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Recap

Gradient Descent: wk+1 = wk − η∇f (wk).

Nesterov Acceleration: wk+1 = [wk + βk(wk − wk−1)]− η∇f (wk + βk(wk − wk−1)).

Nesterov acceleration can be interpreted as doing GD on “extrapolated” points where βk can be
interpreted as the “momentum” in the previous direction (wk − wk−1).

Function class L-smooth L-smooth + convex L-smooth + µ-strongly convex
Gradient Descent Θ(1/ϵ) O (1/ϵ) O (κ log (1/ϵ))

Nesterov Acceleration - Θ(1/
√
ϵ) Θ (

√
κ log (1/ϵ))

Table 1: Optimization Zoo

For all cases, η = 1
L for both GD and Nesterov acceleration, and we can use Armijo line-search to

estimate L and set the step-size.

Gradient Descent is adaptive to strong-convexity, however, Nesterov acceleration requires
knowledge of µ to set βk .
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Heavy-Ball Momentum

Heavy-Ball/Polyak Momentum: wk+1 = wk − η∇f (wk) + βk(wk − wk−1).

Nesterov Acceleration: vk = wk + βk(wk − wk−1) ;wk+1 = vk − η∇f (vk) i.e. extrapolate and
compute the gradient at the extrapolated point vk .

Polyak Momentum: vk = wk + βk(wk − wk−1) ;wk+1 = vk − η∇f (wk) i.e. compute the
gradient at wk and then extrapolate.

Unlike GD, Nesterov acceleration and Polyak momentum are not “descent” methods i.e. it is not
guaranteed that f (wk+1) ≤ f (wk) for all k .

In order to minimize quadratics: f (w) = 1
2w

TAw − bw + c where A is symmetric, positive
semi-definite, or equivalently solve linear systems of the form: Aw = b, using Polyak momentum
with optimal values of (η, β) is equivalent to Conjugate Gradient.
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Heavy-Ball Momentum

Brief History: For L-smooth + µ-strongly convex functions,

Quadratics: HB momentum with a specific (η, β) can achieve the accelerated rate and
obtain a dependence on

√
κ (only an asymptotic rate). [Polyak, 1964]

General smooth, SC functions: Using Polyak’s (η, β) parameters can result in cycling and
HB momentum is not guaranteed to converge. [Lessard et al, 2014]

General smooth, SC functions: Using a different (η, β), HB momentum can converge and
match the GD rate (no acceleration). [Ghadimi et al, 2014]

General smooth, SC functions + Lipschitz-continuity of Hessian: Using a different (η, β),
HB momentum matches the GD rate at the beginning, but achieves the accelerated rate
after O(κ) iterations. [Wang et al, 2022]
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Heavy-Ball Momentum

Let us focus on minimizing quadratics: f (w) = 1
2w

TAw − bw + c , where A is a symmetric
positive definite matrix.

Claim: For L-smooth, µ-strongly convex quadratics, HB momentum with η = 4
(
√
L+

√
µ)2

and

β =
√
κ−1√
κ+1 achieves the following convergence rate:

∥wT − w∗∥ ≤
√

2
(√

κ− 1√
κ+ 1

+ ϵT

)T

∥w0 − w∗∥

where ϵT ≥ 0 and limT→∞ ϵT = 0.

HB momentum can also achieve a slightly-worse, but still accelerated non-asymptotic rate [Wang
et al, 2021].

∥wT − w∗∥ ≤ 4
√
κ

(
1 − 1

2
√
κ

)T

∥w0 − w∗∥
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Questions?
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Minimizing strongly-convex quadratics with GD

As a warm-up, let us first prove the optimal GD rate for smooth, strongly-convex quadratics.

Claim: For L-smooth, µ-strongly convex quadratics, GD with η = 2
µ+L achieves the following

convergence rate:

∥wT − w∗∥ ≤
(
κ− 1
κ+ 1

)T

∥w0 − w∗∥

Proof: For quadratics, ∇f (w) = Aw − b,

wk+1 = wk − η∇f (wk) = wk − η[Awk − b]

=⇒ ∥wk+1 − w∗∥ = ∥wk − w∗ − η[Awk − b]∥
= ∥wk − w∗ − η[Awk − Aw∗]∥ (Since ∇f (w∗) = 0 =⇒ Aw∗ = b)

=⇒ ∥wk+1 − w∗∥ = ∥(Id − ηA) (wk − w∗)∥ ≤ ∥Id − ηA∥2 ∥wk − w∗∥
(By definition of the matrix norm: for matrix B, ∥B∥2 = max

{
∥Bv∥2
∥v∥2

}
for all vectors v ̸= 0, and)

We have thus reduced the problem to bounding ∥Id − ηA∥2.
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Minimizing strongly-convex quadratics with GD

Recall that ∥wk+1 − w∗∥ = ∥Id − ηA∥2 ∥wk − w∗∥. Since f is L-smooth and µ-strongly convex,
µId ⪯ ∇2f (w) = A ⪯ LId .

If A = UΛUT is the eigen-decomposition of A, and λ1, λ2, . . . , λd are the eigenvalues of A, then,
Id − ηA = USUT where Si,i = 1 − ηλi .

Since U is an orthonormal matrix, ∥Id − ηA∥ = ∥S∥. By definition of the matrix norm, for
symmetric matrices,

∥B∥2 = ρ(B) := max{|λ1[B]| , |λ2[B]| , . . . , |λd [B]|}

where ρ(B) is the spectral radius of B.

Hence,

∥Id − ηA∥ = ∥S∥ = ρ(S) = max{|λ1[S ]| , |λ2[S ]| , . . . , |λd [S ]|} = max
λ∈[µ,L]

{|1 − ηλ|}

∥Id − ηA∥ = max{|1 − ηµ| , |1 − ηL|} (Since 1 − ηλ is linear in λ)
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Minimizing strongly-convex quadratics with GD

Recall that ∥wk+1 − w∗∥ = ∥Id − ηA∥ ∥wk − w∗∥ and ∥Id − ηA∥ = max{|1 − ηµ| , |1 − ηL|}.

Let us choose a step-size η ∈
[

1
L ,

1
µ

]
. Hence,

∥Id − ηA∥ ≤ max{1 − ηµ, ηL− 1} =
L− µ

L+ µ

(By setting η = 2
µ+L , we minimize max{1 − ηµ, ηL− 1})

Putting everything together,

∥wk+1 − w∗∥ ≤ L− µ

L+ µ
∥wk − w∗∥ =

κ− 1
κ+ 1

∥wk − w∗∥

Recursing from k = 0 to T − 1,

∥wT − w∗∥ ≤
(
κ− 1
κ+ 1

)T

∥w0 − w∗∥ .
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Questions?
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Minimizing strongly-convex quadratics with HB momentum

Update: wk+1 = wk − η∇f (wk) + β(wk − wk−1)

Claim: For L-smooth, µ-strongly convex quadratics, HB momentum with η = 4
(
√
L+

√
µ)2

and

β =
√
κ−1√
κ+1 achieves the following convergence rate:

∥wT − w∗∥ ≤
√

2
(√

κ−1√
κ+1 + ϵT

)T

∥w0 − w∗∥, where, limT→∞ ϵT → 0.
Proof: [

wk+1 − w∗

wk − w∗

]
=

[
wk − w∗ − η∇f (wk) + β(wk − wk−1)

wk − w∗

]

=

[
wk − w∗ − ηA(wk − w∗) + β(wk − w∗)− β(wk−1 − w∗)

wk − w∗

]
(Since ∇f (w) = Aw , Aw∗ = b)

=⇒

[
wk+1 − w∗

wk − w∗

]
=

[
(1 + β)Id − ηA −βId

Id 0

][
wk − w∗

wk−1 − w∗

]
If β = 0, we can recover the same equation as GD. 8



Minimizing strongly-convex quadratics with HB momentum

[
wk+1 − w∗

wk − w∗

]
︸ ︷︷ ︸

:=∆k+1∈R2d

=

[
(1 + β)Id − ηA −βId

Id 0

]
︸ ︷︷ ︸

:=H∈R2d×2d

[
wk − w∗

wk−1 − w∗

]
︸ ︷︷ ︸

:=∆k∈R2d

=⇒ ∆k+1 = H∆k

Recursing from k = 0 to T − 1, and taking norm,

∥∆T∥ =
∥∥HT∆0

∥∥ ≤
∥∥HT

∥∥ ∥∥∥∥∥
[
w0 − w∗

w−1 − w∗

]∥∥∥∥∥ (By definition of the matrix norm)

Define w−1 = w0 and lower-bounding the LHS,

∥wT − w∗∥ ≤
√

2
∥∥HT

∥∥ ∥w0 − w∗∥

Hence, we have reduced the problem to bounding
∥∥HT

∥∥.
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Minimizing strongly-convex quadratics with HB momentum

Recall that for symmetric matrices, ∥B∥2 = ρ(B). Unfortunately, this relation is not true for
general asymmetric matrices, and ∥B∥ ≥ ρ(B).

Gelfand’s Formula: For a matrix B ∈ Rd×d such that ρ(B) := maxi∈[d ] |λi |, then there exists a
sequence ϵk ≥ 0 such that limk→∞ ϵk = 0 and,∥∥Bk

∥∥ ≤ (ρ(B) + ϵk)
k .

Using this formula with our bound,

∥wT − w∗∥ ≤ (ρ(H) + ϵT )
T ∥w0 − w∗∥

Hence, we have reduced the problem to bounding ρ(H).
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Minimizing strongly-convex quadratics with HB momentum

Similar to the GD case, let A = UΛUT be the eigen-decomposition of A, then,
(1 + β) Id − ηA = USUT where Si,i = 1 + β − ηλi . Hence,

H =

[
UT 0
0 UT

] [
(1 + β)Id − ηΛ −βId

Id 0

]
︸ ︷︷ ︸

:=H

[
U 0
0 U

]

Since U is orthonormal, ρ(H) = ρ(H). Hence we have reduced the problem to bounding ρ(H).
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Minimizing strongly-convex quadratics with HB momentum

Let P be a permutation matrix such that:

Pi,j =


1 i is odd, j = i

1 i is even, j = 2d + i

0 otherwise

B = P H PT =


H1 0 . . . 0
0 H2 . . . 0
...

. . .
0 0 Hd


where,

Hi =

[
(1 + β)− ηλi −β

1 0

]
Note that ρ(H) = ρ(B) (a permutation matrix does not change the eigenvalues). Since B is a

block diagonal matrix, ρ(B) = maxi [ρ(Hi )]. Hence we have reduced the problem to bounding
ρ(Hi ).
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Minimizing strongly-convex quadratics with HB momentum

For a fixed i ∈ [2d ], let us compute the eigenvalues of Hi ∈ R2×2 by solving the characteristic
polynomial: det(Hi − uI2) = 0 w.r.t u.

u2 − (1 + β − ηλi )u + β = 0 =⇒ u =
1
2

[
(1 + β − ηλi )±

√
(1 + β − ηλi )2 − 4β

]
Let us set β such that, (1 + β − ηλi )

2 ≤ 4β. This ensures that the roots to the above equation
are complex conjugates. Hence,

1 + β − ηλi ≥ −2
√
β =⇒ (

√
β + 1) ≥

√
ηλi =⇒ β ≥ (1 −

√
ηλi )

2

If we ensure that β ≥ (1 −
√
ηλi )

2

u =
1
2

[
(1 + β − ηλi )± i

√
4β − (1 + β − ηλi )2

]
=⇒ |u|2 =

1
4
[
(1 + β − ηλi )

2 + 4β − (1 + β − ηλi )
2] = β =⇒ |u| =

√
β.

Hence, if β ≥ (1 −
√
ηλi )

2, ρ(Hi ) =
√
β and ρ(B) = maxi [ρ(Hi )] =

√
β.
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Minimizing strongly-convex quadratics with HB momentum

Using the result from the previous slide, if we ensure that for all i , β ≥ (1 −
√
ηλi )

2, then,
ρ(B) =

√
β. Hence, we want that,

β = max
i
{(1 −

√
ηλi )

2} = max
λ∈[µ,L]

{(1 −
√
ηλ)2} = max{(1 −√

ηµ)2, (1 −
√
ηL)2}

Similar to GD, we equate the two terms in the max,

1 + ηµ− 2
√
ηµ = 1 + ηL− 2

√
ηL =⇒ η =

4
(
√
L+

√
µ)2

.

With this value of η, ρ(H) = ρ(H) = ρ(B) ≤
√
β =

√(
1 − 2

√
µ

(
√
L+

√
µ)

)2
=

√
L−√

µ√
L+

√
µ
=

√
κ−1√
κ+1 .

Putting everything together,

∥wT − w∗∥ ≤
√

2
(√

κ− 1√
κ+ 1

+ ϵT

)T

∥w0 − w∗∥
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Questions?
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