CMPT 409/981: Optimization for Machine Learning

Lecture 6

Sharan Vaswani
October 3, 2022

Recap

Gradient Descent: $w_{k+1}=w_{k}-\eta \nabla f\left(w_{k}\right)$.
Nesterov Acceleration: $w_{k+1}=\left[w_{k}+\beta_{k}\left(w_{k}-w_{k-1}\right)\right]-\eta \nabla f\left(w_{k}+\beta_{k}\left(w_{k}-w_{k-1}\right)\right)$.
Nesterov acceleration can be interpreted as doing GD on "extrapolated" points where β_{k} can be interpreted as the "momentum" in the previous direction ($w_{k}-w_{k-1}$).

Function class	L-smooth	L-smooth + convex	L-smooth $+\mu$-strongly convex
Gradient Descent	$\Theta(1 / \epsilon)$	$O(1 / \epsilon)$	$O(\kappa \log (1 / \epsilon))$
Nesterov Acceleration	-	$\Theta(1 / \sqrt{\epsilon})$	$\Theta(\sqrt{\kappa} \log (1 / \epsilon))$

Table 1: Optimization Zoo

For all cases, $\eta=\frac{1}{L}$ for both GD and Nesterov acceleration, and we can use Armijo line-search to estimate L and set the step-size.

Gradient Descent is adaptive to strong-convexity, however, Nesterov acceleration requires knowledge of μ to set β_{k}.

Heavy-Ball Momentum

Heavy-Ball/Polyak Momentum: $w_{k+1}=w_{k}-\eta \nabla f\left(w_{k}\right)+\beta_{k}\left(w_{k}-w_{k-1}\right)$.
Nesterov Acceleration: $v_{k}=w_{k}+\beta_{k}\left(w_{k}-w_{k-1}\right) ; w_{k+1}=v_{k}-\eta \nabla f\left(v_{k}\right)$ i.e. extrapolate and compute the gradient at the extrapolated point v_{k}.

Polyak Momentum: $v_{k}=w_{k}+\beta_{k}\left(w_{k}-w_{k-1}\right) ; w_{k+1}=v_{k}-\eta \nabla f\left(w_{k}\right)$ i.e. compute the gradient at w_{k} and then extrapolate.

Unlike GD, Nesterov acceleration and Polyak momentum are not "descent" methods i.e. it is not guaranteed that $f\left(w_{k+1}\right) \leq f\left(w_{k}\right)$ for all k.

In order to minimize quadratics: $f(w)=\frac{1}{2} w^{\top} A w-b w+c$ where A is symmetric, positive semi-definite, or equivalently solve linear systems of the form: $A w=b$, using Polyak momentum with optimal values of (η, β) is equivalent to Conjugate Gradient.

Heavy-Ball Momentum

Brief History: For L-smooth $+\mu$-strongly convex functions,

- Quadratics: HB momentum with a specific (η, β) can achieve the accelerated rate and obtain a dependence on $\sqrt{\kappa}$ (only an asymptotic rate). [Polyak, 1964]
- General smooth, SC functions: Using Polyak's (η, β) parameters can result in cycling and HB momentum is not guaranteed to converge. [Lessard et al, 2014]
- General smooth, SC functions: Using a different (η, β), HB momentum can converge and match the GD rate (no acceleration). [Ghadimi et al, 2014]
- General smooth, SC functions + Lipschitz-continuity of Hessian: Using a different (η, β), HB momentum matches the GD rate at the beginning, but achieves the accelerated rate after $O(\kappa)$ iterations. [Wang et al, 2022]

Heavy-Ball Momentum

Let us focus on minimizing quadratics: $f(w)=\frac{1}{2} w^{\top} A w-b w+c$, where A is a symmetric positive definite matrix.
Claim: For L-smooth, μ-strongly convex quadratics, HB momentum with $\eta=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}}$ and $\beta=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$ achieves the following convergence rate:

$$
\left\|w_{T}-w^{*}\right\| \leq \sqrt{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}+\epsilon_{T}\right)^{T}\left\|w_{0}-w^{*}\right\|
$$

where $\epsilon_{T} \geq 0$ and $\lim _{T \rightarrow \infty} \epsilon_{T}=0$.
HB momentum can also achieve a slightly-worse, but still accelerated non-asymptotic rate [Wang et al, 2021].

$$
\left\|w_{T}-w^{*}\right\| \leq 4 \sqrt{\kappa}\left(1-\frac{1}{2 \sqrt{\kappa}}\right)^{T}\left\|w_{0}-w^{*}\right\|
$$

Questions?

Minimizing strongly-convex quadratics with GD

As a warm-up, let us first prove the optimal GD rate for smooth, strongly-convex quadratics. Claim: For L-smooth, μ-strongly convex quadratics, GD with $\eta=\frac{2}{\mu+L}$ achieves the following convergence rate:

$$
\left\|w_{T}-w^{*}\right\| \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{T}\left\|w_{0}-w^{*}\right\|
$$

Proof: For quadratics, $\nabla f(w)=A w-b$,

$$
\begin{aligned}
w_{k+1} & =w_{k}-\eta \nabla f\left(w_{k}\right)=w_{k}-\eta\left[A w_{k}-b\right] \\
\Longrightarrow\left\|w_{k+1}-w^{*}\right\| & =\left\|w_{k}-w^{*}-\eta\left[A w_{k}-b\right]\right\| \\
& =\left\|w_{k}-w^{*}-\eta\left[A w_{k}-A w^{*}\right]\right\| \quad\left(\text { Since } \nabla f\left(w^{*}\right)=0 \Longrightarrow A w^{*}=b\right) \\
\Longrightarrow\left\|w_{k+1}-w^{*}\right\| & =\left\|\left(I_{d}-\eta A\right)\left(w_{k}-w^{*}\right)\right\| \leq\left\|I_{d}-\eta A\right\|_{2}\left\|w_{k}-w^{*}\right\|
\end{aligned}
$$

(By definition of the matrix norm: for matrix $B,\|B\|_{2}=\max \left\{\frac{\|B v\|_{2}}{\|v\|_{2}}\right\}$ for all vectors $v \neq 0$, and)
We have thus reduced the problem to bounding $\left\|I_{d}-\eta A\right\|_{2}$.

Minimizing strongly-convex quadratics with GD

Recall that $\left\|w_{k+1}-w^{*}\right\|=\left\|I_{d}-\eta A\right\|_{2}\left\|w_{k}-w^{*}\right\|$. Since f is L-smooth and μ-strongly convex, $\mu I_{d} \preceq \nabla^{2} f(w)=A \preceq L I_{d}$.
If $A=U \wedge U^{\top}$ is the eigen-decomposition of A, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ are the eigenvalues of A, then, $I_{d}-\eta A=U S U^{\top}$ where $S_{i, i}=1-\eta \lambda_{i}$.
Since U is an orthonormal matrix, $\left\|I_{d}-\eta A\right\|=\|S\|$. By definition of the matrix norm, for symmetric matrices,

$$
\|B\|_{2}=\rho(B):=\max \left\{\left|\lambda_{1}[B]\right|,\left|\lambda_{2}[B]\right|, \ldots,\left|\lambda_{d}[B]\right|\right\}
$$

where $\rho(B)$ is the spectral radius of B.
Hence,

$$
\begin{aligned}
& \left\|I_{d}-\eta A\right\|=\|S\|=\rho(S)=\max \left\{\left|\lambda_{1}[S]\right|,\left|\lambda_{2}[S]\right|, \ldots,\left|\lambda_{d}[S]\right|\right\}=\max _{\lambda \in[\mu, L]}\{|1-\eta \lambda|\} \\
& \left\|I_{d}-\eta A\right\|=\max \{|1-\eta \mu|,|1-\eta L|\} \quad \text { (Since } 1-\eta \lambda \text { is linear in } \lambda \text {) }
\end{aligned}
$$

Minimizing strongly-convex quadratics with GD

Recall that $\left\|w_{k+1}-w^{*}\right\|=\left\|I_{d}-\eta A\right\|\left\|w_{k}-w^{*}\right\|$ and $\left\|I_{d}-\eta A\right\|=\max \{|1-\eta \mu|,|1-\eta L|\}$.
Let us choose a step-size $\eta \in\left[\frac{1}{L}, \frac{1}{\mu}\right]$. Hence,

$$
\left\|I_{d}-\eta A\right\| \leq \max \{1-\eta \mu, \eta L-1\}=\frac{L-\mu}{L+\mu}
$$

(By setting $\eta=\frac{2}{\mu+L}$, we minimize $\max \{1-\eta \mu, \eta L-1\}$)
Putting everything together,

$$
\left\|w_{k+1}-w^{*}\right\| \leq \frac{L-\mu}{L+\mu}\left\|w_{k}-w^{*}\right\|=\frac{\kappa-1}{\kappa+1}\left\|w_{k}-w^{*}\right\|
$$

Recursing from $k=0$ to $T-1$,

$$
\left\|w_{T}-w^{*}\right\| \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{T}\left\|w_{0}-w^{*}\right\|
$$

Questions?

Minimizing strongly-convex quadratics with HB momentum

Update: $w_{k+1}=w_{k}-\eta \nabla f\left(w_{k}\right)+\beta\left(w_{k}-w_{k-1}\right)$
Claim: For L-smooth, μ-strongly convex quadratics, HB momentum with $\eta=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}}$ and $\beta=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$ achieves the following convergence rate:
$\left\|w_{T}-w^{*}\right\| \leq \sqrt{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}+\epsilon_{T}\right)^{T}\left\|w_{0}-w^{*}\right\|$, where, $\lim _{T \rightarrow \infty} \epsilon_{T} \rightarrow 0$.
Proof:

$$
\begin{aligned}
& {\left[\begin{array}{c}
w_{k+1}-w^{*} \\
w_{k}-w^{*}
\end{array}\right] }=\left[\begin{array}{c}
w_{k}-w^{*}-\eta \nabla f\left(w_{k}\right)+\beta\left(w_{k}-w_{k-1}\right) \\
w_{k}-w^{*}
\end{array}\right] \\
&=\left[\begin{array}{c}
w_{k}-w^{*}-\eta A\left(w_{k}-w^{*}\right)+\beta\left(w_{k}-w^{*}\right)-\beta\left(w_{k-1}-w^{*}\right) \\
w_{k}-w^{*}
\end{array}\right] \\
&\left(\text { Since } \nabla f(w)=A w, A w^{*}=b\right) \\
& \Longrightarrow\left[\begin{array}{c}
w_{k+1}-w^{*} \\
w_{k}-w^{*}
\end{array}\right]=\left[\begin{array}{cc}
(1+\beta) I_{d}-\eta A & -\beta I_{d} \\
I_{d} & 0
\end{array}\right]\left[\begin{array}{c}
w_{k}-w^{*} \\
w_{k-1}-w^{*}
\end{array}\right]
\end{aligned}
$$

If $\beta=0$, we can recover the same equation as GD.

Minimizing strongly-convex quadratics with HB momentum

$$
\underbrace{\left[\begin{array}{c}
w_{k+1}-w^{*} \\
w_{k}-w^{*}
\end{array}\right]}_{:=\Delta_{k+1} \in \mathbb{R}^{2 d}}=\underbrace{\left[\begin{array}{cc}
(1+\beta) I_{d}-\eta A & -\beta I_{d} \\
I_{d} & 0
\end{array}\right]}_{:=\mathcal{H} \in \mathbb{R}^{2 d \times 2 d}} \underbrace{\left[\begin{array}{c}
w_{k}-w^{*} \\
w_{k-1}-w^{*}
\end{array}\right]}_{:=\Delta_{k} \in \mathbb{R}^{2 d}} \Longrightarrow \Delta_{k+1}=\mathcal{H} \Delta_{k}
$$

Recursing from $k=0$ to $T-1$, and taking norm,

$$
\left\|\Delta_{T}\right\|=\left\|\mathcal{H}^{T} \Delta_{0}\right\| \leq\left\|\mathcal{H}^{T}\right\|\left\|\left[\begin{array}{c}
w_{0}-w^{*} \\
w_{-1}-w^{*}
\end{array}\right]\right\| \quad \text { (By definition of the matrix norm) }
$$

Define $w_{-1}=w_{0}$ and lower-bounding the LHS,

$$
\left\|w_{T}-w^{*}\right\| \leq \sqrt{2}\left\|\mathcal{H}^{T}\right\|\left\|w_{0}-w^{*}\right\|
$$

Hence, we have reduced the problem to bounding $\left\|\mathcal{H}^{T}\right\|$.

Minimizing strongly-convex quadratics with HB momentum

Recall that for symmetric matrices, $\|B\|_{2}=\rho(B)$. Unfortunately, this relation is not true for general asymmetric matrices, and $\|B\| \geq \rho(B)$.

Gelfand's Formula: For a matrix $B \in \mathbb{R}^{d \times d}$ such that $\rho(B):=\max _{i \in[d]}\left|\lambda_{i}\right|$, then there exists a sequence $\epsilon_{k} \geq 0$ such that $\lim _{k \rightarrow \infty} \epsilon_{k}=0$ and,

$$
\left\|B^{k}\right\| \leq\left(\rho(B)+\epsilon_{k}\right)^{k} .
$$

Using this formula with our bound,

$$
\left\|w_{T}-w^{*}\right\| \leq\left(\rho(\mathcal{H})+\epsilon_{T}\right)^{T}\left\|w_{0}-w^{*}\right\|
$$

Hence, we have reduced the problem to bounding $\rho(\mathcal{H})$.

Minimizing strongly-convex quadratics with HB momentum

Similar to the GD case, let $A=U \wedge U^{\top}$ be the eigen-decomposition of A, then, $(1+\beta) I_{d}-\eta A=U S U^{\top}$ where $S_{i, i}=1+\beta-\eta \lambda_{i}$. Hence,

$$
\mathcal{H}=\left[\begin{array}{cc}
U^{\top} & 0 \\
0 & U^{\top}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
(1+\beta) I_{d}-\eta \Lambda & -\beta I_{d} \\
I_{d} & 0
\end{array}\right]}_{:=H}\left[\begin{array}{ll}
U & 0 \\
0 & U
\end{array}\right]
$$

Since U is orthonormal, $\rho(\mathcal{H})=\rho(H)$. Hence we have reduced the problem to bounding $\rho(H)$.

Minimizing strongly-convex quadratics with HB momentum

Let P be a permutation matrix such that:

$$
P_{i, j}= \begin{cases}1 & i \text { is odd, } j=i \\ 1 & i \text { is even, } j=2 d+i \\ 0 & \text { otherwise }\end{cases}
$$

$$
B=P H P^{\top}=\left[\begin{array}{cccc}
H_{1} & 0 & \ldots & 0 \\
0 & H_{2} & \ldots & 0 \\
\vdots & \ddots & & \\
0 & & 0 & H_{d}
\end{array}\right]
$$

where,

$$
H_{i}=\left[\begin{array}{cc}
(1+\beta)-\eta \lambda_{i} & -\beta \\
1 & 0
\end{array}\right]
$$

Note that $\rho(H)=\rho(B)$ (a permutation matrix does not change the eigenvalues). Since B is a block diagonal matrix, $\rho(B)=\max _{i}\left[\rho\left(H_{i}\right)\right]$. Hence we have reduced the problem to bounding $\rho\left(H_{i}\right)$.

Minimizing strongly-convex quadratics with HB momentum

For a fixed $i \in[2 d]$, let us compute the eigenvalues of $H_{i} \in \mathbb{R}^{2 \times 2}$ by solving the characteristic polynomial: $\operatorname{det}\left(H_{i}-u l_{2}\right)=0$ w.r.t u.

$$
u^{2}-\left(1+\beta-\eta \lambda_{i}\right) u+\beta=0 \Longrightarrow u=\frac{1}{2}\left[\left(1+\beta-\eta \lambda_{i}\right) \pm \sqrt{\left(1+\beta-\eta \lambda_{i}\right)^{2}-4 \beta}\right]
$$

Let us set β such that, $\left(1+\beta-\eta \lambda_{i}\right)^{2} \leq 4 \beta$. This ensures that the roots to the above equation are complex conjugates. Hence,

$$
1+\beta-\eta \lambda_{i} \geq-2 \sqrt{\beta} \Longrightarrow(\sqrt{\beta}+1) \geq \sqrt{\eta \lambda_{i}} \Longrightarrow \beta \geq\left(1-\sqrt{\eta \lambda_{i}}\right)^{2}
$$

If we ensure that $\beta \geq\left(1-\sqrt{\eta \lambda_{i}}\right)^{2}$

$$
\begin{aligned}
u & =\frac{1}{2}\left[\left(1+\beta-\eta \lambda_{i}\right) \pm i \sqrt{4 \beta-\left(1+\beta-\eta \lambda_{i}\right)^{2}}\right] \\
\Longrightarrow|u|^{2} & =\frac{1}{4}\left[\left(1+\beta-\eta \lambda_{i}\right)^{2}+4 \beta-\left(1+\beta-\eta \lambda_{i}\right)^{2}\right]=\beta \Longrightarrow|u|=\sqrt{\beta}
\end{aligned}
$$

Hence, if $\beta \geq\left(1-\sqrt{\eta \lambda_{i}}\right)^{2}, \rho\left(H_{i}\right)=\sqrt{\beta}$ and $\rho(B)=\max _{i}\left[\rho\left(H_{i}\right)\right]=\sqrt{\beta}$.

Minimizing strongly-convex quadratics with HB momentum

Using the result from the previous slide, if we ensure that for all $i, \beta \geq\left(1-\sqrt{\eta \lambda_{i}}\right)^{2}$, then, $\rho(B)=\sqrt{\beta}$. Hence, we want that,

$$
\beta=\max _{i}\left\{\left(1-\sqrt{\eta \lambda_{i}}\right)^{2}\right\}=\max _{\lambda \in[\mu, L]}\left\{(1-\sqrt{\eta \lambda})^{2}\right\}=\max \left\{(1-\sqrt{\eta \mu})^{2},(1-\sqrt{\eta L})^{2}\right\}
$$

Similar to GD, we equate the two terms in the max,
$1+\eta \mu-2 \sqrt{\eta \mu}=1+\eta L-2 \sqrt{\eta L} \Longrightarrow \eta=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}}$.
With this value of $\eta, \rho(\mathcal{H})=\rho(H)=\rho(B) \leq \sqrt{\beta}=\sqrt{\left(1-\frac{2 \sqrt{\mu}}{(\sqrt{L}+\sqrt{\mu})}\right)^{2}}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$.
Putting everything together,

$$
\left\|w_{T}-w^{*}\right\| \leq \sqrt{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}+\epsilon_{T}\right)^{T}\left\|w_{0}-w^{*}\right\|
$$

Questions?

