CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 1

Sharan Vaswani
September 8, 2023

Introduction

- Supervised machine learning involves learning from a fixed, static dataset.
- Once a dataset is collected, supervised learning does not typically reason about how the data was acquired nor does it involve further interactions with the world.
- Applications in computational advertising, robotics, clinical trials involve collecting data in an online fashion, and reasoning about the decisions used to gather it.
- Sequential decision-making under uncertainty focuses on problems that involve interacting with the world, collecting data and reasoning about it, all with incomplete information about the world.

Introduction

- A typical problem in sequential decision-making involves an agent (e.g: marketer, robot, investor) sequentially interacting with the environment (e.g: online advertising platform, Mars terrain, stock market).
- An interaction involves the agent choosing an action and receiving feedback.
- For example, the feedback can be in the form of a reward) designed to measure the agent's performance in achieving its goal.
- One possible objective: Find a sequence of actions (referred to as a policy) that maximizes the cumulative reward across the sequence of interactions.

Motivating Applications

- Games. E.g: Go and Atari by DeepMind.
- Conversational agents. Eg: ChatGPT by OpenAI.
- Chip design by Google AI
- Cooling the interior of large commercial buildings by DeepMind
- Recommendation system by Microsoft
- Healthcare and Clinical Trials.
- Autonomous Navigation of Stratospheric Balloons by Google AI.
- For more applications, refer to Glen Berseth's and Csaba Szepesvari's lists.

This Course

Motivation

- Typical algorithms used in practice are often (a) brittle (their performance is sensitive to hyper-parameters) (b) inefficient (require a large number of interactions to learn to make good decisions) and (c) do not have theoretical guarantees on their performance and can fail on simple problems.
- Numerous fundamental theoretical questions remain unanswered and there is a large discrepancy between the theory and practice.

Objective:

- Understand the foundational concepts in bandits and reinforcement learning (RL) from a theoretical perspective.
- Use this knowledge to inform the design of theoretically-principled, statistically and computationally efficient algorithms.

Course Logistics

Topics:

- Bandits: Multi-armed/Contextual Bandit framework, Algorithms for regret minimization
- Markov Decision Processes: Structural properties, (Approximate) Value/Policy Iteration, Linear Programming, Temporal Difference Learning, Policy Gradients
- Online \& Batch RL: Q Learning, LSVI-UCB, Learning with access to a simulator

What we won't cover: Continuous state-action spaces, Constrained MDPs, Multi-objective RL

- Instructor: Sharan Vaswani. [sharan_vaswani@sfu.ca]
- Teaching Assistant: Michael Lu. [michael_lu_3@sfu.ca]
- Course Webpage: https://vaswanis.github.io/419_983-F23.html
- Piazza: https://piazza.com/sfu.ca/fall2023/cmpt419983/home
- Prerequisites: Probability, Linear Algebra, Calculus, Undergraduate Machine Learning

Course Logistics - Grading

Assignments $\quad[4 \times 12 \%=48 \%$]

- Assignments to be submitted online (via Coursys), typed up in Latex with accompanying code submitted as a zip file.
- Each assignment will be due in 3 weeks (at 11.59 pm PST).

Final Project [50\%]

- Aim is to give you a taste of research in RL Theory.
- Projects to be done in groups of 3-4. Will maintain a list of possible topics. Can choose from the list or propose your own topic. (more details will be on Piazza)
- Project Proposal [10\%] - Discussion (before 20 October) + Report (due 20 October)
- Project Milestone [5\%] - Update (before 20 November)
- Project Presentation [10\%] - (tentatively 1, 4 December)
- Project Report [25\%] (15 December)

Participation [2\%] In class (during lectures, project presentations), on Piazza

Stochastic Multi-armed Bandits

Motivating Application: Clinical Trials

- Do not have complete information about the effectiveness or side-effects of the drugs.
- Aim: Maximize the number of patients healed.
- Administering a drug is an action that is equivalent to pulling the corresponding arm.
- Each time an arm is pulled, we get a noisy reward that models a patients reaction to the drug.
- The trial goes on for T rounds.

- Each drug choice is mapped to an arm and the drug's effectiveness is mapped to the arm's mean reward.

- Other motivating applications: Recommendation systems, computational advertising.

Problem Formulation

Input: K arms (possible actions) and their corresponding unknown reward distributions $\left\{\nu_{a}\right\}_{a=1}^{K}$. Define $\mu_{a}:=\mathbb{E}_{r \sim \nu_{a}}[r]$ as the expected reward obtained by choosing action a.

```
Algorithm Generic Bandit Framework ( \(K\) arms, \(T\) rounds)
    1: for \(t=1 \rightarrow T\) do
    2: SELECT: Use a bandit algorithm to decide which arm(s) to pull.
    3: OBSERVE: Pull the selected arm \(a_{t} \in[K]\) and observe reward \(R_{t} \sim \nu_{a_{t}}\).
    4: UPDATE: Update the estimated reward for arm \(a_{t}\).
    5: end for
```

Bandit Feedback: Can only observe the noisy reward R_{t} from the pulled arm a_{t}.
Objective: Maximize $\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]$ where the expectation is over both the randomness of the algorithm (if any) and the distribution of rewards.

Bandit problems are a special case of RL, and capture a lot of the underlying intricacy.

Problem Formulation

- Define $a^{*}:=\arg \max _{a \in[K]} \mu_{a}$ as the best or optimal arm in hindsight, and $\mu_{*}:=\max _{a} \mu_{a}$.
- Maximizing cumulative rewards \Longrightarrow Select a^{*} as much as possible \Longrightarrow Minimize the cumulative regret.
- Cumulative Regret: $\operatorname{Regret}(T):=\sum_{t=1}^{T}\left[\mu^{*}-\mathbb{E}\left[R_{t}\right]\right]=T \mu^{*}-\sum_{t=1}^{T} \mathbb{E}\left[R_{t}\right]$.
- Since the optimal arm is unknown, the algorithm needs to explore to narrow down on the best arm. If we can identify the best arm, the algorithm should exploit and always choose it.
- Need to find a policy that trades off exploration and exploitation to minimize $\operatorname{Regret}(T)$.
- Ideally, want $\operatorname{Regret}(T)=o(T)$ i.e. the regret grows sub-linearly with T, meaning that $\lim _{T \rightarrow \infty} \frac{\operatorname{Regret}(T)}{T}=0$.

Regret Decomposition

Claim: If $\Delta_{a}:=\mu^{*}-\mu_{a}$ and $N_{a}(T)$ is the number of times arm a was chosen until round T, then,

$$
\operatorname{Regret}(T)=\sum_{a=1}^{K} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]
$$

Proof:

$$
\begin{aligned}
\operatorname{Regret}(T)= & \mu^{*} T-\sum_{t=1}^{T} \mathbb{E}\left[R_{t}\right]=\mu^{*} T-\sum_{t=1}^{T} \mathbb{E}\left[\mu_{a_{t}}\right]=\sum_{t=1}^{T} \mathbb{E}\left[\mu^{*}-\mu_{a_{t}}\right] \\
& \text { (Taking the expectation w.r.t to the reward distribution) } \\
\Longrightarrow & \sum_{a=1}^{K}\left[\mu^{*}-\mu_{a}\right] \mathbb{E}\left[\sum_{t=1}^{T} \mathcal{I}\left\{a_{t}=a\right\}\right]=\sum_{a=1}^{K}\left[\mu^{*}-\mu_{a}\right] \mathbb{E}\left[N_{a}(T)\right] \\
\operatorname{Regret}(T)= & \sum_{a=1}^{K} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right] .
\end{aligned}
$$

- Hence, to minimize the regret, an algorithm should (i) not pull arms with $\Delta_{a}>0$ too often (exploit) which requires (ii) estimating the values of Δ_{a} to sufficient accuracy (explore).

Naive Strategy

Algorithm Naive Strategy

1: for $t=1 \rightarrow K$ do
Select arm $a_{t}=t$ and observe reward R_{t}

end for

4: Calculate empirical mean reward for $\operatorname{arm} a \in[K]$ as $\hat{\mu}_{a}(K):=\frac{\sum_{t=1}^{K} R_{t} I\left\{a_{t}=a\right\}}{N_{a}(K)}$
5: for $t=K+1 \rightarrow T$ do
6: Pull arm $\hat{a}:=\arg \max _{a \in[K]} \hat{\mu}_{a}(K)$ (choose lower-indexed arm if there is a tie).
end for
Q: Will this naive strategy result in sublinear regret? Ans: No! Consider $K=2, \mu_{1}=\frac{1}{2}, \mu_{2}=\frac{1}{4}$ and ν_{a} to be Bernoulli distributions, i.e. $R_{t} \in\{0,1\}$.

$$
\mathbb{E}\left[N_{2}(T)\right]=1+(T-2) \operatorname{Pr}\left[\hat{\mu}_{2}>\hat{\mu}_{1}\right]+(0) \operatorname{Pr}\left[\hat{\mu}_{2} \leq \hat{\mu}_{1}\right]=1+(T-2) \frac{1}{8}=\frac{T}{8}+\frac{3}{4}
$$

Regret(Naive, $T)=\left(\frac{1}{2}-\frac{1}{4}\right)\left(\frac{T}{8}+\frac{3}{4}\right)=\frac{3}{16}+\frac{T}{32}$.
Hence, the Naive strategy will suffer $O(T)$ regret and $\lim _{T \rightarrow \infty} \frac{\operatorname{Regret}(T)}{T}=\frac{1}{32}>0$.

Explore-Then-Commit (ETC)

```
Algorithm Explore-Then-Commit
    1: Input: \(m \in\left\{1, \ldots,\left\lfloor\frac{T}{K}\right\rfloor\right\}\).
    for \(t=1 \rightarrow m K\) do
        Select arm \(a_{t}=t \bmod K+1\) and observe reward \(R_{t} \quad\) (Explore)
    end for
    Calculate empirical mean reward for arm \(a \in[K]\) as \(\hat{\mu}_{a}(m K):=\frac{\sum_{t=1}^{m K} R_{t} I\left\{a_{t}=a\right\}}{N_{a}(m K)}\)
    for \(t=m K+1 \rightarrow T\) do
        Pull arm \(\hat{a}:=\arg \max _{a \in[K]} \hat{\mu}_{a}(m K) \quad\) (Commit)
    end for
Q: Will ETC result in sublinear regret?
Yes! under suitable distributional assumptions on the rewards.
In particular, if \(r \sim \nu_{a}\), we will assume that \(r-\mu_{a}\) are sub-Gaussian random variables, then we will prove that ETC results in sub-liner regret. For this, we need to first recap some concentration (tail) inequalities from undergraduate probability.
```


Digression - Concentration inequalities

Concentration inequalities bound the probability that the r.v. takes a value much different from its mean.

Example: Consider a r.v. X that can take on only non-negative values and $\mathbb{E}[X]=99.99$. Show that $\operatorname{Pr}[X \geq 300] \leq \frac{1}{3}$.

$$
\begin{aligned}
\text { Proof }: \mathbb{E}[X] & =\sum_{x \in \operatorname{Range}(X)} x \operatorname{Pr}[X=x]=\sum_{x \mid x \geq 300} x \operatorname{Pr}[X=x]+\sum_{x \mid 0 \leq x<300} x \operatorname{Pr}[X=x] \\
& \geq \sum_{x \mid x \geq 300}(300) \operatorname{Pr}[X=x]+\sum_{x \mid 0 \leq x<300} x \operatorname{Pr}[X=x] \\
& =(300) \operatorname{Pr}[X \geq 300]+\sum_{x \mid 0 \leq x<300} x \operatorname{Pr}[X=x]
\end{aligned}
$$

If $\operatorname{Pr}[X \geq 300]>\frac{1}{3}$, then, $\mathbb{E}[X]>(300) \frac{1}{3}+\sum_{x \mid 0 \leq x<300} x \operatorname{Pr}[X=x]>100$ (since the second term is always non-negative). Hence, if $\operatorname{Pr}[X \geq 300]>\frac{1}{3}, \mathbb{E}[X]>100$ which is a contradiction since $\mathbb{E}[X]=99.99$.

Digression - Markov's Theorem

Markov's theorem formalizes the intuition on the previous slide, and can be stated as follows.
Markov's Theorem: If X is a non-negative random variable, then for all $x>0$,

$$
\operatorname{Pr}[X \geq x] \leq \frac{\mathbb{E}[X]}{x}
$$

Proof: Define $\mathcal{I}\{X \geq x\}$ to be the indicator r.v. for the event $[X \geq x]$. Then for all values of $X, x \mathcal{I}\{X \geq x\} \leq X$.

$$
\begin{aligned}
\mathbb{E}[x \mathcal{I}\{X \geq x\}] & \leq \mathbb{E}[X] \Longrightarrow x \mathbb{E}[\mathcal{I}\{X \geq x\}] \leq \mathbb{E}[X] \Longrightarrow x \operatorname{Pr}[X \geq x] \leq \mathbb{E}[X] \\
& \Longrightarrow \operatorname{Pr}[X \geq x] \leq \frac{\mathbb{E}[X]}{x} .
\end{aligned}
$$

Since the above theorem holds for all $x>0$, we can set $x=c \mathbb{E}[X]$ for $c \geq 1$. In this case, $\operatorname{Pr}[X \geq c \mathbb{E}[X]] \leq \frac{1}{c}$. Hence, the probability that X is "far" from the mean in terms of the multiplicative factor c is upper-bounded by $\frac{1}{c}$.

Digression - Sub-Gaussian random variables

If a centered r.v. X (meaning that $\mathbb{E}[X]=0$) is σ sub-Gaussian, then for all $\lambda \in \mathbb{R}$,

$$
\mathbb{E}[\exp (\lambda X)] \leq \exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right)
$$

Example 1: If $X \sim N(0,1)$, then its moment generating function $\mathbb{E}[\exp (\lambda X)]=\exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right)$, meaning that Gaussian r.v. are sub-Gaussian.

Example 2: If $X \in[a, b]$ and $\mathbb{E}[X]=0$, then X is $(b-a)$ sub-Gaussian.
Properties: If X is centered and σ sub-Gaussian, then,
(a) $\mathbb{E}[X]=0, \operatorname{Var}[X] \leq \sigma^{2}$
(b) For a constant $c \in \mathbb{R}, c X$ is $|c| \sigma$ sub-Gaussian.
(c) If $\left\{X_{i}\right\}_{i=1}^{n}$ are independent and σ_{i} sub-Gaussian respectively, then, $\sum_{i=1}^{n} X_{i}$ is $\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}$ sub-Gaussian.

Need to prove some of these properties in Assignment 1!

Digression - Concentration inequalities for sub-Gaussian r.v's

Claim: If X is centered and σ sub-Gaussian, then for any $\epsilon \geq 0, \operatorname{Pr}[X \geq \epsilon] \leq \exp \left(-\frac{\epsilon^{2}}{2 \sigma^{2}}\right)$.
Proof: For some constant $c>0$ to be tuned later,

$$
\begin{array}{rlr}
\operatorname{Pr}[X \geq \epsilon] & =\operatorname{Pr}[c X \geq c \epsilon]=\operatorname{Pr}[\exp (c X) \geq \exp (c \epsilon)] \\
& \leq \mathbb{E}[\exp (c X)] \exp (-c \epsilon) & \\
& \leq \exp \left(\frac{c^{2} \sigma^{2}}{2}-c \epsilon\right) & \text { (Markov's inequality) } \\
& =\exp \left(-\frac{\epsilon^{2}}{2 \sigma^{2}}\right) \quad \square & \text { (Def. of sub-Gaussian r.v's) }
\end{array}
$$

Similarly, $\operatorname{Pr}[X \leq-\epsilon] \leq \exp \left(-\frac{\epsilon^{2}}{2 \sigma^{2}}\right)$. By the union bound, $\operatorname{Pr}[|X| \geq \epsilon] \leq 2 \exp \left(-\frac{\epsilon^{2}}{2 \sigma^{2}}\right)$.
Setting $\delta=2 \exp \left(-\frac{\epsilon^{2}}{2 \sigma^{2}}\right) \Longrightarrow \epsilon=\sqrt{2 \sigma^{2} \log (2 / \delta)}$. Hence, w.p. $1-\delta, X$ will take on values in the range $\left[-\sqrt{2 \sigma^{2} \log (2 / \delta)},+\sqrt{2 \sigma^{2} \log (2 / \delta)}\right]$.

Digression - Concentration inequalities for sub-Gaussian r.v's

Claim: Consider n i.i.d r.v's X_{i} such that $\mathbb{E}\left[X_{i}\right]=\mu$. If $X_{i}-\mu$ are σ sub-Gaussian and $\hat{\mu}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is the empirical mean, then, $\operatorname{Pr}[|\hat{\mu}-\mu| \geq \epsilon] \leq \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}}\right)$.
Proof: Using property (c) of σ sub-Gaussian r.v's, $\sum_{i=1}^{n}\left[X_{i}-\mu\right]$ is $\sqrt{n \sigma^{2}}$ sub-Gaussian. Using property (b) of σ sub-Gaussian r.v's, $\frac{\sum_{i=1}^{n}\left[X_{i}-\mu\right]}{n}$ is $\frac{\sigma}{\sqrt{n}}$ sub-Gaussian.
$\Longrightarrow \hat{\mu}-\mu$ is $\frac{\sigma}{\sqrt{n}}$ sub-Gaussian. Using the concentration result from the previous slide, $\operatorname{Pr}[|\hat{\mu}-\mu| \geq \epsilon] \leq 2 \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}}\right)$.
Hence, as we collect more data, the empirical mean concentrates around the true mean at an exponential rate.

Back to Explore-Then-Commit (ETC)

```
Algorithm Explore-Then-Commit
    1: Input: \(m \in\left\{1, \ldots,\left\lfloor\frac{T}{K}\right\rfloor\right\}\).
    for \(t=1 \rightarrow m K\) do
        Select arm \(a_{t}=(t \bmod K)+1\) and observe reward \(R_{t} \quad(\) Explore)
    end for
    Calculate empirical mean reward for \(\operatorname{arm} a \in[K]\) as \(\hat{\mu}_{a}(m K):=\frac{\sum_{t=1}^{m K} R_{t} I\left\{a_{t}=a\right\}}{N_{a}(m K)}\)
    for \(t=m K+1 \rightarrow T\) do
        Pull arm \(\hat{a}:=\arg \max _{a \in[K]} \hat{\mu}_{a}(m K) \quad\) (Commit)
    end for
```

Distributional Assumption: The noise $\eta_{t}:=R_{t}-\mu_{a_{t}}$ is 1 sub-Gaussian. \Longrightarrow after pulling each arm m times in the exploration phase, for all $a \in[K],\left|\hat{\mu}_{a}-\mu_{a}\right|$ is $\frac{\sigma}{\sqrt{m}}$ sub-Gaussian and hence, $\operatorname{Pr}\left[\left|\hat{\mu}_{a}-\mu_{a}\right| \geq \epsilon\right] \leq 2 \exp \left(-\frac{m \epsilon^{2}}{2 \sigma^{2}}\right)$.
Intuitively, the exploration phase estimates the gap Δ_{a} for each arm upto a certain error. After this initial estimation, the algorithm commits to the best empirical arm.

Explore-Then-Commit - Regret Analysis

Claim: For any $m \in\{1, \ldots,\lfloor T / K\rfloor\}$,

$$
\operatorname{Regret}(\mathrm{ETC}, T) \leq m \sum_{a=1}^{K} \Delta_{a}+(T-m K) \sum_{a=1}^{K} \Delta_{a} \exp \left(-\frac{m \Delta_{a}^{2}}{4}\right)
$$

Proof: Without loss of generality, assume that arm 1 is the best arm. Using the regret decomposition, we know that $\operatorname{Regret}(\mathrm{ETC}, T)=\sum_{a} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]$. For each arm $a \neq 1$, $\mathbb{E}\left[N_{a}(T)\right]=m+(T-m K) \operatorname{Pr}[$ algorithm commits to arm a].
$\operatorname{Pr}[$ algorithm commits to arm $a]=\operatorname{Pr}\left[\hat{\mu}_{\mathrm{a}}>\max _{j \neq a} \hat{\mu}_{j}\right] \leq \operatorname{Pr}\left[\hat{\mu}_{\mathrm{a}}>\hat{\mu}_{1}\right]$
(Since $\left\{\hat{\mu}_{a}>\max _{j \neq a} \hat{\mu}_{j}\right\}$ is a subset of $\left\{\hat{\mu}_{a}>\hat{\mu}_{1}\right\}$)
$=\operatorname{Pr}\left[\hat{\mu}_{a}-\mu_{a}>\hat{\mu}_{1}-\mu_{1}+\left[\mu_{1}-\mu_{a}\right]\right]=\operatorname{Pr}[\underbrace{\left[\hat{\mu}_{a}-\mu_{a}\right.}_{X_{a}}]-\underbrace{\left[\hat{\mu}_{1}-\mu_{1}\right]}_{X_{1}} \geq \Delta_{a}]$
$=\operatorname{Pr}\left[X_{a}-X_{1} \geq \Delta_{a}\right]$

Explore-Then-Commit - Regret Analysis

Recall that $\operatorname{Regret}(\mathrm{ETC}, T)=\sum_{a} \Delta_{a}[m+(T-m K) \operatorname{Pr}[$ algorithm commits to arm $a]$ and $\operatorname{Pr}[$ algorithm commits to arm $a] \leq \operatorname{Pr}\left[X_{a}-X_{1} \geq \Delta_{a}\right]$ where $X_{a}=\hat{\mu}_{a}-\mu_{a}$. Because of our assumption, both X_{a} and X_{1} are $\frac{1}{\sqrt{ } m}$ sub-Gaussian. Using property (c) of sub-Gaussian r.v's, $X_{a}-X_{1}$ is $\frac{\sqrt{2}}{\sqrt{m}}$ sub-Gaussian. Using the concentration result for sub-Gaussian r.v's,

$$
\operatorname{Pr}\left[X_{a}-X_{1} \geq \Delta_{a}\right] \leq \exp \left(-\frac{m \Delta_{a}^{2}}{4}\right)
$$

Putting everything together,

$$
\begin{aligned}
& \operatorname{Regret}(\mathrm{ETC}, T) \leq \sum_{a} \Delta_{a}\left[m+(T-m K) \exp \left(-\frac{m \Delta_{a}^{2}}{4}\right)\right] \\
\Longrightarrow & \operatorname{Regret}(\mathrm{ETC}, T) \leq m \sum_{a=1}^{K} \Delta_{a}+(T-m K) \sum_{a=1}^{K} \Delta_{a} \exp \left(-\frac{m \Delta_{a}^{2}}{4}\right)
\end{aligned}
$$

Explore-Then-Commit - Regret Analysis

Recall that $\operatorname{Regret}(\mathrm{ETC}, T) \leq m \sum_{a=1}^{K} \Delta_{a}+(T-m K) \sum_{a=1}^{K} \Delta_{a} \exp \left(-\frac{m \Delta_{a}^{2}}{4}\right)$.
In order to gain some intuition about how to set m, consider $K=2$ with $\Delta:=\mu_{1}-\mu_{2}$.

$$
\operatorname{Regret}(\mathrm{ETC}, T) \leq m \Delta+(T-2 m) \Delta \exp \left(-\frac{m \Delta^{2}}{4}\right)<m \Delta+T \Delta \exp \left(-\frac{m \Delta^{2}}{4}\right)
$$

Optimizing the RHS w.r.t m, we get $m=\frac{4}{\Delta^{2}} \log \left(\frac{\Delta^{2} T}{4}\right)$. Since m is an integer ≥ 1, we should set $m=\max \left\{1,\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{\Delta^{2} T}{4}\right)\right\rceil\right\}$. Plugging this value back,

$$
\Longrightarrow \operatorname{Regret}(\mathrm{ETC}, T) \leq \Delta+\frac{4}{\Delta}\left[1+\log _{+}\left(\frac{\Delta^{2} T}{4}\right)\right] \quad\left(\log _{+}(x):=\max \{0, \log (x)\}\right)
$$

Hence, ETC with $m=O\left(1 / \Delta^{2}\right)$ achieves $O\left(\frac{\log (T)}{\Delta}\right)$ instance or gap-dependent regret.
Q: What is the problem with this bound? Ans: As $\Delta \rightarrow 0, \operatorname{Regret}(E T C, T) \rightarrow \infty$ implying that for some instances, the bound on the gap-dependent regret can be very large.

Explore-Then-Commit - Regret Analysis

To overcome the previous problem, one can bound the worst-case problem-independent regret.
Claim: For $\Delta \leq 1$, ETC results in an $O(1+\sqrt{T})$ worst-case bound on the regret.
Proof: In the worst-case, we pull the sub-optimal arm in every round. Hence, the regret for any algorithm is upper-bounded by $T \Delta$. Putting this together with the bound on the previous slide,

$$
\operatorname{Regret}(\mathrm{ETC}, T) \leq \min \left\{T \Delta, \Delta+\frac{4}{\Delta}\left[1+\log _{+}\left(\frac{\Delta^{2} T}{4}\right)\right]\right\}
$$

If $\Delta<\frac{1}{\sqrt{T}}, \operatorname{Regret}(\mathrm{ETC}, T) \leq \sqrt{T}$. On the other hand, if $\Delta \geq \frac{1}{\sqrt{T}}$,

$$
\begin{aligned}
& \operatorname{Regret}(\mathrm{ETC}, T) \leq \Delta+4 \sqrt{T}+\left[\frac{4}{\Delta} \log _{+}\left(\frac{\Delta^{2} T}{4}\right)\right] \leq \Delta+4 \sqrt{T}+4 \max _{z>0} \frac{\log _{+}\left(T z^{2} / 4\right)}{z} \\
& \left.\operatorname{Regret}(\mathrm{ETC}, T) \leq \Delta+4 \sqrt{T}+\frac{4 \sqrt{T}}{e} \leq 1+\sqrt{T}\left(4+\frac{4}{e}\right) \quad \text { (Since } \Delta \leq 1\right)
\end{aligned}
$$

- In general, for K arms, it can be shown that ETC results in $O(\sqrt{K T})$ worst-case regret.

Explore-Then-Commit - Regret Analysis

We have seen that ETC with $m=O\left(1 / \Delta^{2}\right)$ achieves an $O(\Delta+\sqrt{T})$ regret for any instance.
Q: What is the problem with the ETC algorithm? Ans: Requires knowledge of Δ to set m !
Claim: For $\Delta \leq 1$, there exists $C>0$ s.t. ETC with $m=T^{2 / 3}$ results in $(1+C) T^{2 / 3}$ regret.
Proof: Need to prove this in Assignment 1!
Hint: Starting from the expression, $\operatorname{Regret}(E T C, T) \leq m \Delta+T \Delta \exp \left(-\frac{m \Delta^{2}}{4}\right)$, upper-bound the second term independent of Δ and then choose m.

