
CMPT 409/981: Optimization for Machine Learning

Lecture 8

Sharan Vaswani

October 13, 2022



Optimization Zoo

Function class L-smooth L-smooth + convex L-smooth + µ-strongly convex
Gradient Descent Θ(1/ϵ) O (1/ϵ) O (κ log (1/ϵ))

Nesterov Acceleration - Θ(1/
√
ϵ) Θ (

√
κ log (1/ϵ))

Table 1: Using the first-order oracle that returns ∇f (w)

Today, we will use a stochastic first-order oracle that is less expensive, but returns a noisy
estimate of the gradient.
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Stochastic Gradient Descent

In machine learning, we typically care about minimizing the average of loss functions,

f (w) =
1
n

n∑
i=1

fi (w) .

i.e. our model should perform well on average across examples.

Example: In supervised learning using a dataset of n input-output pairs {Xi , yi}ni=1, for linear
regression, f (w) = 1

n

∑n
i=1

1
2 (⟨Xi ,w⟩ − yi )

2. Similarly, for logistic regression for binary
classification where yi ∈ {−1,+1}, f (w) = 1

n

∑n
i=1 log (1 + exp (−yi ⟨Xi ,w⟩)).

Gradient-based methods on such functions require computing ∇f (w) = 1
n

∑n
i=1 ∇fi (w) which is

an O(n) operation. Typically, n is large in practice and hence computing the gradient across the
whole datasets is expensive.
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) only requires computing the gradient of one loss function in
each iteration. At iteration k , SGD samples loss function ik (uniformly) randomly:

wk+1 = wk − ηk∇fik(wk) .

Unlike GD, each iteration of SGD is cheap and does not
depend on n.

Unbiasedness: Since ik is picked uniformly at random, ∇fik(w) is unbiased,

E[∇fik(w)] =
n∑

i=1

1
n
∇fi (w) =

1
n

n∑
i=1

∇fi (w) = ∇f (w) .

We will assume that f (w) is a finite-sum of n points only for convenience. In general, all the
results hold when using a stochastic first-order oracle that returns ∇f (w , ξ) such that
Eξ[∇f (w , ξ)] = ∇f (w).
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Stochastic Gradient Descent

Bounded variance: In order to analyze the convergence of SGD, we need to assume that the
variance (noise) in the stochastic gradients is bounded for all w , i.e. for σ2 < ∞,

Ei ∥∇fi (w)−∇f (w)∥2 ≤ σ2 .

For SGD to converge to the minimizer, the step-size ηk
needs to decrease with k .
The schedule according to which ηk needs to decrease
depends on the properties of f . For example, for smooth
convex functions, ηk = O (1/

√
k), whereas for smooth,

strongly-convex functions, ηk = O (1/k).
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Optimization Zoo

Function class L-smooth L-smooth + convex L-smooth + µ-strongly convex
Stochastic Gradient Descent Θ(1/ϵ2) Θ (1/ϵ2) Θ (1/ϵ)

Table 2: Using the stochastic first-order oracle that returns ∇f (w , ξ)

Function class L-smooth L-smooth + convex L-smooth + µ-strongly convex
Gradient Descent O (1/ϵ) O (1/ϵ) O (κ log (1/ϵ))

Stochastic Gradient Descent O (1/ϵ2) O (1/ϵ2) O (1/ϵ)

Table 3: Comparing the convergence rates of GD and SGD
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Questions?
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Minimizing smooth, non-convex functions using SGD

Claim: For L-smooth functions lower-bounded by f ∗, T iterations of stochastic gradient descent
with ηk = 1

L
1√
k+1

returns an iterate ŵ such that,

E[∥∇f (ŵ)∥2] ≤ 2L [f (x0)− f ∗]√
T

+
σ2 (1 + log(T ))√

T
.Proof: Using the L-smoothness of f with x = wk and y = wk+1 = wk − ηk∇fik(wk),

f (wk+1) ≤ f (wk) + ⟨∇f (wk),−ηk∇fik(wk)⟩+
L

2
η2
k ∥∇fik(wk)∥2

Taking expectation w.r.t ik on both sides,

E[f (wk+1)] ≤ f (wk) + E [⟨∇f (wk),−ηk∇fik(wk)⟩] +
L

2
E
[
η2
k ∥∇fik(wk)∥2

]
= f (wk) + ⟨∇f (wk),−ηkE [∇fik(wk)⟩] +

L

2
η2
k E

[
∥∇fik(wk)∥2

]
(Since ηk is independent of ik)

=⇒ E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +
Lη2

k

2
E
[
∥∇fik(wk)∥2

]
(Unbiasedness) 6



Minimizing smooth, non-convex functions using SGD

Recall that E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +
Lη2

k

2 E
[
∥∇fik(wk)∥2

]
.

E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +
Lη2

k

2
E
[
∥∇fik(wk)−∇f (wk) +∇f (wk)∥2

]
≤ f (wk)− ηk ∥∇f (wk)∥2 +

Lη2
k

2
E
[
∥∇fik(wk)−∇f (wk)∥2

]
+

Lη2
k

2
E
[
∥∇f (wk)∥2

]
(Since E[⟨∇f (wk),∇fik(wk)−∇f (wk)⟩] = 0)

= f (wk)− ηk ∥∇f (wk)∥2 +
Lη2

k

2
E
[
∥∇f (wk)∥2

]
+

Lσ2η2
k

2
(Using the bounded variance assumption)

Setting ηk ≤ 1
L for all k ,

=⇒ E[f (wk+1)] ≤ f (wk)−
ηk
2

∥∇f (wk)∥2 +
Lσ2η2

k

2
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Minimizing smooth, non-convex functions using SGD

Recall that E[f (wk+1)] ≤ f (wk)− ηk

2 ∥∇f (wk)∥2 +
Lσ2η2

k

2 .

ηk
2

∥∇f (wk)∥2 ≤ E[f (wk)− f (wk+1)] +
Lσ2η2

k

2

=⇒ ηmin

2
∥∇f (wk)∥2 ≤ E[f (wk)− f (wk+1)] +

Lσ2η2
k

2

Taking expectation w.r.t the randomness from iterations i = 0 to k − 1,

=⇒ ηmin

2
E
[
∥∇f (wk)∥2

]
≤ E[f (wk)− f (wk+1)] +

Lσ2η2
k

2

Summing from k = 0 to T − 1,

ηmin

2

T−1∑
k=0

E
[
∥∇f (wk)∥2

]
≤

T−1∑
k=0

E[f (wk)− f (wk+1)] +
Lσ2η2

k

2

=⇒ ηmin

2

T−1∑
k=0

E
[
∥∇f (wk)∥2

]
≤ E[f (w0)− f (wT )] +

Lσ2

2

T−1∑
k=0

η2
k
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Minimizing smooth, non-convex functions using SGD

Recall that ηmin

2

∑T−1
k=0 E

[
∥∇f (wk)∥2

]
≤ E[f (w0)− f (wT )] +

Lσ2

2

∑T−1
k=0 η2

k . Dividing by T ,

ηmin

2

∑T−1
k=0 E

[
∥∇f (wk)∥2

]
T

≤ E[f (w0)− f (wT )]

T
+

Lσ2

2T

T−1∑
k=0

η2
k

=⇒ min
k=0,...,T−1

E
[
∥∇f (wk)∥2

]
≤ 2E[f (w0)− f ∗]

ηmin T
+

Lσ2

ηmin T

T−1∑
k=0

η2
k

Define ŵ := argmink∈{0,1,...,T−1} E[∥∇f (wk)∥2] and choosing ηk = 1
L

1√
k+1

=⇒ E[∥∇f (ŵ)∥2] ≤ 2E[f (w0)− f ∗]

ηmin T
+

Lσ2

ηmin T

T−1∑
k=0

η2
k

=⇒ E[∥∇f (ŵ)∥2] ≤ 2LE[f (w0)− f ∗]√
T

+
σ2
√
T

T∑
k=1

1
k
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Minimizing smooth, non-convex functions using SGD

Recall that E[∥∇f (ŵ)∥2] ≤ 2LE[f (w0)−f ∗]√
T

+ σ2
√
T

∑T
k=1

1
k . Since

∑T
k=1

1
k ≤ 1 + log(T ),

=⇒ E[∥∇f (ŵ)∥2] ≤ 2L [f (w0)− f ∗]√
T

+
σ2 (1 + log(T ))√

T

Hence, compared to GD that has an O (1/T) rate of convergence, SGD has an O (1/
√
T)

convergence rate, but each iteration of SGD is faster.

Can modify the proof such that we get a guarantee for a random iterate j i.e. run SGD for T
iterations, randomly sample an iterate and in expectation (over the iterations), it will have small
gradient norm.
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Minimizing smooth, non-convex functions using SGD

Typically in practice, we use a mini-batch of size b in the SGD update. At iteration, sample a
batch Bk of examples:

wk+1 = wk − ηk

[
1
b

∑
i∈Bk

∇fi (wk)

]
The examples in the batch can be sampled independently uniformly at random with replacement,
but other sampling schemes also work. The gradients can be computed in parallel (on a GPU for
example) and the resulting update is efficient.
Theoretically, the same proof works. But since we are sampling with replacement, the “effective”
noise is reduced to σ2

b = n−b
n b σ2. Hence, if b = n, σb = 0.

Lower Bound: Without additional assumptions, for smooth functions, no first-order algorithm
using the stochastic gradient oracle can obtain a (dimension-independent) convergence rate
faster than Ω (1/

√
T).

Hence, similar to the deterministic setting, SGD is optimal for minimizing general smooth,
non-convex functions.
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Questions?
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Minimizing smooth, convex functions using SGD

Claim: For L-smooth, convex functions, T iterations of stochastic gradient descent with
ηk = 1

2L
1√
k+1

returns an iterate w̄T =
∑T−1

k=0 wk

T such that,

E[f (w̄T )− f (w∗)] ≤ 2L ∥w0 − w∗∥2

√
T

+
σ2(1 + log(T ))

2L
√
T

. Proof: Using the SGD update, wk+1 = wk − ηk∇fik(wk),

∥wk+1 − w∗∥2 = ∥wk − ηk∇fik(wk)− w∗∥2

= ∥wk − w∗∥2 − 2ηk⟨∇fik(wk),wk − w∗⟩+ η2
k ∥∇fik(wk)∥2

Taking expectation w.r.t ik on both sides, and assuming ηk is independent of ik

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2E [ηk⟨∇fik(wk),wk − w∗⟩] + E
[
η2
k ∥∇fik(wk)∥2

]
= ∥wk − w∗∥2 − 2ηk⟨E [∇fik(wk)] ,wk − w∗⟩+ η2

k E
[
∥∇fik(wk)∥2

]
=⇒ E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2

k E
[
∥∇fik(wk)∥2

]
(Unbiasedness)
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Minimizing smooth, convex functions using SGD

Recall that E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2
k E

[
∥∇fik(wk)∥2

]
.

E[∥wk+1 − w∗∥2]

= ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2
k E

[
∥∇fik(wk)−∇f (wk) +∇f (wk)∥2

]
= ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2

k E
[
∥∇fik(wk)−∇f (wk)∥2

]
+ η2

k E
[
∥∇f (wk)∥2

]
(Since E[⟨∇f (wk),∇fik(wk)−∇f (wk)⟩] = 0)

≤ ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2
k E

[
∥∇f (wk)∥2

]
+ η2

k σ
2

(Using the bounded variance assumption)

Using convexity of f , f (y) ≥ f (x) + ⟨∇f (x), y − x⟩ with y = w∗ and x = wk ,

≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + η2
k E

[
∥∇f (wk)∥2

]
+ η2

k σ
2

=⇒ E[∥wk+1 − w∗∥2] ≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + 2L η2
k E[f (wk)− f (w∗)] + η2

k σ
2

(Using L-smoothness of f )
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Minimizing smooth, convex functions using SGD

Recall E[∥wk+1 − w∗∥2] ≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + 2L η2
k E[f (wk)− f (w∗)] + η2

k σ
2.

Using ηk ≤ 1
2L for all k ,

E[∥wk+1 − w∗∥2] ≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + ηk E[f (wk)− f (w∗)] + η2
k σ

2

= ∥wk − w∗∥2 − ηk [f (wk)− f (w∗)] + η2
k σ

2

=⇒ ηk [f (wk)− f (w∗)] ≤
[
∥wk − w∗∥2 − ∥wk+1 − w∗∥2

]
+ η2

k σ
2

=⇒ ηmin[f (wk)− f (w∗)] ≤
[
∥wk − w∗∥2 − ∥wk+1 − w∗∥2

]
+ η2

k σ
2

Taking expectation w.r.t the randomness from iterations i = 0 to k − 1,

ηmin E[f (wk)− f (w∗)] ≤ E
[
∥wk − w∗∥2 − ∥wk+1 − w∗∥2

]
+ η2

k σ
2

Summing from k = 0 to T − 1,

ηmin

T−1∑
k=0

E[f (wk)− f (w∗)] ≤
T−1∑
k=0

E
[
∥wk − w∗∥2 − ∥wk+1 − w∗∥2

]
+ σ2

T−1∑
k=0

η2
k
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Minimizing smooth, convex functions using SGD

Recall ηmin

∑T−1
k=0 E[f (wk)− f (w∗)] ≤

∑T−1
k=0 E

[
∥wk − w∗∥2 − ∥wk+1 − w∗∥2

]
+ σ2 ∑T−1

k=0 η2
k .

T−1∑
k=0

E[f (wk)− f (w∗)] ≤
E
[
∥w0 − w∗∥2 − ∥wT − w∗∥2

]
ηmin

+
σ2

ηmin

T−1∑
k=0

η2
k

=⇒
∑T−1

k=0 E[f (wk)− f (w∗)]

T
≤ ∥w0 − w∗∥2

ηmin T
+

σ2

ηmin T

T−1∑
k=0

η2
k (Dividing by T )

Define w̄T :=
∑T−1

k=0 wk

T . Since f is convex, we can use Jensen’s inequality to conclude that

E[f (w̄T )] ≤
∑T−1

k=0 E[f (wk )]

T . Choosing ηk = 1
2L

1√
k+1

,

E[f (w̄T )− f (w∗)] ≤ 2L ∥w0 − w∗∥2

√
T

+
σ2

2L
√
T

T∑
k=1

1
k
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Minimizing smooth, convex functions using SGD

Recall that E[f (w̄T )− f (w∗)] ≤ 2L ∥w0−w∗∥2
√
T

+ σ2
√
T

∑T
k=1

1
k . Since

∑T
k=1

1
k ≤ 1 + log(T ),

E [f (w̄T )− f (w∗)] ≤ 2L ∥w0 − w∗∥2

√
T

+
σ2(1 + log(T ))

2L
√
T

Hence, compared to GD that has an O (1/T) rate of convergence, SGD has an O (1/
√
T)

convergence rate, but each iteration of SGD is faster.

For GD, we proved a guarantee for the last iterate wT ; for SGD, our guarantee only holds for the
average iterate w̄T . By using a different step-size scheme, we can get last-iterate convergence.

Lower Bound: Without additional assumptions, for smooth, convex functions, no first-order
algorithm using the stochastic gradient oracle can obtain a (dimension-independent) convergence
rate faster than Ω (1/

√
T).

Hence, unlike the deterministic setting, SGD is optimal for minimizing smooth, convex functions.
In the stochastic setting, using momentum or Nesterov acceleration has no provable benefit in
terms of the dependence on T .
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Minimizing smooth, convex functions using SGD

Let us analyze the convergence for alternative choices of the step-size. By following the previous
proof, we have that for ηk ≤ 1

2L ,

E[f (w̄T )− f (w∗)] ≤ ∥w0 − w∗∥2

ηmin T
+

σ2

ηmin T

T∑
k=1

η2
k

If we do not decay the step-size, and set ηk = η = 1
2L , then,

E[f (w̄T )− f (w∗)] ≤ 2L ∥w0 − w∗∥2

T︸ ︷︷ ︸
bias

+
σ2

2L︸︷︷︸
neighbourhood

Hence, if we use a constant step-size for SGD, it will not converge to the minimum value but will
oscillate in a neighbourhood around the minimum. Recall that if we use a mini-batch size of b,
the “effective” noise is reduced to σ2

b = n−b
n b σ2. Hence, the size of the neighbourhood in which

SGD oscillates is reduced. If b = n, σ2
b = 0 and SGD with a constant step-size (same as GD) will

converge to the minimizer.
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Questions?
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