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Gradient Descent: wy1 = wx — nV 1 (wg).
Nesterov Acceleration: Wi41 = [Wk + /))k(Wk = Wk—l)] = UVf(Wk + ﬁk(Wk = Wk—l))-

Nesterov acceleration can be interpreted as doing GD on “extrapolated”’ points where 3, can be
interpreted as the “momentum” in the previous direction (wyx — wk_1).

Function class L-smooth | L-smooth + convex | L-smooth + p-strongly convex
Gradient Descent O (1/e) O (Ye) O (r log (1/e))
Nesterov Acceleration - O (/) O (v log (Y/¢))

Table 1: Optimization Zoo

For all cases, n = % for both GD and Nesterov acceleration, and we can use Armijo line-search to
estimate L and set the step-size.

Gradient Descent is adaptive to strong-convexity, however, Nesterov acceleration requires
knowledge of p to set f3.



Heavy-Ball Momentum

Heavy-Ball/Polyak Momentum: wy 1 = wx — 0V (wi) + Br(wk — wi—1).
Nesterov Acceleration: v, = wy + SBk(wkx — wi—1) ; wir1 = vk — nVF(vk) i.e. extrapolate and

compute the gradient at the extrapolated point v.

Polyak Momentum: v, = wy + Be(wk — wi—1); w1 = vk — NV F(wy) i.e. compute the
gradient at wy and then extrapolate.

Unlike GD, Nesterov acceleration and Polyak momentum are not “descent” methods i.e. it is not
guaranteed that f(wyy1) < f(wg) for all k.

In order to minimize quadratics: f(w) = 2wTAw — bw + ¢ where A is symmetric, positive
semi-definite, or equivalently solve linear systems of the form: Aw = b, using Polyak momentum
with optimal values of (1, 3) is equivalent to Conjugate Gradient.



Heavy-Ball Momentum

Brief History: For L-smooth + p-strongly convex functions,

@ Quadratics: HB momentum with a specific (7, 8) can achieve the accelerated rate and
obtain a dependence on /k (only an asymptotic rate). [Polyak, 1964]

e General smooth, SC functions: Using Polyak’s (1, 3) parameters can result in cycling and
HB momentum is not guaranteed to converge. [Lessard et al, 2014]

e General smooth, SC functions: Using a different (7, $), HB momentum can converge and
match the GD rate (no acceleration). [Ghadimi et al, 2014]

e General smooth, SC functions + Lipschitz-continuity of Hessian: Using a different (n, ),
HB momentum matches the GD rate at the beginning, but achieves the accelerated rate
after O(k) iterations. [Wang et al, 2022]



Heavy-Ball Momentum

Let us focus on minimizing quadratics: f(w) = 2wTAw — bw + c, where A is a symmetric

positive definite matrix.

- . g _ 4
Claim: For L-smooth, p-strongly convex quadratics, HB momentum with n = EWE and
B = f+1 L achieves the following convergence rate:
-
1
bor = w1 < V2 (g wer) o= wl

where e > 0 and lim7_ o e7 = 0.

HB momentum can also achieve a slightly-worse, but still accelerated non-asymptotic rate [Wang
et al, 2021].
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fwr = wll < 4v& (1= 52) llwo = w'l



Questions?



Minimizing strongly-convex quadratics with GD

As a warm-up, let us first prove the optimal GD rate for smooth, strongly-convex quadratics.

Claim: For L-smooth, u-strongly convex quadratics, GD with 1 = ﬁ achieves the following
convergence rate:

Proof: For quadratics, Vf(w) = Aw — b,

wit1 = wx — VI (wg) = we — n[Awy — b]

= W1 — W'l = [lwie — w* —n[Awi — b]||
= ||lwk — w" — n[Awx — Aw*]||  (Since VFf(w*) =0 = Aw* = b)
o s = w'll = 1k — 1) (e — w)]| < Illa — AL, [l wi — w]|
(By definition of the matrix norm: for matrix B, ||B||, = max { HHB\’/VHHZ} for all vectors v # 0, and)

We have thus reduced the problem to bounding ||lg — nAl,.



Minimizing strongly-convex quadratics with GD

Recall that [|wyy1 — w*|| = |[ls — nA|l, ||wk — w*||. Since f is L-smooth and p-strongly convex,
ply X V2f(w) =A< Lly.

If A= UAUT is the eigen-decomposition of A, and A1, A2, ..., Ay are the eigenvalues of A, then,
lg —nA = USUT where S;; =1 —n);.

Since U is an orthonormal matrix, ||ls — nA|| = ||S||. By definition of the matrix norm, for
symmetric matrices,
1Bl = p(B) := max{|\[B]|, [X2[B][ ;- .., [Aa[ B}
where p(B) is the spectral radius of B.
Hence,
Il = nAll = 151l = £(S) = max{[ S]], R2AS]], -, PalS]l} = max {1 —nAl}
lla —nA| = max{|1 — nu|, |1 —nL|} (Since 1 — nA is linear in \)



Minimizing strongly-convex quadratics with GD

Recall that [wit — w*|| = s — nA|l w — w*]| and |[fg — Al = max{|1 — | |1 — nL]}.

Let us choose a step-size 1) € H, l}. Hence,

L
lla = Al < max{1 — gy nL — 1} = ﬁ
(By setting n = ﬁ we minimize max{1 — nu,nL — 1})
Putting everything together,
* L_/U’ * K= *
[Wi1 — w7] Sm [wk — w ||:/_67+1 [wie — w™||

Recursing from k=0to T — 1,

.
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lwr —w| < (= lwo — w*]|.
k+1




Questions?



Minimizing strongly-convex quadratics with HB momentum

Update: wy 1 = wx — nVF(wk) + B(wk — wk—1)
d

Claim: For L-smooth, p-strongly convex quadratics, HB momentum with = m an

B = \\/Fg; achieves the following convergence rate:

A
lwr — w*|| < V2 ({g; +€T) l[wo — w*, where, limr_yo0 €7 — 0.
Proof:

wi — w* wy — w*

ka+]_ — W*] _ -Wk —w* = nVf(wg) + B(wk — Wkl)]

B [wie — w* — nA(wk — w*) + B(wk — w*) — B(wk—1 — w*)
B wi — w*

(Since Vf(w) = Aw, Aw* = b)
. [wkﬂ - w*] (14 B)ly — 1A —ﬁ/d] [ Wi — w* ]

Wy — w* Id 0 Wg—1 — w*

If =0, we can recover the same equation as GD. 8



Minimizing strongly-convex quadratics with HB momentum

Id 0 Wg_1 — w*

(1+B)lg —nA _Bld] [ wi — w* ] s Ay = HA

Wip1 —w™|
wi — w*

3:Ak+16]R2d ::’HEdexzd i:AkERZd

Recursing from k =0 to T — 1, and taking norm,

wo — w*
w_q1— w*

Define w_1 = wp and lower-bounding the LHS,

8rl = 7 8o < 7] \

‘ (By definition of the matrix norm)

lwr = w*ll < V2 |17 llwo — w"||

Hence, we have reduced the problem to bounding ||#H7||.



Minimizing strongly-convex quadratics with HB momentum

Recall that for symmetric matrices, ||B||, = p(B). Unfortunately, this relation is not true for

general asymmetric matrices, and ||B|| > p(B).

Gelfand’s Formula: For a matrix B € R?*9 such that p(B) := max;e[q |Ail, then there exists a

sequence ¢, > 0 such that lim,_,o €, = 0 and,
1BX|| < (o(B) + ex)".
Using this formula with our bound,
lwr —w*|| < (p(H) +er) [lwo — w*|

Hence, we have reduced the problem to bounding p(H).
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Minimizing strongly-convex quadratics with HB momentum

Similar to the GD case, let A= UAUT be the eigen-decomposition of A, then,
(14 B) 1y —nA = USUT where S; ; = 1+ 8 —n\;. Hence,

u o

0 U

Since U is orthonormal, p(H) = p(H). Hence we have reduced the problem to bounding p(H).

ur o
0 U

(14 B)a—nN —pBla

W= Iy 0

=H
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Minimizing strongly-convex quadratics with HB momentum

Let P be a permutation matrix such that:

H 0 ... 0
1 Jjisodd, j=1i o o
J— T
Pij=41 Jiiseven, j=2d+i B=PHPT = |
0 otherwise . _—

where,

H; =
1 0

(1+8) — 0 51

Note that p(H) = p(B) (a permutation matrix does not change the eigenvalues). Since B is a
block diagonal matrix, p(B) = max; [p(H;)]. Hence we have reduced the problem to bounding

p(H:).
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Minimizing strongly-convex quadratics with HB momentum

For a fixed i € [2d], let us compute the eigenvalues of H; € R?*2 by solving the characteristic
polynomial: det(H; — ub) =0 w.r.t u.

—(1+8-—m\)u+5=0 = u—%{(1+B—7}/\,~)j:\/(1—0—5—7]/\;)2—45}
43.

Let us set 3 such that, (1 + 8 —n)\;)? <
are complex conjugates. Hence,

1+8-n\>-2B = (VB+1)> VN = B> (1—+/nh)?
If we ensure that 8 > (1 — /n\;)?

This ensures that the roots to the above equation

u=> [@+8-ma)=ivVaE =T+ 5]
= |u]® = %[1+5 A2 +48 — (148 —n\) } ﬁ:>\u|:\/B.
Hence, if B > (1 — v/nX\)?, p(H;) = v/B and p(B) = max; [p(H;)] = v/B.
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Minimizing strongly-convex quadratics with HB momentum

Using the result from the previous slide, if we ensure that for all 7, 5 > (1 — \/7]/\,-)2, then,
p(B) = +/B. Hence, we want that,

8= max{(1= VX)) = max {(1— v/} = max{(1 = VAT (1= v/nD)*}

Ae|
Similar to GD, we equate the two terms in the max,

4

l1+nu—2/nu=1+nL—-2/nL — n= .
1 1 n ] | (ﬂ+\/ﬁ)2

. . 2 Ji-ug o
With this value of , p(H) = p(H) = p(B) < v/B = (1_ w%fm) — Y

Putting everything together,

.
* k—1 *
fwr = wll < VE (YT ber) lwo = wl
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Questions?



