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Recap

For minimizing f (w) =
∑n

i=1 fi (w), the SGD update is wk+1 = wk − ηk∇fik(wk), where ik ∈ [n].

SGD does not require computing the gradient of all the points in the dataset, and results in
cheaper iterations compared to GD.

Compared to GD, the rate of convergence (in terms of the number of required iterations) is slow.

To counter the noise in the stochastic gradients, the step-size ηk needs to be decayed to ensure
convergence to the minimizer.

Two key properties we used to analyze SGD: For all w ,
Unbiasedness: Ei [∇fi (w)] = ∇f (w) ; Bounded Variance: Ei ∥∇fi (w)−∇f (w)∥2 ≤ σ2.

For minimizing L-smooth, but potentially non-convex functions, T iterations of SGD with
ηk = 1

L
1√
k+1

result in the following suboptimality for the “best” iterate ŵ ,

E[∥∇f (ŵ)∥2] ≤ 2L [f (x0)− f ∗]√
T

+
σ2 (1 + log(T ))√

T
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Recap

For L-smooth, convex functions, T iterations of SGD with ηk = 1
2L

1√
k+1

result in the following

suboptimality for the average iterate w̄ =
∑T−1

k=0 wk

T ,

E[f (w̄T )− f (w∗)] ≤ 2L ∥w0 − w∗∥2

√
T

+
σ2(1 + log(T ))

2L
√
T

Similar proof applies for mini-batch SGD: wk+1 = wk − ηk
[ 1
b

∑
i∈Bk

∇fi (wk)
]
. Using a

mini-batch results in the same O(1/
√
T) rate, but the effective noise is reduced to σ2

b = n−b
n b σ2.

SGD with a constant step-size η ≤ 1
2L results in the following convergence rate:

E[f (w̄T )− f (w∗)] ≤ ∥w0 − w∗∥2

ηT︸ ︷︷ ︸
bias

+ ησ2︸︷︷︸
neighbourhood

Using a smaller η slows down the convergence, but results in a smaller neighbourhood.
Common practice: Step-size schedules – run SGD for some iterations (in a stage), decrease the
step-size by a multiplicative factor and use the smaller step-size in the next stage.
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Minimizing smooth, convex functions using SGD

If σ = 0, SGD can attain an O(1/T) convergence to the minimizer using a constant step-size. If
σ ̸= 0, then SGD can converge to the minimizer at an Θ(1/

√
T) rate using a O(1/

√
k) step-size.

If σ is known, SGD with a tuned step-size can attain a noise-adaptive rate of O(1/T + σ/
√
T) i.e.

convergence is slowed down only by the extent of noise [GL13, Corollary 2.2].

Using ηk = η ≤ 1
2L , following the proof from Lecture 8,

E[∥wk+1 − w∗∥2] ≤ ∥wk − w∗∥2 − 2η[f (wk)− f (w∗)] + 2L η2 E[f (wk)− f (w∗)] + η2 σ2

2η(1 − ηL)E[f (wk)− f (w∗)] ≤ E
[
∥wk − w∗∥2 − ∥wk+1 − w∗∥2

]
+ η2 σ2

As before, taking expectation w.r.t the randomness from iterations i = 0 to k − 1 and summing,

2η(1 − ηL)
T−1∑
k=0

E[f (wk)− f (w∗)] ≤ ∥w0 − w∗∥2 + σ2
T−1∑
k=0

η2

2η(1 − ηL)E[f (w̄T )− f (w∗)] ≤ ∥w0 − w∗∥2

T
+ σ2η2

(By dividing by T and using Jensen similar to before,) 3



Minimizing smooth, convex functions using SGD

Recall that 2η(1 − ηL)E[f (w̄T )− f (w∗)] ≤ ∥w0−w∗∥2

T + σ2η2. Choosing η = min
{

1
2L ,

1
σ
√
T

}
E[f (w̄T )− f (w∗)] ≤ ∥w0 − w∗∥2

T 2η(1 − ηL)
+ σ2 η2

2η(1 − ηL)
≤ ∥w0 − w∗∥2

T η
+ σ2η

(For η ≤ 1
2L , η ≤ 2η − 2η2L)

≤ ∥w0 − w∗∥2

T η
+

σ√
T

≤ ∥w0 − w∗∥2

T
max

{
2L, σ

√
T
}
+

σ√
T

(1/min{a,b} = max{1/a, 1/b})

≤ ∥w0 − w∗∥2

T

(
2L+ σ

√
T
)
+

σ√
T

(max{a, b} ≤ a+ b for a, b ≥ 0)

=⇒ E[f (w̄T )− f (w∗)] ≤ 2L ∥w0 − w∗∥2

T
+ σ

[
∥w0 − w∗∥2 + 1√

T

]

Hence, with η = min
{

1
2L ,

1
σ
√
T

}
, SGD converges to the minimizer at an O(1/T + σ/

√
T) rate.
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Questions?
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