CMPT 409/981: Optimization for Machine Learning Lecture 8: Additional Notes

Sharan Vaswani *

December 8, 2022

In Lecture 8, on Slide 17, we proved an $O\left(1 / T+\sigma^{2}\right)$ convergence rate for constant step-size SGD when minimizing smooth, convex functions. For this result, we assumed that the variance is bounded i.e $\mathbb{E}_{i}\left\|\nabla f_{i}(w)-\nabla f(w)\right\|^{2} \leq \sigma^{2}$ and used a step-size $\eta=\frac{1}{2 L}$ where L is the smoothness of f. However, in Assignment 3, we saw that this scheme could result in poor empirical performance because the resulting step-size is too large.

Though the proof we did is correct, it is quite loose and in this note, we will provide a better proof with a weaker notion of variance. In order for this note to be self-contained, let us first repeat the old proof from Lecture 8.

Claim: For L-smooth, convex functions, T iterations of stochastic gradient descent with $\eta_{k}=\frac{1}{2 L}$ returns an iterate $\bar{w}_{T}=\frac{\sum_{k=0}^{T-1} w_{k}}{T}$ such that,

$$
\mathbb{E}\left[f\left(\bar{w}_{T}\right)-f\left(w^{*}\right)\right] \leq \underbrace{\frac{2 L\left\|w_{0}-w^{*}\right\|^{2}}{T}}_{\text {bias }}+\underbrace{\frac{\sigma^{2}}{2 L}}_{\text {neighbourhood }}
$$

Proof. Using the SGD update, $w_{k+1}=w_{k}-\eta_{k} \nabla f_{i k}\left(w_{k}\right)$,

$$
\begin{aligned}
\left\|w_{k+1}-w^{*}\right\|^{2} & =\left\|w_{k}-\eta_{k} \nabla f_{i k}\left(w_{k}\right)-w^{*}\right\|^{2} \\
& =\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f_{i k}\left(w_{k}\right), w_{k}-w^{*}\right\rangle+\eta_{k}^{2}\left\|\nabla f_{i k}\left(w_{k}\right)\right\|^{2}
\end{aligned}
$$

Taking expectation w.r.t i_{k} on both sides, and assuming η_{k} is independent of i_{k}

$$
\begin{align*}
\mathbb{E}\left[\left\|w_{k+1}-w^{*}\right\|^{2}\right] & =\left\|w_{k}-w^{*}\right\|^{2}-2 \mathbb{E}\left[\eta_{k}\left\langle\nabla f_{i k}\left(w_{k}\right), w_{k}-w^{*}\right\rangle\right]+\mathbb{E}\left[\eta_{k}^{2}\left\|\nabla f_{i k}\left(w_{k}\right)\right\|^{2}\right] \\
& =\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\mathbb{E}\left[\nabla f_{i k}\left(w_{k}\right)\right], w_{k}-w^{*}\right\rangle+\eta_{k}^{2} \mathbb{E}\left[\left\|\nabla f_{i k}\left(w_{k}\right)\right\|^{2}\right] \\
\mathbb{E}\left[\left\|w_{k+1}-w^{*}\right\|^{2}\right] & =\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+\eta_{k}^{2} \mathbb{E}\left[\left\|\nabla f_{i k}\left(w_{k}\right)\right\|^{2}\right] \tag{Unbiasedness}
\end{align*}
$$

Now we need to control the $\mathbb{E}\left[\left\|\nabla f_{i k}\left(w_{k}\right)\right\|^{2}\right]$ term.

$$
\begin{aligned}
& \mathbb{E}\left[\left\|w_{k+1}-w^{*}\right\|^{2}\right] \\
& \begin{aligned}
& \leq\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+\eta_{k}^{2} \mathbb{E}\left[\left\|\nabla f_{i k}\left(w_{k}\right)-\nabla f\left(w_{k}\right)+\nabla f\left(w_{k}\right)\right\|^{2}\right] \\
&=\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+ \eta_{k}^{2} \mathbb{E}\left[\left\|\nabla f_{i k}\left(w_{k}\right)-\nabla f\left(w_{k}\right)\right\|^{2}\right]+\eta_{k}^{2} \mathbb{E}\left[\left\|\nabla f\left(w_{k}\right)\right\|^{2}\right] \\
& \quad\left(\operatorname{Since} \mathbb{E}\left[\left\langle\nabla f\left(w_{k}\right), \nabla f_{i k}\left(w_{k}\right)-\nabla f\left(w_{k}\right)\right\rangle\right]=0\right) \\
& \leq\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+\eta_{k}^{2} \mathbb{E}\left[\left\|\nabla f\left(w_{k}\right)\right\|^{2}\right]+\eta_{k}^{2} \sigma^{2}
\end{aligned}
\end{aligned}
$$

(Using the bounded variance assumption)

[^0]Using convexity of $f, f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$ with $y=w^{*}$ and $x=w_{k}$,

$$
\begin{aligned}
& \leq\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]+\eta_{k}^{2} \mathbb{E}\left[\left\|\nabla f\left(w_{k}\right)\right\|^{2}\right]+\eta_{k}^{2} \sigma^{2} \\
\mathbb{E}\left\|w_{k+1}-w^{*}\right\|^{2} & \leq\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]+2 L \eta_{k}^{2} \mathbb{E}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]+\eta_{k}^{2} \sigma^{2}
\end{aligned}
$$

(Using L-smoothness of f)
Since $\eta_{k} \leq \frac{1}{2 L}, 2 L \eta_{k} \leq 1$,

$$
\begin{aligned}
\mathbb{E}\left\|w_{k+1}-w^{*}\right\|^{2} & \leq\left\|w_{k}-w^{*}\right\|^{2}-\eta_{k}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]+\eta_{k}^{2} \sigma^{2} \\
\Longrightarrow \mathbb{E}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right] & \leq \frac{1}{\eta_{k}}\left[\left\|w_{k}-w^{*}\right\|^{2}-\left\|w_{k+1}-w^{*}\right\|^{2}\right]+\eta_{k} \sigma^{2} \\
& =2 L\left[\left\|w_{k}-w^{*}\right\|^{2}-\mathbb{E}\left\|w_{k+1}-w^{*}\right\|^{2}\right]+\frac{\sigma^{2}}{2 L} \quad \quad \quad \text { (Since } \eta_{k}=\frac{1}{2 L} \text {) }
\end{aligned}
$$

Summing from $k=0$ to $k=T-1$, telescoping the first term on the RHS and dividing by T

$$
\frac{\sum_{k=0}^{T-1} \mathbb{E}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]}{T} \leq \frac{2 L\left\|w_{0}-w^{*}\right\|^{2}}{T}++\frac{\sigma^{2}}{2 L}
$$

Using Jensen's inequality on the LHS, and the definition of \bar{w}_{T},

$$
\mathbb{E}\left[f\left(\bar{w}_{T}\right)-f\left(w^{*}\right)\right] \leq \frac{2 L\left\|w_{0}-w^{*}\right\|^{2}}{T}+\frac{\sigma^{2}}{2 L}
$$

Let us now prove a bound that will make a weaker assumption on the variance, and the resulting algorithm will result in better empirical performance.

For this, we consider minimizing need the additional assumption that each f_{i} is L_{i}-smooth and define $L_{\max }:=\max _{i} L_{i}$. We will use a step-size of $\eta=\frac{1}{4 L_{\max }}$ and prove an $O\left(1 / T+\zeta^{2}\right)$ convergence where $\zeta^{2}:=\mathbb{E}_{i}\left\|\nabla f_{i}\left(w^{*}\right)\right\|^{2}=\mathbb{E}_{i}\left\|\nabla f_{i}\left(w^{*}\right)-\nabla f\left(w^{*}\right)\right\|^{2}$ i.e. we need the variance to be bounded only at the minimizer (instead of each iterate like in the definition of σ^{2}). Moreover, since $L_{\max } \geq L$, the resulting step-size will be smaller and result in better empirical performance. Let us prove the following claim:
Claim: When minimizing the function $f(w):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$ where f is convex and each f_{i} is L_{i}-smooth such that $L_{\text {max }}=\max _{i} L_{i}, T$ iterations of stochastic gradient descent with $\eta_{k}=\frac{1}{4 L_{\max }}$ returns an iterate $\bar{w}_{T}=\frac{\sum_{k=0}^{T-1} w_{k}}{T}$ such that,

$$
\mathbb{E}\left[f\left(\bar{w}_{T}\right)-f\left(w^{*}\right)\right] \leq \underbrace{\frac{4 L_{\max }\left\|w_{0}-w^{*}\right\|^{2}}{T}}_{\text {bias }}+\underbrace{\frac{\zeta^{2}}{2 L_{\max }}}_{\text {neighbourhood }}
$$

Proof. Using the same initial steps as before, we reach the following inequality,

$$
\begin{align*}
& \mathbb{E}\left[\left\|w_{k+1}-w^{*}\right\|^{2}\right] \\
& \leq\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+\eta_{k}^{2} \mathbb{E}\left[\left\|\nabla f_{i k}\left(w_{k}\right)\right\|^{2}\right] \\
& =\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+\eta_{k}^{2} \mathbb{E}\left[\left\|\nabla f_{i k}\left(w_{k}\right)-\nabla f_{i k}\left(w^{*}\right)+\nabla f_{i k}\left(w^{*}\right)\right\|^{2}\right] \\
& \leq\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+2 \eta_{k}^{2} \mathbb{E}\left[\left\|\nabla f_{i k}\left(w_{k}\right)-\nabla f_{i k}\left(w^{*}\right)\right\|^{2}+2 \eta_{k}^{2} \mathbb{E}\left\|\nabla f_{i k}\left(w^{*}\right)\right\|^{2}\right] \\
& \quad\left(\text { Since }\|a+b\|^{2} \leq 2\|a\|^{2}+\|b\|^{2}\right) \\
& =\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+2 \eta_{k}^{2} \mathbb{E}\left\|\nabla f_{i k}\left(w_{k}\right)-\nabla f_{i k}\left(w^{*}\right)\right\|^{2}+2 \eta_{k}^{2} \zeta^{2} \\
& \leq\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+4 \eta_{k}^{2} L_{\max } \mathbb{E}\left[f_{i k}\left(w_{k}\right)-f_{i k}\left(w^{*}\right)+\left\langle\nabla f_{i k}\left(w^{*}\right), w^{*}-w_{k}\right\rangle\right]+2 \eta_{k}^{2} \zeta^{2} \\
& \text { (Since each } f_{i k} \text { is } L_{i} \text { and hence } L_{\max \text {-smooth) })} \\
& =\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+4 \eta_{k}^{2} L_{\max }\left[f\left(w_{k}\right)-f\left(w^{*}\right)+\left\langle\nabla f\left(w^{*}\right), w^{*}-w_{k}\right\rangle\right]+2 \eta_{k}^{2} \zeta^{2} \\
& \text { (Unbiasedness) }) \\
& \Longrightarrow \mathbb{E}\left\|w_{k+1}-w^{*}\right\|^{2} \leq\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle\nabla f\left(w_{k}\right), w_{k}-w^{*}\right\rangle+4 \eta_{k}^{2} L_{\max }\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]+2 \eta_{k}^{2} \zeta^{2} \tag{*}
\end{align*}
$$

Using convexity of f to simplify the second term, and since $\eta_{k} \leq \frac{1}{4 L_{\max }}, 4 L_{\max } \eta_{k} \leq 1$,

$$
\begin{aligned}
\mathbb{E}\left\|w_{k+1}-w^{*}\right\|^{2} & \leq\left\|w_{k}-w^{*}\right\|^{2}-\eta_{k}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]+2 \eta_{k}^{2} \zeta^{2} \\
\Longrightarrow \mathbb{E}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right] & \leq \frac{1}{\eta_{k}}\left[\left\|w_{k}-w^{*}\right\|^{2}-\mathbb{E}\left\|w_{k+1}-w^{*}\right\|^{2}\right]+2 \eta_{k} \zeta^{2} \\
& =4 L_{\max }\left[\left\|w_{k}-w^{*}\right\|^{2}-\mathbb{E}\left\|w_{k+1}-w^{*}\right\|^{2}\right]+\frac{\zeta^{2}}{2 L_{\max }} \quad \quad \quad \text { (Since } \eta_{k}=\frac{1}{4 L_{\max }} \text {) }
\end{aligned}
$$

Summing from $k=0$ to $k=T-1$, telescoping the first term on the RHS and dividing by T

$$
\frac{\sum_{k=0}^{T-1} \mathbb{E}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]}{T} \leq \frac{4 L_{\max }\left\|w_{0}-w^{*}\right\|^{2}}{T}+\frac{\zeta^{2}}{2 L_{\max }}
$$

Using Jensen's inequality on the LHS, and the definition of \bar{w}_{T},

$$
\mathbb{E}\left[f\left(\bar{w}_{T}\right)-f\left(w^{*}\right)\right] \leq \frac{4 L_{\max }\left\|w_{0}-w^{*}\right\|^{2}}{T}+\frac{\zeta^{2}}{2 L_{\max }}
$$

We can do a similar analysis for the decreasing $O(1 / \sqrt{k})$ step-size, and obtain a dependence on ζ^{2} (instead of σ^{2}).

[^0]: *Thanks to Reza Babanezhad for checking the proof.

