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Recap

Given a policy parameterization s.t. π = h(θ) and a step-size η, policy gradient methods
have the following update: θt+1 = θt + η∇θJ(θt) where J(θ) := vπθ (ρ) = Es0∼ρv

πθ (s0).

Policy Gradient Theorem: ∇θJ(θ) =
∂vπθ (ρ)

∂θ = 1
1−γEs∼dπθ

[∑
a∈A

∂πθ(a|s)
∂θ qπθ (s, a)

]
.

Consider function h : RA → RA such that h(θ) = πθ where πθ(a) =
exp(θ(a))∑
a′ exp(θ(a

′)) . The
Jacobian of h is given by H(πθ) ∈ RA×A = diag(πθ)− πθ π

T
θ .

Tabular softmax policy parameterization: There are SA parameters such that
πθ(·|s) = h(θ(s, ·)). In this case, [∇J(θ)]s,a =

∂vπθ (ρ)
∂θ(s,a) = dπθ (s)

1−γ πθ(a|s) aπθ (s, a), where
aπ(s, a) = qπ(s, a)− vπ(s) is the advantage function.

For the bandit setting with deterministic rewards, J(θ) = Ea∼πθ
[r(a)] = ⟨πθ, r⟩ and

[∇J(θ)]a =
∂vπθ (ρ)
∂θ(a) = πθ(a) [r(a)− ⟨πθ, r⟩]. Hence, the corresponding policy gradient

update is: θt+1 = θt + η πθt (a) [r(a)− ⟨πθt , r⟩].
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Softmax Policy Gradient for Bandits

Claim: For the tabular softmax policy parameterization where πθ(a) =
exp(θ(a))∑
a′ exp(θ(a

′)) , the
objective J(θ) = ⟨πθ, r⟩ can be non-concave w.r.t θ.

Proof : Recall that a function f : D → R is concave if for all θ, θ′ ∈ D and α ∈ [0, 1],
f (αθ+ (1− α)θ′) ≥ αf (θ) + (1− α)f (θ′). Consider a multi-armed bandit problem where A = 3,
and r = [1, 9/10, 1/10], θ = [0, 0, 0] and θ′ = [ln(9), ln(16), ln(25)]. Choosing α = 1

2 ,

π = h(θ) = [1/3, 1/3, 1/3] =⇒ J(θ) =
1
3
+

3
10

+
1
30

=
2
3

π′ = h(θ′) = [9/50, 16/50, 25/50] =⇒ J(θ) =
90
500

+
144
500

+
25
500

=
259
500

=⇒ RHS = αJ(θ) + (1 − α)J(θ′) =
1
2

(
2
3
+

259
500

)
=

1777
3000

αθ + (1 − α)θ′ = [ln(3), ln(4), ln(5)] =⇒ h(αθ + (1 − α)θ′) = [3/12, 4/12, 5/12]

=⇒ LHS = J(αθ + (1 − α)θ′) =
3
12

+
36
120

+
5

120
=

71
120

.

RHS = 1777
3000 = 14216

24000 > 14200
24000 = LHS, meaning that J(θ) is non-concave for this example. 2



Digression – Smooth functions

Smooth functions: For smooth functions that are differentiable everywhere, the gradient is
Lipschitz-continuous i.e. it can not change arbitrarily fast.

• Formally, the gradient ∇f is L-Lipschitz continuous if for all x , y ∈ D,

∥∇f (x)−∇f (y)∥ ≤ L ∥x − y∥

where L is the Lipschitz constant of the gradient (also called the smoothness constant of f ).

• If f is twice-differentiable and smooth, then for all x ∈ D, ∇2f (x) ⪯ L Id i.e.
σmax[∇2f (x)] ≤ L where σmax is the maximum singular value.

• For L-smooth functions, for all x , y ∈ D,

|f (y)− f (x)− ⟨∇f (x), y − x⟩| ≤ L

2
∥y − x∥2

Hence the function f (y) is upper and lower-bounded by quadratics:
f (x) + ⟨∇f (x), y − x⟩+ L

2 ∥y − x∥2 and f (x) + ⟨∇f (x), y − x⟩ − L
2 ∥y − x∥2 respectively.

These bounds are global and hold for all y ∈ D.
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Softmax Policy Gradient

Fact: For the tabular softmax policy parameterization where πθ = h(θ) i.e.
πθ(a) =

exp(θ(a))∑
a′ exp(θ(a

′)) , the objective J(θ) = ⟨πθ, r⟩ is 5
2 -smooth.

See [MXSS20, Lemma 2] for a proof. Such a smoothness property also holds for general MDPs
(see [MXSS20, Lemma 7]).

• By putting together these results, we conclude that for the tabular softmax policy
parameterization, the objective J(θ) is a smooth, non-concave function.

• Hence, in general (without additional properties), softmax PG is not guaranteed to converge to
the optimal policy, but only to a stationary point where ∥∇θJ(θ)∥ = 0. Assuming that we can
exactly calculate ∇θJ(θ), we can prove the following result from non-convex optimization.

Claim: For the tabular policy parameterization where J(θ) is L-smooth w.r.t θ, softmax PG with

η = 1
L returns θ̂T such that

∥∥∥∇J(θ̂T )
∥∥∥2

≤ ϵ and requires T = 2L
(1−γ) ϵ iterations.
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Stationary point Convergence of Softmax Policy Gradient

Proof : Using the L-smoothness of J with x = θt and y = θt+1 = θt +
1
L∇J(θt) in the quadratic

bound (also referred to as the ascent lemma),

J(θt+1) ≥ J(θt) +

〈
∇J(θt),

1
L
∇J(θt)

〉
− L

2

∥∥∥∥1
L
∇J(θt)

∥∥∥∥2

=⇒ J(θt+1) ≥ J(θt) +
1
2L

∥∇J(θt)∥2

By moving from θt to θt+1, the algorithm has increased the value of J. Rearranging the
inequality, for every iteration t,

1
2L

∥∇J(θt)∥2 ≤ J(θt+1)− J(θt)

Summing up from t = 0 to T − 1,

1
2L

T−1∑
t=0

∥∇J(θt)∥2 ≤
T−1∑
t=0

[J(θt+1)− J(θt)] = J(θT )− J(θ0)
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Stationary point Convergence of Softmax Policy Gradient

Recall that 1
2L

∑T−1
t=0 ∥∇J(θt)∥2 ≤ J(θT )− J(θ0). Since J(θ) ∈

[
0, 1

1−γ

]
for all θ,

∑T−1
t=0 ∥∇J(θt)∥2

T
≤ 2L

(1 − γ)T

Define θ̂T := argmint∈{0,1,...,T−1} ∥∇J(θt)∥2.

∥∥∥∇J(θ̂T )
∥∥∥2

≤ 2L
(1 − γ)T

If the RHS equal to 2L
(1−γ)T ≤ ϵ, this would guarantee that

∥∥∥∇J(θ̂T )
∥∥∥2

≤ ϵ and we would

achieve our objective. Hence, we need to run the algorithm for T ≥ 2L
(1−γ) ϵ iterations.

Next, we will see that for the tabular softmax policy parameterization, J(θ) satisfies an additional
gradient domination property that allows us to prove convergence to the optimal policy.
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Non-uniform Lojasiewicz condition for Bandits

Claim: For a bandit problem with deterministic rewards, where J(θ) = ⟨πθ, r⟩, assuming that
there is a unique optimal action a∗ and π∗ := argmaxπ⟨π, r⟩ is the optimal policy, then,∥∥∥∥∂J(θ)∂θ

∥∥∥∥ ≥ πθ(a
∗) [⟨π∗, r⟩ − ⟨πθ, r⟩] = πθ(a

∗)[⟨π∗, r⟩ − J(θ)]

The result implies that if πθ(a
∗) > 0, as ∥∇θJ(θ)∥ → 0, J(θ) → ⟨π∗, r⟩. Hence, decreasing

the gradient norm of J(θ) is sufficient for global convergence to the optimal value function.
The property does not rely on the concavity of the objective, and hence characterizes a
special class of non-concave functions that can be maximized to the optimum.
The inequality is an instance of the Lojasiewicz or gradient domination condition. Function
f satisfies a gradient domination with parameters (C , ζ) if: ∥∇θf (θ)∥ ≥ C [f ∗ − f (θ)]ζ .
For the above inequality, C = πθ(a

∗). Since the condition depends on θ, it is non-uniform.
The dependence on πθ(a

∗) is necessary [MXSS20, Remark 1].
ζ = 1

2 is more common in non-convex optimization, and is referred to as the Polyak
Lojasiewicz condition.
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Non-uniform Lojasiewicz condition for Bandits

Proof : Recall that for any action a, ∂J(θ)
∂θ(a) = πθ(a) [r(a)− ⟨πθ, r⟩]. Hence,∥∥∥∥∂J(θ)∂θ

∥∥∥∥2

=
∑
a

[πθ(a)]
2 [r(a)− ⟨πθ, r⟩]2 ≥ [πθ(a

∗)]2 [r(a∗)− ⟨πθ, r⟩]2

= [πθ(a
∗)]2 [r(a∗)− J(θ)]2 = [πθ(a

∗)]2 [⟨π∗, r⟩ − J(θ)]2

=⇒
∥∥∥∥∂J(θ)∂θ

∥∥∥∥ ≥ πθ(a
∗) [⟨π∗, r⟩ − J(θ)]

• Recall the stationary point convergence – tabular softmax PG returns a point θ̂T such that∥∥∥∇J(θ̂T )
∥∥∥2

≤ 2L
(1−γ)T . Combining with the above Lojasiewicz condition,

πθ̂T
(a∗) [⟨π∗, r⟩ − J(θ̂T )] ≤

√
2L

(1 − γ)T
=⇒ ⟨π∗, r⟩ − J(θ̂T ) ≤

1
πθ̂T

(a∗)

√
2L

(1 − γ)T

• Hence, softmax PG (with the tabular parameterization) will converge to the optimal arm at an
O(1/

√
T) rate if πθ̂T

(a∗) ̸= 0.
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Global Convergence of Softmax Policy Gradient

Fact: For tabular softmax PG with step-size η = 1
L and a uniform initialization (∀a, π0(a) =

1
A )

ensures that mint≥0 πθt (a
∗) ≥ 1

A > 0 (see [MXSS20, Lemma 5] for a proof).

• We have established that for the multi-armed bandit setting, tabular softmax PG (with exact
gradients) can converge to the optimal arm at an O(1/

√
T) rate.

Q: Where is the exploration? Ans: All arms are pulled to construct the gradient. So no
exploration is required.

Fact: For general MDPs, if π∗ is the optimal policy corresponding to taking action a∗(s) in state
s, then the objective J(θ) = Es0∼ρv

πθ (s0) satisfies a non-uniform Lojasiewicz condition:∥∥∥∥∂J(θ)∂θ

∥∥∥∥ ≥ mins∈S πθ(a
∗(s)|s)

√
S
∥∥∥dπ∗

/dπθ

∥∥∥
∞

[vπ∗
(ρ)− J(θ)]

• Similar to the bandit case, there is a dependence on πθ(a
∗(s)|s), but now for each state.

• There is a dependence on the distribution mismatch coefficient
∥∥∥dπ∗

/dπθ

∥∥∥
∞

.
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Global Convergence of Softmax Policy Gradient

Recall that
∥∥∥ ∂J(θ)

∂θ

∥∥∥ ≥ mins∈S πθ(a
∗(s)|s)

√
S
∥∥∥dπ

∗
/dπθ

∥∥∥
∞

[vπ∗
(ρ)− J(θ)].

• Define S∗ = {s ∈ S|dπ∗
(s) ̸= 0}. For the distribution mismatch coefficient to be bounded, we

want that dπθ (s) ̸= 0 for all s ∈ S∗. Hence, the algorithm needs to have a non-zero probability of
visiting states in S∗ and requires sufficient exploration to ensure this. The distribution mismatch
coefficient thus captures the need for policy gradient algorithms to explore the state space.

• The dependence on the mismatch coefficient is necessary for the non-uniform Lojasiewicz
condition and hence for global convergence to the optimal policy [MXSS20, Proposition 3].

• A practical way to guarantee that the distribution mismatch coefficient is bounded is to ensure
that ρ(s) ̸= 0 for all s ∈ S. This may not always be feasible, and exploration with policy gradient
is problematic. See [AHKS20, CYJW20, LWG+23] for some recent attempts to handle this.

• Using a uniform distribution over actions for each state also ensures that mins πθ(a
∗(s)|s) > 0.

With these settings, softmax PG can be shown to converge to the optimal policy π∗ at an
O(1/T ) rate [MXSS20, Theorem 4].
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Global Convergence of Softmax Policy Gradient

Claim: Assuming J(θ) is L-smooth and satisfies the Lojasiewicz condition with constant µ i.e.
∥∇J(θ)∥ ≥ µ [vπ∗

(ρ)− J(θ)], softmax PG with the tabular policy parameterization, uniform
initialization, η = 1

L and T iterations converges as: δT ≤ 2L
µ2 T , where δt := vπ∗

(ρ)− J(θt).

Proof : Using the L-smoothness of J(θ) and the update as before,

J(θt+1) ≥ J(θt) +
1
2L

∥∇J(θt)∥2 ≥ J(θt) +
µ2

2L
[vπ∗

(ρ)− J(θt)]
2 (Lojasiewicz condition)

=⇒ δt+1 ≤ δt −
µ2

2L
δ2
t =⇒ 1

δt
≤ 1

δt+1
− µ2

2L
δt
δt+1

=⇒ µ2

2L
≤ 1

δt+1
− 1

δt
(Dividing by δt δt+1, and using that δt ≥ δt+1)

=⇒ µ2 T

2L
≤

T−1∑
t=0

[
1

δt+1
− 1

δt

]
≤ 1

δT
=⇒ δT ≤ 2L

µ2 T

• For bandit problems, µ = mint≥0 πθt (a
∗) and for general MDPs, µ = mint≥0

mins∈S πθt (a
∗(s)|s)

√
S
∥∥∥dπ

∗
/dπθt

∥∥∥
∞

.

• The O(1/T ) rate is tight for softmax PG and cannot be improved [MXSS20, Theorems 9, 10].
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Natural Policy Gradient
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Natural Policy Gradient

• Softmax PG has a slow O(1/T) rate of convergence (even when using exact gradients). On the
other hand, policy iteration has a linear O(exp(−T )) convergence rate.

• Natural Policy Gradient (NPG) overcomes this shortcoming of softmax PG, and achieves a
linear rate of convergence. NPG is an instantiation of preconditioned gradient ascent.

• For a general symmetric, positive definite matrix Q, preconditioned gradient ascent on J(θ)

can be written as: θt+1 = θt + ηQ∇θJ(θ).

• Preconditioned gradient ascent is equivalent to the update that “follows” the direction of the
gradient, but stays “close” to the previous iterate θt in the norm induced by Q

−1, i.e.

θt+1 = argmax
θ

[
⟨∇θJ(θ), θ⟩ −

1
2η

∥θ − θt∥2
Q−1

]
.

• Preconditioning is equivalent to reparameterizing the space so that the maximum remains the
same, but the function becomes easier to optimize, enabling gradient ascent to converge faster.
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Natural Policy Gradient

NPG chooses the preconditioner Q to be the (pseudo)-inverse of the Fisher information matrix:
Fθ ∈ Rd×d (where d is the dimension of the parameter θ):

Fθ := Es∼dπθEa∼πθ(·|s)[∇θ log(πθ(a|s))∇θ log(πθ(a|s))T] = Es∼dπθ

[
∂2 KL(πθ||πθ′)

∂θ′2

]
θ′=θ

Fθ is symmetric, positive semi-definite and corresponds to the Hessian of the KL divergence.

Fθ is also the covariance of the score function ∂ ln(πθ(a|s))
∂θ and determines the amount of

information the observed data has about the true (unknown) parameter generating the data.

• The NPG update can be written as: θt+1 = θt + η F †
θt
∇J(θt).

• Next, we will instantiate the NPG update for the tabular softmax policy parameterization, and
prove that preconditioning by F †

θ enables NPG to converge at a faster exp(−T ) rate, compared
to softmax PG.
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Natural Policy Gradient for Softmax Parametrization

For the tabular softmax policy parameterization, θ ∈ RSA and πθ(·|s) = h(θ(s, ·)) such that
πθ(a|s) = exp(θ(a|s))∑

a′ exp(θ(a
′|s)) . Recall that ∂πθ(·|s)

∂θ(s,·) = H(πθ(·|s)) = diag(πθ)− πθ π
T
θ .

We can calculate the Jacobian element-wise, and derive the following relation: for any s ′, a′,
∂ log(πθ(a

′|s′))
∂θ(s,a) = I {s ′ = s} [I {a′ = a} − πθ(a|s)]. (Prove in Assignment 4!).

Claim: For the tabular softmax policy parameterization, [F †
θ ∇J(θ)]s,a =

aπθ (s,a)
1−γ .

Proof : Define wθ := argminw ∥Fθw −∇J(θ)∥2 = F †
θ ∇J(θ). First, let us calculate Fθw for a

general w ∈ RSA.

Fθw = Es′∼dπθEa′∼πθ(·|s′)[∇θ log(πθ(a
′|s ′))∇θ log(πθ(a

′|s ′))T]w

=
∑
s′

dπθ (s ′)
∑
a′

πθ(a
′|s ′) [∇θ log(πθ(a

′|s ′))∇θ log(πθ(a
′|s ′))T]w

Fθw =
∑
s′

dπθ (s ′)
∑
a′

πθ(a
′|s ′) ⟨∇θ log(πθ(a

′|s ′)),w⟩︸ ︷︷ ︸
:=C(s′,a′)

∇θ log(πθ(a
′|s ′))
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Natural Policy Gradient for Softmax Parametrization

Fθw =
∑

s′ d
πθ (s ′)

∑
a′ πθ(a

′|s ′)C(s ′, a′)∇θ log(πθ(a
′|s ′)) where C(s ′, a′) = ⟨∇θ log(πθ(a

′|s ′)),w⟩.
Recall that,

[∇θ log(πθ(a
′|s ′))]s,a =

∂ log(πθ(a
′|s ′))

∂θ(s, a)
= I {s ′ = s} [I {a′ = a} − πθ(a|s)]

=⇒ [Fθw ]s,a = dπθ (s)
∑
a′

πθ(a
′|s)C (s, a′) [I {a′ = a} − πθ(a|s)]

C (s ′, a′) = ⟨∇θ log(πθ(a
′|s ′)),w⟩ =

∑
s̃,ã

∂ log(πθ(a
′|s ′))

∂θ(s̃, ã)
w(s̃, ã)

=
∑
s̃,ã

I {s ′ = s̃} [I {a′ = ã} − πθ(ã|s̃)] w(s̃, ã) =
∑
ã

w(s ′, ã) [I {a′ = ã} − πθ(ã|s ′)]

=⇒ C (s ′, a′) = w(s ′, a′)− ⟨πθ(·|s ′),w(s ′, ·)⟩︸ ︷︷ ︸
:=c(s′)

=⇒ [Fθw ]s,a = dπθ (s)
∑
a′

πθ(a
′|s)
[
[w(s, a′)− c(s)] [I {a′ = a} − πθ(a|s)]

]
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Natural Policy Gradient for Softmax Parametrization

Recall that [Fθw ]s,a = dπθ (s)
∑

a′ πθ(a
′|s)

[
[w(s, a′)− c(s)] [I {a′ = a} − πθ(a|s)]

]
where

c(s) := ⟨πθ(·|s),w(s, ·)⟩. Simplifying,

[Fθw ]s,a

= dπθ (s)
∑
a′

πθ(a
′|s)
[
w(s, a′) I {a′ = a} − c(s) I {a′ = a} − w(s, a′)πθ(a|s) + c(s)πθ(a|s)

]
= dπθ (s)

[
πθ(a|s)w(s, a)− πθ(a|s) c(s)− πθ(a|s)

∑
a′

πθ(a
′|s)w(s, a′) + c(s)πθ(a|s)

]
= dπθ (s)πθ(a|s) [w(s, a)− c(s)] (Since

∑
a′ πθ(a

′|s)w(s, a′) = c(s))

∥Fθw −∇J(θ)∥2 =
∑
s

∑
a

[[Fθw ]s,a − [∇J(θ)]s,a]
2

=
∑
s

∑
a

[
dπθ (s)πθ(a|s)

(
w(s, a)− c(s)− aπθ (s, a)

1 − γ

)]2

(Using the expression for the policy gradient for the tabular softmax parameterization)
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Natural Policy Gradient for Softmax Parametrization

Recall that F †
θ ∇J(θ) = wθ = argminw ∥Fθw −∇J(θ)∥2

= argmin
w

∑
s

∑
a

[
dπθ (s)πθ(a|s)

(
w(s, a)−

∑
a′

πθ(a
′|s)w(s, a′)− aπθ (s, a)

1 − γ

)]2

Setting ws,a =
aπθ (s,a)

1−γ ensures that each (s, a) term is zero since
∑

a′ a
πθ (s, a′)πθ(a

′|s) = 0

=⇒ [F †
θ ∇J(θ)]s,a =

aπθ (s, a)

1 − γ

Comparing the preconditioned gradient to the softmax policy gradient dπ(s)πθ(a|s) aπθ (s,a)
1−γ ,

The preconditioned gradient does not depend on dπ(s) or πθ(a|s).
As πθ → π∗, for a ̸= a∗(s), πθ(a|s) → 0. Consequently, ∥∇θJ(θ)∥ becomes smaller with
increasing number of iterations and the resulting method becomes slower.
Since the NPG update does not depend on πθ(a|s), it does not suffer from the above
problem, resulting in faster convergence.
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