑
ã exp(θt(s, ã))

exp

(
η aπt (s, a)

1 − γ

)
1∑

a′
exp(θt(s,a′))∑
ã exp(θt(s,ã))

exp
(

η aπt (s,a′)
1−γ

)
=⇒ πt+1(a|s) =

πt(a|s) exp
(

η aπt (s,a)
1−γ

)
∑

a′ πt(a′|s) exp
(

η aπt (s,a′)
1−γ

) =
πt(a|s) exp

(
η qπt (s,a)

1−γ

)
∑

a′ πt(a′|s) exp
(

η qπt (s,a′)
1−γ

)
This is exactly the multiplicative weights from Lecture 9. Hence, for the softmax tabular policy
parameterization, NPG is equivalent to mirror ascent with a negative entropy mirror map.
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Convergence of Natural Policy Gradient for Softmax Parametrization

Similar to the proof for softmax PG, we will prove a non-uniform Lojasiewicz condition for NPG.
We will do the proof for the bandits setting, where J(θ) = ⟨πθ, r⟩ and the corresponding NPG
update can be written as: for action a, πt+1(a) =

πt(a) exp(η r(a))∑
a′ πt(a′) exp(η r(a′)) .

Claim: Define π′ s.t. π′(a) := π(a) exp(η r(a))∑
a′ π(a

′) exp(η r(a′)) . Assuming that the arms are numbered in
order of their rewards i.e. r(1) > r(2) > . . ., ∆(a) := r(1)− r(a) and
∆ := mina ̸=1 ∆(a) = r(1)− r(2), then, ⟨π′ − π, r⟩ ≥

[
1 − 1

π(a∗) (exp(η∆)−1)+1

]
⟨π∗ − π, r⟩.

The LHS is the improvement in one step and is similar to the gradient for softmax PG.
As the algorithm approaches a stationary point (such that π′ ≈ π), the LHS tends to zero.
The RHS also tends to zero, meaning that π converges to the optimal policy.
A similar Lojasiewicz property holds for general MDPs, and can be used to prove linear
convergence to the optimal policy [MDX+21, Theorem 12].
Importantly, for general MDPs, NPG can be proven to achieve a linear rate of convergence
matching policy iteration and without a dependence on the distribution mismatch
ratio [JPBR23, Theorem 1].
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Convergence of Natural Policy Gradient for Softmax Parametrization

Proof : (π′ − π)
⊤
r =

∑K
i=1 [π

′(i) r(i)− π(i) r(i)] =
∑K

i=1

[
π(i) eη r(i) r(i)∑K
j=1 π(j) eη r(j) − π(i) r(i)

]

=
1∑K

j=1 π(j) e
η r(j)

 K∑
i=1

π(i) eη r(i) r(i)−
K∑
i=1

π(i) r(i)
K∑
j=1

π(j) eη r(j)


︸ ︷︷ ︸

(i)

(i) =
K∑
i=1

π(i) eη r(i) r(i)−
K∑
i=1

[π(i)]2 r(i) eη r(i) −
K∑
i=1

π(i) r(i)
K∑

j=1,j ̸=i

π(j) eη r(j)

=
K∑
i=1

π(i)︸︷︷︸
ai

eηr(i)r(i)︸ ︷︷ ︸
bi

K∑
j=1,j ̸=i

π(j)︸︷︷︸
aj

−
K∑
i=1

π(i) r(i)
K∑

j=1,j ̸=i

π(j) eη r(j) (1 − π(i) =
∑

j ̸=i π(j))

=
K−1∑
i=1

π(i)
K∑

j=i+1

π(j) [eηr(i)r(i) + eηr(j)r(j)]−
K∑
i=1

π(i) r(i)
K∑

j=1,j ̸=i

π(j) eη r(j)

(For any ai , bi ,
∑K

i=1 aibi
∑K

j=1,j ̸=i aj =
∑K−1

i=1 ai
∑K

j=i+1 aj [bi + bj ])
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Convergence of Natural Policy Gradient for Softmax Parametrization

Recall that (i) =
∑K−1

i=1 π(i)
∑K

j=i+1 π(j) [e
ηr(i)r(i) + eηr(j)r(j)]−

∑K
i=1 π(i) r(i)

∑K
j=1,j ̸=i π(j) e

η r(j)

K∑
i=1

π(i) r(i)
K∑

j=1,j ̸=i

π(j) eη r(j) =
K∑
i=1

π(i)eη r(i)︸ ︷︷ ︸
ai

r(i)

eη r(i)︸ ︷︷ ︸
bi

K∑
j=1,j ̸=i

π(j) eη r(j)︸ ︷︷ ︸
aj

=
K−1∑
i=1

π(i)
K∑

j=i+1

π(j) [eη r(j) r(i) + eη r(i) r(j)]

(
∑K

i=1 aibi
∑K

j=1,j ̸=i aj =
∑K−1

i=1 ai
∑K

j=i+1 aj [bi + bj ])

=⇒ (i) =
K−1∑
i=1

π(i)
K∑

j=i+1

π(j) [eηr(i)r(i) + eηr(j)r(j)]−
K−1∑
i=1

π(i)
K∑

j=i+1

π(j) [eηr(j)r(i) + eηr(i)r(j)]

=
K−1∑
i=1

π(i)
K∑

j=i+1

π(j) [eηr(i) − eηr(j)] [r(i)− r(j)]
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Convergence of Natural Policy Gradient for Softmax Parametrization

Recall that (π′ − π)
⊤
r = (i)∑K

j=1 π(j) eη r(j) , (i) =
∑K−1

i=1 π(i)
∑K

j=i+1 π(j) [e
ηr(i) − eηr(j)] [r(i)− r(j)].

(i) ≥ π(1)
K∑
j=2

π(j)
[
eη r(1) − eη r(j)

]
[r(1)− r(j)] (Only using the first term)

≥ π(1) eη r(2) (eη∆ − 1
) K∑

j=2

π(j) [r(1)− r(j)] (r(j) ≤ r(2), ∆ = r(1)− r(2))

= π(1) eη r(2) (eη∆ − 1
) ∑

a ̸=a∗

π(a)∆(a) (Arm 1 is the optimal arm)

= π(1) eη r(2) (eη∆ − 1
) ∑

a

π(a)∆(a) (∆(a∗) = 0)

= π(1) eη r(2) (eη∆ − 1
)
(π∗ − π)⊤ r (Since π∗(a∗) = 1)

=⇒ (π′ − π)
⊤
r ≥

π(1) eη r(2)
(
eη∆ − 1

)∑K
j=1 π(j) e

η r(j)
(π∗ − π)⊤ r
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Convergence of Natural Policy Gradient for Softmax Parametrization

Recall that (π′ − π)
⊤
r ≥ π(1) eη r(2) (eη ∆−1)∑K

j=1 π(j) eη r(j) (π∗ − π)⊤ r . Simplifying,

π(1) eη r(2)
(
eη∆ − 1

)∑K
j=1 π(j) e

η r(j)
=

π(1) eη r(2)
(
eη∆ − 1

)
π(1) eη r(1) +

∑K
j=2 π(j) e

η r(j)

=
π(1)

(
eη∆ − 1

)
π(1) eη∆ +

∑K
j=2 π(j) e

η [r(j)−r(2)]
≥

π(1)
(
eη∆ − 1

)
π(1) eη∆ +

∑K
j=2 π(j)

(Since r(j) ≤ r(2) for j ≥ 2)

=
π(1)

(
eη∆ − 1

)
π(1) eη∆ + 1 − π(1)

=
π(1)

(
eη∆ − 1

)
π(1) (eη∆ − 1) + 1

= 1 − 1
π(a∗) (eη∆ − 1) + 1

=⇒ (π′ − π)
⊤
r ≥

[
1 − 1

π(a∗) (eη∆ − 1) + 1

]
(π∗ − π)⊤ r

We will now use this non-uniform Lojasiewicz condition to prove global convergence to the
optimal policy for NPG.
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Convergence of Natural Policy Gradient for Softmax Parametrization

Claim: For a bandit problem with deterministic rewards and ∆ := r(a∗)−maxa ̸=a∗ r(a), NPG
with the softmax tabular policy parameterization, any step-size η and T iterations results in the
following convergence: if δt := ⟨π∗, r⟩ − ⟨πθt , r⟩, then, δT ≤ exp(−cT ) δ0 where
c := log

(
πθ0(a

∗)
(
eη∆ − 1

))
+ 1).

Proof : δt+1 = ⟨π∗, r⟩ − ⟨πθt+1 , r⟩ = δt − ⟨πθt+1 − πθt , r⟩. Recall that the NPG update is
πt+1(a) =

πt(a) exp(η r(a))∑
a′ πt(a′) exp(η r(a′)) . Using the non-uniform Lojasiewicz condition,

δt+1 ≤ δt −
[
1 − 1

πθt (a
∗) (eη∆ − 1) + 1

]
(π∗ − πθt )

⊤ r =
δt

πθt (a
∗) (eη∆ − 1) + 1

πθt+1(a
∗) = πt+1(a

∗) =
πt(a

∗) exp(η r(a∗))∑
a′ πt(a′) exp(η r(a′))

=
πt(a

∗)∑
a′ πt(a′) exp(η [r(a′)− r(a∗)])

≥ πt(a
∗)

=⇒ πt(a
∗) ≥ π0(a

∗) =⇒ δt+1 ≤ δt
πθ0(a

∗) (eη∆ − 1) + 1

=⇒ δT ≤ δ0

[πθ0(a
∗) (eη∆ − 1) + 1]T

= exp(−cT ) δ0
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Handling Stochasticity
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Stochastic Softmax Policy Gradient for Bandits

Until now, we have assumed that we have access to the full gradient ∇J(θ). For bandits,
the full gradient involves computing πθ(a)[r(a)− ⟨πθ, r⟩] for all a in each iteration.

In order to make the resulting algorithms more practical, we now focus on stochastic PG
methods for bandits with deterministic rewards. The algorithm pulls only one arm in each
iteration to compute a gradient estimate.

Importance-weighted reward estimator at iteration t: r̂t(a) :=
I{at=a}
πθ(a)

r(a) where at is the
arm pulled at iteration t. Hence, Eat∼πθ

[r̂t(a)] = r(a).

Stochastic softmax PG update:

θt+1 = θt + ηt ∇̃J(θt) ; [∇̃J(θ)]a :=
∂⟨πθ, r̂t⟩
∂θ(a)

= πθ(a) [r̂t(a)− ⟨πθ, r̂t⟩] .

We will first show that the gradient estimator ∇̃J(θt) is unbiased and has bounded variance.
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Stochastic Softmax Policy Gradient for Bandits

Claim: The estimator ∇̃J(θ) is unbiased, i.e. Eat∼πθ
[∇̃J(θ)] = ∇J(θ).

Proof : Recall that ∂⟨πθ,r⟩
∂θ(a) = πθ(a)[r(a)− ⟨πθ, r⟩].

[∇̃J(θ)]a =
∂⟨πθ, r̂t⟩
∂θ(a)

= πθ(a)[r̂t(a)− ⟨πθ, r̂t⟩] = πθ(a)

[
I {at = a} r(a)

πθ(a)
−
∑
a′

πθ(a
′) r̂t(a

′)

]

= I {at = a} r(a)− πθ(a)
∑
a′

πθ(a
′)
I {at = a′} r(a′)

πθ(a′)

= I {at = a} r(a)− πθ(a) r(at)

=⇒ Eat∼πθ

[
∂⟨πθ, r̂t⟩
∂θ(a)

]
=
∑
at

πθ(at) [∇̃J(θ)]a =
∑
at

πθ(at) [I {at = a} r(a)− πθ(a) r(at)]

= πθ(a) r(a)− πθ(a)
∑
at

πθ(at) r(at) = πθ(a) [r(a)− ⟨πθ, r⟩]

=⇒ Eat∼πθ

[
∂⟨πθ, r̂t⟩
∂θ(a)

]
=

∂⟨πθ, r⟩
∂θ(a)

=⇒ Eat∼πθ

[
∂⟨πθ, r̂t⟩

∂θ

]
=

∂⟨πθ, r⟩
∂θ
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Stochastic Softmax Policy Gradient for Bandits

Claim: For rewards in [0, 1], E
∥∥∇̃J(θ)

∥∥2 ≤ 2.

Proof :
∥∥∇̃J(θ)

∥∥2
=
∑

a

(
∂⟨πθ,r̂t⟩
∂θ(a)

)2
=
∑

a[πθ(a)]
2

(i)︷ ︸︸ ︷
[r̂t(a)− ⟨πθ, r̂t⟩]2.

(i) =
I {at = a} [r(a)]2

[πθ(a)]2
− 2 I {at = a} r(a)

πθ(a)

∑
a′

I {at = a′} r(a′) +

(∑
a′

I {at = a′} r(a′)

)2

=
I {at = a} [r(a)]2

[πθ(a)]2
− 2 I {at = a} r(a) r(at)

πθ(a)
+ [r(at)]

2

=⇒
∥∥∇̃J(θ)

∥∥2
=
∑
a

[
I {at = a} [r(a)]2 − 2 I {at = a} r(a) r(at)πθ(a) + [πθ(a)]

2 [r(at)]
2]

= [r(at)]
2 − 2πθ(at) [r(at)]

2 +
∑
a

[πθ(a)]
2 [r(at)]

2

= (1 − πθ(at)) [r(at)]
2 − πθ(at) [r(at)]

2 + [πθ(at)]
2 [r(at)]

2 +
∑
a ̸=at

[πθ(a)]
2 [r(at)]

2

= (1 − πθ(at))
2 [r(at)]

2 +
∑
a ̸=at

[πθ(a)]
2 [r(at)]

2
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Stochastic Softmax Policy Gradient for Bandits

Recall that
∥∥∥∇̃J(θ)

∥∥∥2
= (1 − πθ(at))

2 [r(at)]
2 +

∑
a ̸=at

[πθ(a)]
2 [r(at)]

2. Taking expectation w.r.t πθ,

Eat∼πθ

∥∥∥∇̃J(θ)
∥∥∥2

=
∑
at

πθ(at)

(1 − πθ(at))
2 [r(at)]

2 +
∑
a ̸=at

[πθ(a)]
2 [r(at)]

2


≤

∑
at

πθ(at) (1 − πθ(at))
2 [r(at)]

2 +
∑
at

πθ(at) [r(at)]
2

∑
a ̸=at

πθ(a)

2

(
∑

x2
i ≤ (

∑
xi )

2)

= 2
∑
at

πθ(at) (1 − πθ(at))
2 [r(at)]

2 ≤ 2
∑
at

πθ(at) (1 − πθ(at))
2 (r(a) ∈ [0, 1])

=⇒ Eat∼πθ

∥∥∥∇̃J(θ)
∥∥∥2

≤ 2
∑
at

πθ(at) = 2

Hence, we have a bound on the variance of the stochastic gradient estimator.

σ2 := E
∥∥∥∇̃J(θ)− E [∇̃J(θ)]

∥∥∥2
≤ E

∥∥∥∇̃J(θ)
∥∥∥2

≤ 2 .

Similarly, we can construct an unbiased and σ2-bounded variance stochastic gradient estimator for
MDPs [MDX+21, Lemma 11]. We will use these properties to prove convergence to a stationary point.
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Stationary point Convergence of Stochastic Softmax Policy Gradient

Claim: Assuming J(θ) is L-smooth, stochastic softmax PG with an unbiased and σ2-bounded
variance stochastic gradient estimator and step-size η = min {1/2L, 1/σ

√
T} converges as:

min
t∈{0,...T−1}

E[∥∇J(θt)∥2] ≤ 4L
(1 − γ)T

+
σ [2/1−γ + L]√

T
.

Proof : Using smoothness of J(θ) and the update θt+1 = θt + η∇̃J(θt).

J(θt+1) ≥ J(θt) + η ⟨∇J(θt), ∇̃J(θt)⟩ −
L η2

2

∥∥∇̃J(θt)
∥∥2

Taking expectation w.r.t the randomness in iteration t. Since E[∇̃J(θt)] = ∇J(θt),

E[J(θt+1)] ≥ J(θt) + η ∥∇J(θt)∥2 − L η2

2
E
[∥∥∇̃J(θt)

∥∥2
]

= J(θt) + η ∥∇J(θt)∥2 − L η2

2
E
[∥∥∇̃J(θt)−∇J(θt) +∇J(θt)

∥∥2
]

= J(θt) + η ∥∇J(θt)∥2 − L η2

2

[
E[∥∇J(θt)∥2] + E

∥∥∥ ˜∇J(θt)− E[ ˜∇J(θt)]
∥∥∥2
]
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Stationary point Convergence of Stochastic Softmax Policy Gradient

Recall that E[J(θt+1)] ≥ J(θt) + η ∥∇J(θt)∥2 − L η2

2

[
E[∥∇J(θt)∥2] + E

∥∥∥ ˜∇J(θt)− E[ ˜∇J(θt)]
∥∥∥2

]

E[J(θt+1)] ≥ J(θt) + η ∥∇J(θt)∥2 − L η2

2

[
E[∥∇J(θt)∥2] + σ2

]
(Def. of σ2)

Taking expectation w.r.t to the randomness in iterations t = 0 to T − 1 and summing,

=⇒
T−1∑
t=0

(
η − Lη2

2

)
E[∥∇J(θt)∥2] ≤

T−1∑
t=0

E[J(θt+1)− J(θt)] +
L η2 σ2 T

2

=⇒
(
η − Lη2

2

) ∑T−1
t=0 E[∥∇J(θt)∥2]

T
≤ J(θT )− J(θ0)

T
+

Lη2 σ2

2
≤ 1

(1 − γ)T
+

Lη2 σ2

2

Since η = min
{

1
2L ,

1
σ
√
T

}
, η < 1

L =⇒
(
η − Lη2

2

)
≥ η

2 . Since min is smaller than the average,

min
t∈{0,...T−1}

E[∥∇J(θt)∥2] ≤ 2
η (1 − γ)T

+ Lη σ2 ≤

(
4L+ 2σ

√
T
)

(1 − γ)T
+

Lσ√
T

(Since 1/min{a,b} = max{a, b} and max{a, b} ≤ a+ b for a, b ≥ 0)
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Convergence of Stochastic Softmax Policy Gradient

We have shown that stochastic softmax PG converges to a stationary point (in expectation)
at an O(1/T + σ/

√
T) rate.

We can use the Lojasiewicz condition and prove convergence to the optimal policy at an
O(1/T1/4) rate. For the bandits case, global convergence to the optimal policy requires that
mint≥0 πθt (a

∗) > 0. For softmax PG, this property can also be proven in the stochastic
case [MZD+23, Theorem 5.1].
By exploiting non-uniform smoothness, the convergence rate to the optimal policy can be
improved to O(1/

√
T ) [MDX+21, Theorem 2]. By further exploiting a growth condition on

the stochastic gradients, the rate can be improved to O(1/T ) [MZD+23, Theorem 5.5].
The stochastic softmax PG algorithm and the corresponding analysis can be extended to the
general multi-armed bandit setting where the rewards are stochastic and sampled from some
underlying distribution. The resulting algorithm thus handles exploration in an “automatic”
manner and results in an O(

√
T ) regret similar to UCB [MZD+23].

For general MDPs, current results can prove convergence to the optimal policy at an
O(1/

√
T ) rate [MDX+21, Theorem 13].
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Stochastic Natural Policy Gradient

In the deterministic case, we have shown that NPG converges to the optimal policy at a
faster O(exp(−T )) rate. For achieving fast convergence in the stochastic setting, the
immediate idea is to use NPG with an importance-weighted reward estimate. For bandits
with deterministic rewards, the resulting update is: πt+1(a) =

πt(a) exp(η r̂t(a))∑
a′ πt(a′) exp(η r̂t(a′))

.

For stochastic NPG, E
∥∥∇̃J(θ)

∥∥2
=
∑

a
[r(a)]2

πθ(a)
. Hence, as πθ(a) → 0 for any action a, the

variance becomes unbounded and our previous analysis does not apply.
In fact, with some non-zero probability, the resulting update does not converge to the
optimal policy [MDX+21, Theorem 3] i.e. limt→∞

∑
a ̸=a∗ πθt (a) → 1. Intuitively, the

stochastic NPG update is too aggressive and commits to a sub-optimal action early.
There is a geometry-convergence trade-off in stochastic policy optimization – a “good”
algorithm (such as softmax PG, NPG) can only exhibit at most one of the following two
behaviours: (i) convergence to the optimal policy with probability 1 at a rate no better than
O(1/T ) (e.g. a stable algorithm like stochastic softmax PG), or (ii) convergence at a rate
faster than O(1/T ) but failure to converge to the optimal policy with some non-zero
probability (e.g. an aggressive algorithm like stochastic NPG). 16
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