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In Lecture 8, on Slide 17, we proved an O(1/T + σ2) convergence rate for constant step-size SGD
when minimizing smooth, convex functions. For this result, we assumed that the variance is bounded i.e
Ei ‖∇fi(w)−∇f(w)‖2 ≤ σ2 and used a step-size η = 1

2L
where L is the smoothness of f . However, in

Assignment 3, we saw that this scheme could result in poor empirical performance because the resulting
step-size is too large.

Though the proof we did is correct, it is quite loose and in this note, we will provide a better proof
with a weaker notion of variance. In order for this note to be self-contained, let us first repeat the old
proof from Lecture 8.

Claim: For L-smooth, convex functions, T iterations of stochastic gradient descent with ηk = 1
2L

returns an iterate w̄T =
∑T−1

k=0 wk

T
such that,

E[f(w̄T )− f(w∗)] ≤ 2L ‖w0 − w∗‖2

T︸ ︷︷ ︸
bias

+
σ2

2L︸︷︷︸
neighbourhood

Proof. Using the SGD update, wk+1 = wk − ηk∇fik(wk),

‖wk+1 − w∗‖2 = ‖wk − ηk∇fik(wk)− w∗‖2

= ‖wk − w∗‖2 − 2ηk〈∇fik(wk), wk − w∗〉+ η2k ‖∇fik(wk)‖2

Taking expectation w.r.t ik on both sides, and assuming ηk is independent of ik

E[‖wk+1 − w∗‖2] = ‖wk − w∗‖2 − 2E [ηk〈∇fik(wk), wk − w∗〉] + E
[
η2k ‖∇fik(wk)‖2

]
= ‖wk − w∗‖2 − 2ηk〈E [∇fik(wk)] , wk − w∗〉+ η2k E

[
‖∇fik(wk)‖2

]
E[‖wk+1 − w∗‖2] = ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ η2k E

[
‖∇fik(wk)‖2

]
(Unbiasedness)

Now we need to control the E
[
‖∇fik(wk)‖2

]
term.

E[‖wk+1 − w∗‖2]
≤ ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ η2k E

[
‖∇fik(wk)−∇f(wk) +∇f(wk)‖2

]
= ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ η2k E

[
‖∇fik(wk)−∇f(wk)‖2

]
+ η2k E

[
‖∇f(wk)‖2

]
(Since E[〈∇f(wk),∇fik(wk)−∇f(wk)〉] = 0)

≤ ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ η2k E
[
‖∇f(wk)‖2

]
+ η2k σ

2

(Using the bounded variance assumption)

∗Thanks to Reza Babanezhad for checking the proof.
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Using convexity of f , f(y) ≥ f(x) + 〈∇f(x), y − x〉 with y = w∗ and x = wk,

≤ ‖wk − w∗‖2 − 2ηk[f(wk)− f(w∗)] + η2k E
[
‖∇f(wk)‖2

]
+ η2k σ

2

E ‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − 2ηk[f(wk)− f(w∗)] + 2Lη2k E[f(wk)− f(w∗)] + η2k σ
2

(Using L-smoothness of f)

Since ηk ≤ 1
2L
, 2Lηk ≤ 1,

E ‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − ηk[f(wk)− f(w∗)] + η2k σ
2

=⇒ E[f(wk)− f(w∗)] ≤ 1

ηk

[
‖wk − w∗‖2 − ‖wk+1 − w∗‖2

]
+ ηk σ

2

= 2L
[
‖wk − w∗‖2 − E ‖wk+1 − w∗‖2

]
+
σ2

2L
(Since ηk = 1

2L
)

Summing from k = 0 to k = T − 1, telescoping the first term on the RHS and dividing by T∑T−1
k=0 E[f(wk)− f(w∗)]

T
≤ 2L ‖w0 − w∗‖2

T
+ +

σ2

2L

Using Jensen’s inequality on the LHS, and the definition of w̄T ,

E[f(w̄T )− f(w∗)] ≤ 2L ‖w0 − w∗‖2

T
+
σ2

2L

Let us now prove a bound that will make a weaker assumption on the variance, and the resulting
algorithm will result in better empirical performance.

For this, we consider minimizing need the additional assumption that each fi is Li-smooth and define
Lmax := maxi Li. We will use a step-size of η = 1

4Lmax
and prove an O(1/T + ζ2) convergence where

ζ2 := Ei ‖∇fi(w∗)‖2 = Ei ‖∇fi(w∗)−∇f(w∗)‖2 i.e. we need the variance to be bounded only at the
minimizer (instead of each iterate like in the definition of σ2). Moreover, since Lmax ≥ L, the resulting
step-size will be smaller and result in better empirical performance. Let us prove the following claim:
Claim: When minimizing the functionf(w) := 1

n

∑n
i=1 fi(w) where f is convex and each fi is Li-smooth

such that Lmax = maxi Li, T iterations of stochastic gradient descent with ηk = 1
4Lmax

returns an iterate

w̄T =
∑T−1

k=0 wk

T
such that,

E[f(w̄T )− f(w∗)] ≤ 4Lmax ‖w0 − w∗‖2

T︸ ︷︷ ︸
bias

+
ζ2

2Lmax︸ ︷︷ ︸
neighbourhood
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Proof. Using the same initial steps as before, we reach the following inequality,

E[‖wk+1 − w∗‖2]
≤ ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ η2k E

[
‖∇fik(wk)‖2

]
= ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ η2k E

[
‖∇fik(wk)−∇fik(w∗) +∇fik(w∗)‖2

]
≤ ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ 2η2k E

[
‖∇fik(wk)−∇fik(w∗)‖2 + 2η2k E ‖∇fik(w∗)‖2

]
(Since ‖a+ b‖2 ≤ 2 ‖a‖2 + ‖b‖2)

= ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ 2η2k E ‖∇fik(wk)−∇fik(w∗)‖2 + 2η2k ζ
2

≤ ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ 4η2k LmaxE [fik(wk)− fik(w∗) + 〈∇fik(w∗), w∗ − wk〉] + 2η2k ζ
2

(Since each fik is Li and hence Lmax-smooth)

= ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ 4η2k Lmax [f(wk)− f(w∗) + 〈∇f(w∗), w∗ − wk〉] + 2η2k ζ
2

(Unbiasedness)

=⇒ E ‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − 2ηk〈∇f(wk), wk − w∗〉+ 4η2k Lmax [f(wk)− f(w∗)] + 2η2k ζ
2

(∇f(w∗) = 0)

Using convexity of f to simplify the second term, and since ηk ≤ 1
4Lmax

, 4Lmax ηk ≤ 1,

E ‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − ηk [f(wk)− f(w∗)] + 2η2k ζ
2

=⇒ E[f(wk)− f(w∗)] ≤ 1

ηk

[
‖wk − w∗‖2 − E ‖wk+1 − w∗‖2

]
+ 2ηk ζ

2

= 4Lmax

[
‖wk − w∗‖2 − E ‖wk+1 − w∗‖2

]
+

ζ2

2Lmax

(Since ηk = 1
4Lmax

)

Summing from k = 0 to k = T − 1, telescoping the first term on the RHS and dividing by T∑T−1
k=0 E[f(wk)− f(w∗)]

T
≤ 4Lmax ‖w0 − w∗‖2

T
+

ζ2

2Lmax

Using Jensen’s inequality on the LHS, and the definition of w̄T ,

E[f(w̄T )− f(w∗)] ≤ 4Lmax ‖w0 − w∗‖2

T
+

ζ2

2Lmax

We can do a similar analysis for the decreasing O(1/
√
k) step-size, and obtain a dependence on ζ2

(instead of σ2).
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