
CMPT 409/981: Optimization for Machine Learning

Lecture 7

Sharan Vaswani

October 6, 2022

Recap

For L-smooth, µ-strongly convex functions,

Gradient Descent (GD) results in an O (exp (−T/κ)) rate.

Nesterov acceleration can speed up the convergence and results in an Θ(exp (−T/
√
κ)) rate.

Heavy-Ball momentum matches the GD rate at the beginning, but achieves the accelerated
rate after O(κ) iterations (requires additional assumptions).

Lower-Bound: Without additional assumptions, no first-order algorithm (one that only relies
on gradient information) can attain a dimension-free rate faster than Ω (exp (−T/

√
κ)).

Today, we will use second-order (Hessian) information to minimize twice differentiable, L-smooth
and µ-strongly convex functions and get faster rates.

1

Gradient Descent and Newton’s method

Recall the GD update: wk+1 = wk − η∇f (wk). This can also be written as:

wk+1 = argmin
w

 f (wk) + ⟨∇f (wk),wk − w⟩︸ ︷︷ ︸
First-order Taylor series approximation

+
1
2η

∥wk − w∥2︸ ︷︷ ︸
Stay close to wk

i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the Euclidean norm) to the current point.

If f is twice-differentiable, and we approximate it by a second-order Taylor series expansion,

wk+1 = argmin
w

f (wk) + ⟨∇f (wk),w − wk⟩+
1
2
(w − wk)

T ∇2f (wk) (w − wk)︸ ︷︷ ︸
Second-order Taylor series approximation

=⇒ wk+1 = wk − [∇2f (wk)]

−1[∇f (wk)] (Newton Update)

2

Digression - Preconditioned Gradient Descent

Recall that GD achieves an O
(
κ log

(1
ϵ

))
convergence rate, and the condition number κ ≥ 1

dictates the difficulty of solving the problem.

Idea: Reparameterize the space so that the minimum function value remains the same, but
condition number in the reparameterized space is smaller enabling GD to converge faster.

Example: minw∈R2 f (w) = 1
2w

TAw where A =

[
L 0
0 µ

]
. For the above problem, w∗ = 0,

f (w∗) = 0 and κ = L
µ .

Let us choose a preconditioning matrix Q ∈ R2×2 such that w = Qv , and write the

reparameterized function g(v) := 1
2 [Qv]

TA[Qv] = 1
2v

TQTAQv . If we choose Q =

[
1√
L

0
0 1√

µ

]
,

QTAQ = I , g(v) = 1
2v

Tv . Clearly, v∗ = 0 and g(v∗) = 0 and w∗ = Qv∗ = 0. For this problem,
κ = 1 making it easier to solve using GD.

3

Digression - Preconditioned Gradient Descent

Formalizing the intuition on the previous slide, define a positive definite, symmetric matrix
Q ∈ Rd×d such that w = Qv and hence, v = Q

−1
w . Define g(v) := f (Qv).

Q: If w∗ = argminw f (w) and v∗ = argminv g(v), is f (w∗) = g(v∗)?
Ans: Yes. If g(v∗) = f (Qv∗) < f (w∗), define wp := Qv∗ for which f (wp) < f (w∗) which is a
contradiction. Similarly, if f (w∗) < g(v∗), then for vp = Q

−1
w∗,

f (w∗) = f (Qvp) = g(vp) < g(v∗) which is a contradiction. Hence, f (w∗) = g(v∗).

Computing the gradient of g(v), ∇g(v) = Q∇f (Qv). Running GD on g(v), we get that,

vk+1 = vk − η∇g(vk) = vk − η[Q∇f (Qvk)] = vk − η[Q∇f (wk)]

=⇒ Q
−1
wk+1 = Q

−1
wk − η[Q∇f (wk)] =⇒ wk+1 = wk − η [QQ∇f (wk)]

Define a positive definite, symmetric P such that P = QQ =⇒ Q = P
1
2 . Hence, for w = P

1
2v ,

wk+1 = wk − η [P∇f (wk)] (Preconditioned GD)

i.e., compute the gradient, “precondition” it by matrix P and then do the GD step.

4

Digression - Preconditioned Gradient Descent

Equivalent formulations of preconditioned gradient descent to minimize f (w),

Reparameterizing the space using a positive definite, symmetric matrix P
1
2 such that

v = P
−1

2w and using GD to minimize g(v) := f (P
1
2v).

Use GD with the preconditioned gradient P∇f (w).
The preconditioned GD update at iteration k can be written as:

wk+1 =

 f (wk) + ⟨∇f (wk),wk − w⟩︸ ︷︷ ︸
First-order Taylor series approximation

+
1
2η

∥wk − w∥2
P

−1︸ ︷︷ ︸
Stay close to wk

i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the norm induced by matrix P

−1) to the current point.

We can also use a different preconditioner at every iteration, i.e.

wk+1 = wk − η[Pk∇f (wk)]

5

Digression - Preconditioned Gradient Descent

But what is the “best” Pk around a specific iterate for a specific problem? For this, consider the
Hessian of g(v) = f (P

1
2v) and choose P such that κ = 1.

Recall that ∇g(v) = P
1
2 ∇f (P

1
2v) and hence, ∇2g(v) = P

1
2 [∇2f (P

1
2v)] (P

1
2)T. If

P = [∇2f (P
1
2v)]

−1
= [∇2f (w)]

−1, then,

∇2g(v) = [∇2f (P
1
2v)]

−1
2 [∇2f (P

1
2v)] [∇2f (P

1
2v)]

−1
2 = Id

If we do this for all v , then g(v) has κ = 1. Define Pk := [∇2f (wk)]
−1 and using the

equivalence to preconditioned gradient descent, the resulting update can be written as:

wk+1 = wk − η [∇2f (wk)]
−1∇f (wk)

If η = 1, we have recovered the Newton method! Hence, the Newton method can be thought of
as finding the best preconditioner (one that minimizes the condition number) at every iteration
of preconditioned GD.

6

Newton Method

Using the equivalence to preconditioned GD, the Newton method is also equivalent to:

wk+1 =

 f (wk) + ⟨∇f (wk),wk − w⟩︸ ︷︷ ︸
First-order Taylor series approximation

+
1
2η

∥wk − w∥2
∇2f (wk)︸ ︷︷ ︸

Stay close to wk

i.e., approximate the function by a first-order Taylor series expansion, and minimize it while
staying close (in the “local norm” induced by the Hessian at wk) to the current point.

Example: Consider solving w∗ = argmin f (w) := 1
2w

TAw − bw + c . We know that
∇f (w) = Aw − b = A(w −w∗) and ∇2f (w) = A. Starting from point w0, consider the Newton
update with η = 1,

w1 = w0 − [A−1]A(w0 − w∗) = w∗

i.e. the Newton method can minimize quadratics in one step. In this case, Pk = P = A
−1 and

hence, g(v) = f (A
−1

2v) = 1
2 [A

−1
2v]TA[A

−1
2v]− b[A

−1
2v] + c = 1

2v
Tv − bA

−1
2v + c . Computing

the Hessian of g(v), ∇2g(v) = Id which has κ = 1.
7

Questions?

7

Newton Method

We have seen that for quadratics, the Newton method converges to the minimizer in one step.
Let us analyze the convergence of Newton for general L-smooth, µ-strongly convex functions.
For this, we will consider two phases for the update:

wk+1 = wk − ηk [∇2f (wk)]
−1∇f (wk) ,

Phase 1 (Damped Newton): For some α to be chosen later, if ∥∇f (wk)∥2
> α (“far” from

the solution), use the Newton method with the step-size ηk set according to the Back-tracking
Armijo line-search.

Phase 2 (Pure Newton): If ∥∇f (wk)∥2 ≤ α (“close” to the solution), use the Newton method
with step-size equal to 1.

8

Newton Method - Phase 2

Let us first analyze the convergence rate for Phase 2. For this, we will need an additional
assumption that the Hessian is Lipschitz continuous with constant M > 0:∥∥∇2f (w)−∇2f (v)

∥∥ ≤ M ∥w − v∥ .

Claim: In Phase 2 of the Newton method, the iterates satisfy the following inequality,

∥wk+1 − w∗∥ ≤ M

2µ
∥wk − w∗∥2

Proof:
wk+1 − w∗ = wk − w∗ − [∇2f (wk)]

−1∇f (wk) (Newton update with step-size 1.)

= [∇2f (wk)]
−1 [

[∇2f (wk)](wk − w∗)−∇f (wk)
]

=⇒ ∥wk+1 − w∗∥ =
∥∥[∇2f (wk)]

−1 [
[∇2f (wk)](wk − w∗)−∇f (wk)

]∥∥
=⇒ ∥wk+1 − w∗∥ ≤

∥∥[∇2f (wk)]
−1
∥∥ ∥∥[∇2f (wk)](wk − w∗)−∇f (wk)

∥∥
(By definition of the matrix norm)

9

Newton Method - Phase 2

Recall that ∥wk+1 − w∗∥ ≤
∥∥[∇2f (wk)]

−1
∥∥ ∥∥[∇2f (wk)](wk − w∗)−∇f (wk)

∥∥.
∥wk+1 − w∗∥ ≤ 1

µ

∥∥[[∇2f (wk)](wk − w∗)−∇f (wk)
]∥∥ (Since ∇2f (w) ⪰ µId)

=⇒ ∥wk+1 − w∗∥ ≤ 1
µ

∥∥[∇2f (wk)](wk − w∗) +∇f (w∗)−∇f (wk)
∥∥ (1)

Now let us bound ∇f (w∗)−∇f (wk). By the fundamental theorem of calculus, for all x , y ,
f (y) = f (x) +

∫ 1
t=0 [∇f (t y + (1 − t) x)] (y − x) dt. This theorem also holds for the

vector-valued gradient function,

∇f (y) = ∇f (x) +

∫ 1

t=0

[
∇2f (t y + (1 − t) x)

]
(y − x) dt

Using the above statement with x = w∗ and y = wk ,

=⇒ ∇f (wk)−∇f (w∗) =

∫ 1

t=0

[
∇2f (t wk + (1 − t)w∗)

]
(wk − w∗) dt (2)

10

Newton Method - Phase 2

Combining Eqs. (1) and (2),

∥wk+1 − w∗∥

≤ 1
µ

∥∥[∇2f (wk)](wk − w∗) +∇f (w∗)−∇f (wk)
∥∥

≤ 1
µ

∥∥∥∥[[∇2f (wk)](wk − w∗)−
∫ 1

t=0

[
∇2f (t wk + (1 − t)w∗)

]
(wk − w∗) dt

]∥∥∥∥
=

1
µ

∥∥∥∥[∫ 1

t=0
[∇2f (wk)](wk − w∗) dt −

∫ 1

t=0

[
∇2f (t wk + (1 − t)w∗)

]
(wk − w∗) dt

]∥∥∥∥
=

1
µ

∥∥∥∥∫ 1

t=0

[
∇2f (wk)−∇2f (t wk + (1 − t)w∗)

]
(wk − w∗) dt

∥∥∥∥
≤ 1

µ

∫ 1

t=0

∥∥[∇2f (wk)−∇2f (t wk + (1 − t)w∗)
]
(wk − w∗)

∥∥ dt (Jensen’s inequality)

≤ 1
µ

∫ 1

t=0

∥∥∇2f (wk)−∇2f (t wk + (1 − t)w∗)
∥∥ ∥wk − w∗∥ dt (Definition of matrix norm)

11

Newton Method - Phase 2

From the previous slide,

∥wk+1 − w∗∥ ≤ 1
µ

∫ 1

t=0

∥∥∇2f (wk)−∇2f (t wk + (1 − t)w∗)
∥∥ ∥wk − w∗∥ dt

Since the Hessian is M-Lipschitz,

≤ 1
µ

∫ 1

t=0
M ∥wk − t wk − (1 − t)w∗∥ ∥wk − w∗∥ dt

=
M

µ
∥wk − w∗∥

∫ 1

t=0
∥(1 − t)(wk − w∗)∥ dt

=
M

µ
∥wk − w∗∥2

∫ 1

t=0
(1 − t) dt

=⇒ ∥wk+1 − w∗∥ ≤ M

2µ
∥wk − w∗∥2

12

Newton Method - Phase 2

Recall that for Phase 2 of the Newton method, ∥wk+1 − w∗∥ ≤ c ∥wk − w∗∥2 where c := M
2µ .

Claim: If in Phase 2, ∥w0 − w∗∥ ≤ 1
2c = µ

M , then after T iterations of the Pure Newton update,

∥wT − w∗∥ ≤
(1

2

)2T
1
c =

(1
2

)2T
2µ
M .

Proof: Let us prove it by induction.
Base-case: For T = 0, ∥wT − w∗∥ ≤ µ

M which is true by our assumption.

Inductive hypothesis: If the statement is true for iteration k , then ∥wk − w∗∥ ≤
(1

2

)2k
1
c .

∥wk+1 − w∗∥ ≤ c ∥wk − w∗∥2 ≤ c

((
1
2

)2k

1
c

)2

=
1
c

(
1
2

)2k+1

Hence, by induction, ∥wT − w∗∥ ≤
(1

2

)2T
2µ
M . For ∥wT − w∗∥ ≤ ϵ, we need T such that,(

1
2

)2T

2µ
M

≤ ϵ =⇒ T ≥ 1
log(2)

log

(
log (2µ/Mϵ)

log(2)

)
13

Newton Method - Phase 2

From the previous slide, we can conclude that Phase 2 of the Newton method requires
O (log (log (1/ϵ))) iterations to achieve an ϵ sub-optimality.

This rate of convergence is often referred to as quadratic or super-linear convergence. Note
that there is no dependence on κ and the dependence on µ

M is in the log log.

But the bound is true only if ∥w0 − w∗∥ ≤ µ
M i.e. we enter Phase 2 only when we are “close

enough” to the solution. This is referred to as local convergence. Hence, the Newton method
has super-linear local convergence.

Algorithmically, since we do not know w∗, we do not know when to start Phase 2 of the
algorithm. By strong-convexity,

∥∇f (x)−∇f (y)∥ ≥ µ ∥x − y∥ =⇒ ∥w0 − w∗∥ ≤ 1
µ

∥∇f (w0)∥

Hence, in order to ensure that ∥w0 − w∗∥ ≤ µ
M , we need to guarantee that

∥∇f (w0)∥2 ≤ α := µ4

M2 . This can be checked algorithmically.

14

Questions?

14

Newton Method

Theorem: If ∥∇f (w)∥2 ≤ α = µ4

M2 , the algorithm switches to Phase 2 for T iterations of the

pure Newton step and ensures that ∥wT − w∗∥ ≤
(1

2

)2T
2µ
M .

In order to prove global convergence for the Newton method i.e. starting from any initialization,
we need to prove that Phase 1 of the Newton step can result in an iterate w such that
∥∇f (w)∥2 ≤ α and we can switch to Phase 2.

Recall that for Phase 1, we will use the Backtracking Armijo line-search. For a prospective
step-size η̃k , check the (more general) Armijo condition,

f (wk − η̃kdk) ≤ f (wk)− c η̃k ⟨∇f (wk), dk⟩︸ ︷︷ ︸
Newton decrement

where c ∈ (0, 1) is a hyper-parameter and dk = [∇2f (wk)]
−1∇f (wk) is the Newton direction. If

η̃k satisfies the above condition, use the Newton update with ηk = η̃k .

Q: Why does the Newton direction make an acute angle with the gradient direction? Ans:
Because the Newton decrement is positive since the inverse Hessian is positive definite.

15

Newton Method - Phase 1

Using a similar proof as the standard Backtracking Armijo line-search, we can show that the
step-size returned by the backtracking procedure at iteration k is lower-bounded as:
ηk ≥ min

{
2µ (1−c)

L , ηmax

}
(Need to prove this in Assignment 2).

At iteration k , ηk is the step-size returned by the Backtracking Armijo line-search and satisfies
the general Armijo condition. Hence,

f (wk − ηkdk)− f ∗ ≤ [f (wk)− f ∗]− c ηk ⟨∇f (wk), dk⟩
=⇒ f (wk+1)− f ∗ ≤ [f (wk)− f ∗]− c ηk ⟨∇f (wk), [∇2f (wk)]

−1∇f (wk)⟩

Since ∇2f (wk) is P.S.D, ⟨∇f (wk), [∇2f (wk)]
−1∇f (wk)⟩ ≥ 0 and we need to lower-bound it,

⟨∇f (wk), [∇2f (wk)]
−1∇f (wk)⟩ ≥ λmin[∇2f (wk)]

−1 ∥∇f (wk)∥2

=⇒ f (wk+1)− f ∗ ≤ [f (wk)− f ∗]− c ηk λmin[∇2f (wk)]
−1 ∥∇f (wk)∥2

f (wk+1)− f ∗ ≤ [f (wk)− f ∗]− c ηk
L

∥∇f (wk)∥2

(Since λmin[∇2f (wk)]
−1

= 1
λmax[∇2f (wk)]

= 1
L)

16

Newton Method - Phase 1

Recall that f (wk+1)− f ∗ ≤ [f (wk)− f ∗]− c ηk/L ∥∇f (wk)∥2.

f (wk+1)− f ∗ ≤ [f (wk)− f ∗]−
c min

{
2µ (1−c)

L , ηmax

}
L

∥∇f (wk)∥2 (Lower-bound on ηk)

≤ [f (wk)− f ∗]−
min

{
µ
2L ,

ηmax

2

}
L

∥∇f (wk)∥2 (Setting c = 1/2)

≤

(
1 −

µmin
{

µ
L , ηmax

}
L

)
[f (wk)− f ∗] (∥∇f (wk)∥2 ≥ 2µ[f (wk)− f ∗])

=⇒ f (wk+1)− f ∗ ≤
(

1 − µ2 min{1, κηmax}
L2

)
[f (wk)− f ∗]

Recursing from k = 0 to τ − 1 and setting ηmax = 1

f (wτ)− f ∗ ≤
(

1 − 1
κ2

)τ

[f (w0)− f ∗] ≤ exp

(
−τ

κ2

)
[f (w0)− f ∗]

17

Newton Method

Recall that f (wτ)− f ∗ ≤ exp
(−τ

κ2

)
[f (w0)− f ∗]. Phase 1 terminates when ∥∇f (wτ)∥2 = α. Using

L-smoothness, ∥∇f (wτ)∥2 ≤ 2L [f (wτ)− f ∗]. To terminate Phase 1, we want

2L [f (wτ)− f ∗] = 2L exp
(−τ

κ2

)
[f (w0)− f ∗] = α

=⇒ τ = κ2 log

(
2LM2 [f (w0)− f ∗]

µ4

)
(Since α = µ4

M2)

Hence, iterations required for global convergence to an ϵ sub-optimality is,

κ2 log

(
2LM2 [f (w0)− f ∗]

µ4

)
︸ ︷︷ ︸

Phase 1

+
1

log(2)
log

(
log (2µ/Mϵ)

log(2)

)
︸ ︷︷ ︸

Phase 2

= O
(
κ2 + log (log (1/ϵ))

)

Recall that GD requires O (κ log (1/ϵ)) iterations. If we do a matrix inversion in every iteration, cost of
each iteration is O(d3). Since computing gradients is linear in d , the cost of each GD iteration is O(d).

Comparing computational complexity:
Gradient Descent: O (dκ log (1/ϵ)) Newton Method: O

((
d3κ2 + d3 log (log (1/ϵ))

))
Newton method is more efficient than GD for small d (low-dimension) and small ϵ (high precision).

18

Questions?

18

