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In Lecture 8, on Slide 17, we proved an O(1/T + o) convergence rate for constant step-size SGD
when minimizing smooth, convex functions. For this result we assumed that the variance is bounded i.e
E; |V fi(w) — Vf(w)||* < 0% and used a step-size n = 57 Where L is the smoothness of f. However, in
Assignment 3, we saw that this scheme could result in poor empirical performance because the resulting
step-size is too large.

Though the proof we did is correct, it is quite loose and in this note, we will provide a better proof
with a weaker notion of variance. In order for this note to be self-contained, let us first repeat the old
proof from Lecture 8.

Claim: For L-smooth, convex functions, T iterations of stochastic gradient descent with n; = ﬁ

returns an iterate wp = Z’“% such that,
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Proof. Using the SGD update, wi11 = wr — k. V fir(wi),

[wisr — w*||* = [Jwg, — 7V fir(wi) — w*|?
= ||wy — w*||* — 20V far (i), wi — ) + 0} ||V far(wpe) ||

Taking expectation w.r.t 75 on both sides, and assuming 7, is independent of i

El|wier — w**] = llwn — w*||* = 2E [V fir(w), wi — w*)] +E [0 |V fir(wn)|I]
= [Jwy — || = 2 (E [V fr(wi)] s wr. = w) + 0 E [V fa(wi) %]
(V

Elflwa — ) = fwe — w2 = 20(V (), we — w') + 2 E [V fielwn)]]  (Unbiasedness)

Now we need to control the E [vam(wk)\ﬂ term.

E[f|wis1 — w*||’]
< Jwp — w*||” = 20V f (wr), we — w*) + i B [IV fi(we) — V f (wie) + V f (w)]?]

= Jlw — w*||* = 20 (V f (wi), wi — w*) + N E |V fir(wi) = Vf (wi)|*] + 2 B [[IVf (we) |?]
(Since E[(V f(wg), V fir(wr) — Vf(wg))] = 0)

< Nl = w*l* = 20(V f (wi), wi, = w*) + 0 E [V f (wi) ] + 18 0
(Using the bounded variance assumption)

*Thanks to Reza Babanezhad for checking the proof.



Using convexity of f, f(y) > f(x) + (Vf(z),y — z) with y = w* and = = wy,

< Jlwe = w*l|* = 20 f (wi) = F(w")] + 0g E [V f (wi) |*] + 7 0
E wier — w*|* < llwx — ™| = 20 [f (we) — f(w")] + 2L ELf (wi) — f(w)] + 17 0
(Using L-smoothness of f)

Since 1 < ﬁ, 2L, <1,

E [Jwys1 — w[|* < Jlwy — w*|* = m[f(wr) = f(w")] + nj 0

— E[f(wy) — f(w)] < ni [k — 0 — e — w*?] + i 0?

2

(Since m = 5-)

* % g
= 2L [|lwy — w*||* = E [Jwysr — w*|*] + 5T

2L

Summing from & = 0 to k =T — 1, telescoping the first term on the RHS and dividing by 7'

v Elf(wg) — f(w*)] _ 2L [Jwo — w*||? o’
< +
T - T 2L

Using Jensen’s inequality on the LHS, and the definition of wr,

oL |lwo — w*||* o2
< +

B[f(wr) — f(w')] - 0

]

Let us now prove a bound that will make a weaker assumption on the variance, and the resulting
algorithm will result in better empirical performance.

For this, we consider minimizing need the additional assumption that each f; is L;-smooth and define
Loy := max; L;. We will use a step-size of n = 4L3m and prove an O(1/T + ¢?) convergence where

= E ||Vfi(w)]? = Ei |Vfi(w*) = Vf(w*)||* i.e. we need the variance to be bounded only at the
minimizer (instead of each iterate like in the definition of o). Moreover, since L., > L, the resulting
step-size will be smaller and result in better empirical performance. Let us prove the following claim:

Claim: When minimizing the functionf(w) := £ 3" | f;(w) where f is convex and each f; is L;-smooth

“n
such that L., = max; L;, T iterations of stochastic gradient descent with n, = 4Lr1na returns an iterate

T—-1
wr = M such that,

_ 4Lmax HwO — U}*H2 <2
E[f (ar) — f(w)] <
[f(wr) — f(w")] < N T + 2L nax
< =
bias neighbourhood



Proof. Using the same initial steps as before, we reach the following inequality,

EfJwisr — w*])*]
< JJwp = w[* = 20V f (wy), wy — w*) + 12 B [[|V fir (i) ||]
= llwx = w*[|* = 2m(V f (wi), wi — w*) + i B |V fir(wi) = V fir(w”) + V fir(w")||]
< Jlwk — w*|I* = 20(V f (wi), wi — w*) + 203 B [V fir(wi) = V fir(w)|* + 207 B |V fie(w")||*]
(Since [la+b]* < 2 al|* + [|b]|*)
= [l — w*[|* = 2k (V f (wi), wi, — w*) + 207 B |V fir(wie) =V fir (w*) || + 207 ¢

< Jwy = w*||* = 20 (V f (wi), wi — w*) + 407 LinaxE [fir(wi) — firx(w*) + (V fir(w"), w* — wy)] + 203 ¢°
(Since each f, is L; and hence Ly, -smooth)

= wn = w” = 200(V f (wi), wp = w*) + 40 Linax [f (wr) = (") + (Vf (), w" = wy)] + 207 ¢
(Unbiasedness)

— B |lwpyr — '] < JJwe — w*||* = 206 (V f(wr), w, — w*) + 407 Linas [f (wi) — f(w*)] + 202 ¢

(Vf(w") =0)
Using convexity of f to simplify the second term, and since n; < ﬁ, AL max e < 1,
E [Jwps1 — wl|* < flwy — w*|* = i [f(wr) = f(w)] + 207 ¢
= E[f(wi) — f(w')] < % [lwr = w[* = E lwgsr — w"||*] + 2, ¢2
= 4L [[Jwr — w*||* = E [Jwpsr — w*||*] + QLCI;X (Since ng = ﬁ)

Summing from k =0 to k =T — 1, telescoping the first term on the RHS and dividing by T'

ko B (wi) = f(0)] _ ALma o —w'|* | ¢
T - T 2Lmax

Using Jensen’s inequality on the LHS, and the definition of wr,

AL w0 =, ¢
T 2Lax

E[f(wr) — f(w)] <
0

We can do a similar analysis for the decreasing O(1/v/k) step-size, and obtain a dependence on (>
(instead of o?).



