CMPT 409/981: Optimization for Machine Learning

Lecture 7

Sharan Vaswani
October 6, 2022

For L-smooth, p-strongly convex functions,

@ Gradient Descent (GD) results in an O (exp (~7/x)) rate.
@ Nesterov acceleration can speed up the convergence and results in an © (exp (—=7/vx)) rate.

@ Heavy-Ball momentum matches the GD rate at the beginning, but achieves the accelerated
rate after O(k) iterations (requires additional assumptions).

o Lower-Bound: Without additional assumptions, no first-order algorithm (one that only relies
on gradient information) can attain a dimension-free rate faster than Q (exp (=7/vx)).

Today, we will use second-order (Hessian) information to minimize twice differentiable, L-smooth
and pu-strongly convex functions and get faster rates.

Gradient Descent and Newton’s method

Recall the GD update: wyi1 = wx — nVf(wk). This can also be written as:

. 1
Wit1 = argmin | f(wy) + (VF(wg), wx — w) +%Hwkfw||2
w
First-order Taylor series approximation —

Stay close to wy

i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the Euclidean norm) to the current point.

If f is twice-differentiable, and we approximate it by a second-order Taylor series expansion,

1
Wi1 = argmin | f(wg) + (VF(we), w — wy) + E(W —wi)" sz(wk)(w — wy)

Second-order Taylor series approximation

= wir1 = wix — [V2F(w)] V(Wi)] (Newton Update)

Digression - Preconditioned Gradient Descent

Recall that GD achieves an O (klog (1)) convergence rate, and the condition number r > 1
dictates the difficulty of solving the problem.

Idea: Reparameterize the space so that the minimum function value remains the same, but
condition number in the reparameterized space is smaller enabling GD to converge faster.

L
Example: min,er2 f(w) = 2wTAw where A=

O] . For the above problem, w* =0,
1

f(w*)=0and k = ﬁ

Let us choose a preconditioning matrix Q € R2*2? such that w = Qv, and write the

0 =

QTAQ =1, g(v) = %VTV. Clearly, v* =0 and g(v*) =0 and w* = Qv* = 0. For this problem,

x = 1 making it easier to solve using GD.

0
reparameterized function g(v) := 1[QV]TA[Qv] = SvTQTAQv. If we choose Q = [ﬂ . 1 '

Digression - Preconditioned Gradient Descent

Formalizing the intuition on the previous slide, define a positive definite, symmetric matrix
Q € R¥*9 such that w = Qv and hence, v = Q*w. Define g(v) := f(Qv).

Q: If w* = argmin,, f(w) and v* = argmin, g(v), is f(w*) = g(v*)?

Ans: Yes. If g(v*) = f(Qv*) < f(w*), define w, := Qv* for which f(w,) < f(w*) which is a
contradiction. Similarly, if f(w*) < g(v*), then for v, = Q *w*,

f(w*) =f(Qv,) = g(vp) < g(v*) which is a contradiction. Hence, f(w*) = g(v*).

Computing the gradient of g(v), Vg(v) = Q VF(Qv). Running GD on g(v), we get that,
Vierr = vik = nV&(vie) = vie = n[Q VF(Qvi)] = vic — n[Q VI (wi)]
= Q 'Wkr1 = Q wx —n[QVF(wk)] = wii1 = wik — n[QQVF(wy)]
Define a positive definite, symmetric P such that P = QQ — Q = =3 Hence, for w = P%v,
Wit1 = wx — 1 [PV F(wg)] (Preconditioned GD)

i.e., compute the gradient, “precondition” it by matrix P and then do the GD step.

Digression - Preconditioned Gradient Descent

Equivalent formulations of preconditioned gradient descent to minimize f(w),

@ Reparameterizing the space using a positive definite, symmetric matrix P% such that
v = P 2w and using GD to minimize g(v) = f(P%v).

@ Use GD with the preconditioned gradient PVf(w).

@ The preconditioned GD update at iteration k can be written as:

1
Wi = | F(wi) + (VF(wk), we — w) +%HW/<—WHl23—1
First-order Taylor series approximation —_—

Stay close to wy

i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the norm induced by matrix P™) to the current point.

We can also use a different preconditioner at every iteration, i.e.

Wir1 = Wi — n[PVF(wi)]

Digression - Preconditioned Gradient Descent

But what is the “best” Py around a specific iterate for a specific problem? For this, consider the
Hessian of g(v) = f(P%v) and choose P such that k = 1.
Recall that Vg(v) = P? VF(P?v) and hence, V2g(v) = P% [V2f(P%v)] (P3)T. If
P = [V2f(P3v)]™ = [V2f(w)] ™, then,

V2g(v) = [V2F(P3v)] 2 [V2F(P2v)] [V2F(P3v)] 2 = I
If we do this for all v, then g(v) has k = 1. Define Py := [V2f(wy)] " and using the
equivalence to preconditioned gradient descent, the resulting update can be written as:

Wik41 = Wk — 1) [sz(Wk)]_1Vf(Wk)

If n =1, we have recovered the Newton method! Hence, the Newton method can be thought of
as finding the best preconditioner (one that minimizes the condition number) at every iteration
of preconditioned GD.

Newton Method

Using the equivalence to preconditioned GD, the Newton method is also equivalent to:

1
Wi = | F(we) + (VF(wi), we —w) + 2 [lwi — W||2v2f(wk)

First-order Taylor series approximation
Stay close to wy

i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the “local norm” induced by the Hessian at wy) to the current point.

Example: Consider solving w* = argmin f(w) := JwTAw — bw + c. We know that
Vf(w) = Aw — b= A(w — w*) and V?f(w) = A. Starting from point wp, consider the Newton
update with n = 1,

Wy = wy — [Afl] Alwp — w*) = w”

i.e. the Newton method can minimize quadratics in one step. In this case, P, = P = A™ and
hence, g(v) = f(A2v) = %[A% VITA[A 2] — B[AEv] + c = vy — bA™%v + c. Computing

the Hessian of g(v), V2g(v) = Iy which has k = 1.

Questions?

Newton Method

We have seen that for quadratics, the Newton method converges to the minimizer in one step.
Let us analyze the convergence of Newton for general L-smooth, p-strongly convex functions.
For this, we will consider two phases for the update:

Wk4+1 = Wk — Tk [V2f(Wk)]71Vf(Wk);

Phase 1 (Damped Newton): For some « to be chosen later, if |V £(wg)|* > a (“far” from
the solution), use the Newton method with the step-size 7 set according to the Back-tracking

Armijo line-search.
Phase 2 (Pure Newton): If [V (w)||> < a (“close” to the solution), use the Newton method

with step-size equal to 1.

Newton Method - Phase 2

Let us first analyze the convergence rate for Phase 2. For this, we will need an additional
assumption that the Hessian is Lipschitz continuous with constant M > 0:

|V2f(w) = V2F(V)[| < M |lw — v].
Claim: In Phase 2 of the Newton method, the iterates satisfy the following inequality,
M
[Wk1 — w™[| < 2 lwie — w1
Proof:
Wki1 — w* = we — w* — [V2f(wi)] "VF(wx) (Newton update with step-size 1.)
= [V2F(wi)] ™ [[V2F(wi)](wk — w*) =V (wi)]
— ks — wl = V2w (92wl (wi — w*) — VF(wa)]|

= [wirr = w | < [[IV2E(wi)] || ([[V2F(wi))(wie = w*) = Vi (wi) |
(By definition of the matrix norm)

Newton Method - Phase 2

Recall that ||wyi1 — w*| < ||[V2f(wk)]71“ H[V2f(wk)](wk - w*) — Vf(wk)H.
(Wi — w™| < % | [[V2F(wi)](wie — w*) — V()] I (Since V2f(w) = ply)

= w1 — v < % [V (wi)l(wic — w*) + VE(w") = V()| (1)

Now let us bound Vf(w*) — Vf(wk). By the fundamental theorem of calculus, for all x, y,
f(y) = f(x) + ftl:o [VI(ty + (1 —t)x)] (v — x) dt. This theorem also holds for the
vector-valued gradient function,

1
Vf(y):Vf(X)+/ [V2f(ty +(1—t)x)] (y —x)dt

t=0
Using the above statement with x = w* and y = w,

1
= Vf(wx) — VFf(w") = /70 [V2f(t wi + (1 — t) w*)] (we — w*)dt (2)

10

Newton Method - Phase 2

Combining Egs. (1) and (2),
Wit — w7

< L Al —) + 90~ T

IN

e
|:[V2f(Wk)](Wk —w") — /t:O [V2f(t wi + (1 —t) W*)} (wr — w™) dt}

{ [V2f(wk)](wk—w*) dt—/ [sz(twk—i—(l—t) W*)} (wy — W*)dt:|
t=0 =0

Tlm T T

1
/_0 [V2F(wi) — V2F (twic + (1 — t) w*)] (wix — w*)dt

IN

[N9 0) = 928 (e + (=))] (o=)

| dt (Jensen's inequality)

IN
TR TR

1
/ ||V2f(wk) — V2f (twye + (1 — 1) W*)H lwx — w™|| dt (Definition of matrix norm)
t=0

11

Newton Method - Phase 2

From the previous slide,

1 ! * *
|wke1 — w™|| gﬁ/ V2 (wie) = VF (twi + (1 — &) w*)|| [lwie — w?|| dt
t=0

Since the Hessian is M-Lipschitz,

1t \ \
S—/ M ||we — twi — (1L —) w™|| ||lwx — w™|| dt
H Ji=0
M * ! *
= — [lwk — w*| [(1 = t)(wk — w™)]| dt
2 t=0
M 1
== ||Wk_w*||2/ (1—t)dt
1% t=0
* M * (12
= lwirr =™ < o flwi — w7
o

12

Newton Method - Phase 2

Recall that for Phase 2 of the Newton method, |[wyi1 — w*| < ¢ [|wi — w*||> where ¢ := M

Eﬁ'

Claim: If in Phase 2, [[wo — w*|| < & = 4, then after T iterations of the Pure Newton update,

2! 2" 2
Jwr —wl < (37 = (3) %.
Proof: Let us prove it by induction.
Base-case: For T =0, ||[wr — w*|| < {7 which is true by our assumption.

. :] . . 2k
Inductive hypothesis: If the statement is true for iteration k, then ||w, — w*[| < (3)” 1.

2
&3 *1(2 1 2k1 1 1
[wipr =wll < cwe—wiP<c{(5) =) =< (5

.
wr — w*|| < (%)2 % For ||wr — w*|| <€, we need T such that,

(B e e (35)

2k+1

Hence, by induction,

13

Newton Method - Phase 2

From the previous slide, we can conclude that Phase 2 of the Newton method requires
O (log (log (1/€))) iterations to achieve an e sub-optimality.

This rate of convergence is often referred to as quadratic or super-linear convergence. Note

that there is no dependence on « and the dependence on 47 is in the loglog.

But the bound is true only if ||wg — w*|| < /7 i.e. we enter Phase 2 only when we are “close
enough” to the solution. This is referred to as local convergence. Hence, the Newton method

has super-linear local convergence.

Algorithmically, since we do not know w*, we do not know when to start Phase 2 of the
algorithm. By strong-convexity,

o1
IVEG) = VEWI 2 g lx =yl = llwo — wl| < 2 [IVF(wo)ll

Hence, in order to ensure that ||jwy — w*|| < 7, we need to guarantee that
4
IVF(wo)|? < o= 47z~ This can be checked algorithmically.

14

Questions?

Newton Method

Theorem: If ||Vf(w)||2 <a= A‘j,—: the algorithm switches to Phase 2 for T iterations of the

.
pure Newton step and ensures that ||wr — w*|| < (%)2 2—,\’4’

In order to prove global convergence for the Newton method i.e. starting from any initialization,
we need to prove that Phase 1 of the Newton step can result in an iterate w such that
IVF(w)||> < o and we can switch to Phase 2.

Recall that for Phase 1, we will use the Backtracking Armijo line-search. For a prospective
step-size 7jx, check the (more general) Armijo condition,

f(wi — fjkdi) < f(wi) — cij (VF(wk), di)
—_———

Newton decrement

where ¢ € (0,1) is a hyper-parameter and di = [V2f(w)] "V f(wy) is the Newton direction. If
fjx satisfies the above condition, use the Newton update with 7, = fj.

Q: Why does the Newton direction make an acute angle with the gradient direction? Ans:

Because the Newton decrement is positive since the inverse Hessian is positive definite.
15

Newton Method - Phase 1

Using a similar proof as the standard Backtracking Armijo line-search, we can show that the
step-size returned by the backtracking procedure at iteration k is lower-bounded as:
Nk > min {wfd,nmax} (Need to prove this in Assignment 2).
At iteration k, 7y is the step-size returned by the Backtracking Armijo line-search and satisfies
the general Armijo condition. Hence,

f(wie = miedi) — £ < [f(wi) — £7] = e (V (i), di)

— f(wiy1) — FF < [F(wi) = F] — e (VF(wi), [V2F(wi)] 7V F(wi))
Since V2f(wy) is P.S.D, (Vf(wg), [V2f(wk)] "V f(wk)) > 0 and we need to lower-bound it,

(VF(wi), [V F (W] P VF(Wa)) = Amin[V2F(wi)] ™ [V F (w2
= F(wkr) = F* < [F(wi) = F7] = e Amin[V2F (wi)] ™ [V F (wi) |
c
Fwisa) = £ < [F(we) = 7] = =2 IV F(w)

L

(Since Amn[VA (W] ™ = sy = D)

Newton Method - Phase 1

Recall that f(wyi1) — £ < [F(wk) — F*] —em/L ||Vf(Wk)||2-

¢ min {Mﬂ?max}

f(Wipr) — < [f(wk) — 7] — ||Vf(W;<)||2 (Lower-bound on 7y)

L
< trom) - 1 - THEE D o (Setting c = 12
in { &
< (1— M) [Fwi) = £ (I F(we)ll? > 2ulf(we) — £])

— flwers) = 7 < (1= 200) g g

Recursing from k =0 to 7 — 1 and setting Mmax = 1

f(w,) — £* < (1—;2>T [f(wo) — £7] <exp<) [f(wo) =]

17

Newton Method

Recall that f(w,) — f* < exp (=F) [f(wo) — f*]. Phase 1 terminates when ||Vf(w.)||* = a. Using
L-smoothness, ||V f(w,)|*> < 2L[f(w,) — f*]. To terminate Phase 1, we want

2L[F(w,) — F']=2Lexp (=7) [F(wo) = F] =
2L M2 [f(wo) — *]
114
Hence, iterations required for global convergence to an € sub-optimality is,

> 2L M? [f(wo) — 7] 1 log (2#/Mme) >
| | =0 | log (/e
< g (2402 " log® 8\ log(2))
Phase 1 Phase 2
Recall that GD requires O (x log (%/c)) iterations. If we do a matrix inversion in every iteration, cost of
each iteration is O(d®). Since computing gradients is linear in d, the cost of each GD iteration is O(d).

= 7=k Iog((Since ae = ,\‘j,—‘;)

Comparing computational complexity:
Gradient Descent: O (dk log (1/c)) Newton Method: O ((d*k* + d? log (log (V/<))))

Newton method is more efficient than GD for small d (low-dimension) and small € (high precision).

18

Questions?

