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Recap

For L-smooth, convex functions, GD with η = 1/L requires T ≥ 2L ∥w0−w∗∥2

ϵ iterations to obtain
point wT that is ϵ-suboptimal in the sense that f (wT ) ≤ f (w∗) + ϵ.

For L-smooth, convex functions, the rate can improved to Θ(1/
√
ϵ) using Nesterov acceleration.

For L-smooth, µ-strongly convex functions, GD with η = 1
L requires T ≥ κ log

(
∥w0−w∗∥2

ϵ

)
iterations to obtain a point wT that is ϵ-suboptimal in the sense that ∥wT − w∗∥2 ≤ ϵ.

For L-smooth, µ-strongly convex functions, the rate can improved to Θ
(√

κ log
( 1
ϵ

))
using

Nesterov acceleration.
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Dealing with Constrained Domains

We have characterized the convergence of GD on smooth, (strongly)-convex functions when the
domain was Rd i.e. the optimization was “unconstrained”.

In general, convex optimization can be constrained to be over a convex set.

Examples: Linear programming, Optimizing over the probability simplex or a norm-ball.

We can modify GD to solve problems such as minw∈C f (w) where f is a convex function and C
is a convex set.

Projected GD

wk+1 = ΠC [wk − η∇f (wk)]

where, ΠC[x ] = argminw∈C
1
2 ∥w − x∥2 is the Euclidean projection onto the convex set C.
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Dealing with Constrained Domains

Q: (i) Is ΠC[x ] unique for convex sets? (ii) For non-convex sets?

Ans: (i) Yes, since we are minimizing a strongly-convex function over a convex set. (ii) Not
necessarily, for example, when the set is the boundary of a circle and we are projecting the centre.

Q: For x ∈ Rd , compute the Euclidean projection onto the ℓ2-ball: B(0, 1) = {w | ∥w∥2
2 ≤ 1}?

Ans: We need to solve y = min∥w∥2
2≤1

1
2 ∥w − x∥2

2. If ∥x∥2
2 ≤ 1, x ∈ B(0, 1), and ΠB(0,1)[x ] = x .

If ∥x∥2
2 > 1, then the projection will result in a point on the boundary of B and have unit length.

Consider the set of candidate points of unit length: Ŷ = {ŷ | ∥ŷ∥2
2 = 1}. For y = x

∥x∥2
2
∈ Ŷ and

any other ŷ ∈ Ŷ ,

y = argmin
ŷ∈Ŷ

1
2
∥ŷ − x∥2

2 =
1 + ∥x∥2

2
− ⟨ŷ , x⟩

Hence, if ∥x∥2
2 > 1, then ΠB[x ] =

x
∥x∥2

2
. Putting both cases together, ΠB[x ] =

x
max{1,∥x∥2

2}
.

Can and should be formally done using Lagrange multipliers.
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Dealing with Constrained Domains

For convex optimization over unconstrained domains, we know that the minimizer can be
characterized by its gradient norm i.e. if w∗ is a minimizer, then, ∇f (w∗) = 0.

Optimality conditions: For constrained convex domains, if f is convex and
w∗ ∈ argminw∈C f (w), then ∀w ∈ C,

⟨∇f (w∗),w − w∗⟩ ≥ 0

i.e. if we are at the optimal, either the gradient is zero (if w∗ is inside C) or moving in the
negative direction of the gradient will push us out of C (if w∗ is at the boundary of C).

For the Euclidean projection, if y := ΠC[x ] = argminw∈C
1
2 ∥w − x∥2, then, using the optimal

conditions above, ∀w ∈ C,
⟨x − y ,w − y⟩ ≤ 0

i.e. the angle between the rays y → x and y → w for all w ∈ C is greater than 90◦.

Q: For convex set C, if w∗ = argminw∈C f (w), what is ΠC[w
∗]?

Ans: w∗ since w∗ ∈ C 4



Dealing with Constrained Domains

Claim: Projections onto a convex set are non-expansive operations i.e. for all x1, x2, if
y1 := ΠC[x1] and y2 := ΠC[x2], then, ∥y1 − y2∥ ≤ ∥x1 − x2∥.

Proof: Recall from the last slide, that for the Euclidean projection, y = ΠC[x ],
⟨x − y ,w − y⟩ ≤ 0 for all w ∈ C. Hence,

⟨x1 − y1,w − y1⟩ ≤ 0 =⇒ ⟨x1 − y1, y2 − y1⟩ ≤ 0 (Set w = y2)

⟨x2 − y2,w − y2⟩ ≤ 0 =⇒ ⟨x2 − y2, y1 − y2⟩ ≤ 0 (Set w = y1)

Adding the two equations,

⟨x2 − y2, y1 − y2⟩+ ⟨x1 − y1, y2 − y1⟩ ≤ 0 =⇒ ⟨x2 − x1 + y1 − y2, y1 − y2⟩ ≤ 0

=⇒ ⟨y1 − y2, y1 − y2⟩ ≤ ⟨x1 − x2, y1 − y2⟩ =⇒ ∥y1 − y2∥2 ≤ ∥x1 − x2∥ ∥y1 − y2∥
(Cauchy Schwartz)

=⇒ ∥y1 − y2∥ ≤ ∥x1 − x2∥
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Projected GD for Smooth, Strongly-Convex Functions

Recall projected GD: wk+1 = ΠC[wk − η∇f (wk)]. Using that w∗ = ΠC[w
∗ − η∇f (w∗)] for any

η (Need to prove in Assignment 2) and using the non-expansiveness of projections with
x1 = w∗ − η∇f (w∗), x2 = wk − η∇f (wk), y1 = w∗, y2 = wk+1,

∥wk+1 − w∗∥2 ≤ ∥wk − η∇f (wk)− w∗ + η∇f (w∗)∥2

With this change, the proof proceeds as before. In particular,

∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2η⟨∇f (wk)−∇f (w∗),wk − w∗⟩+ η2 ∥∇f (wk)−∇f (w∗)∥2

Using the optimality condition for w∗, smoothness and strong-convexity (similar to Lecture 4),
we can derive the same linear rate (Need to prove in Assignment 2)

∥wk+1 − w∗∥2 ≤ exp (−T/κ) ∥w0 − w∗∥2

We can also redo the proof for smooth, convex functions and get the same O (1/T) convergence
rate. Hence, projected GD is a good option for minimizing convex functions over convex sets
when the projection operation is computationally cheap.
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Questions?

6



Nesterov Acceleration

Gradient Descent: wk+1 = GD(wk) where GD is a function such that GD(w) := w − η∇f (w).

Nesterov Acceleration: wk+1 = GD(wk + βk(wk −wk−1)) for βk ≥ 0 to be determined. Hence,

wk+1 = [wk + βk(wk − wk−1)]− η∇f (wk + βk(wk − wk−1))

i.e. Nesterov acceleration can be interpreted as doing GD on “extrapolated” points where βk can
be interpreted as the “momentum” in the previous direction (wk − wk−1).

If we define sequence vk := wk + βk(wk − wk−1), and initialize w0 = v0, then,

vk = wk + βk(wk − wk−1) ; wk+1 = vk − η∇f (vk) (1)

Rewriting the above expression only in terms of vk ,

vk+1 = vk − ηk∇f (vk) + βk+1[vk − vk−1]− η βk+1[∇f (vk)−∇f (vk−1)]

i.e. Nesterov acceleration can be interpreted as moving along a combination of three directions –
the gradient direction ∇f (vk), the momentum direction for the iterates [vk − vk−1] and the
momentum direction for the gradients [∇f (vk)−∇f (vk−1)].
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Nesterov Acceleration for Smooth, Convex Functions

In order to analyze the convergence of Nesterov acceleration for smooth, convex functions, define
dk := βk(wk − wk−1), set η = 1

L and define gk := − 1
L∇f (wk + dk). For k ≥ 1 (for simplicity,

set w1 = w0),

wk+1 = [wk + βk(wk − wk−1)]− η∇f (wk + βk(wk − wk−1))

=⇒ wk+1 = wk + dk −
1
L
∇f (wk + dk) = wk + dk + gk .

In order to set the momentum parameter βk , we define a sequence {λk}Tk=1 such that,

λ0 = 0 ; λk =
1 +

√
1 + 4λ2

k−1

2
; βk+1 =

λk − 1
λk+1

(2)

Claim: For L-smooth, convex functions, Nesterov acceleration with η = 1
L , βk set according

to Eq. (2) and T ≥
√

2L ∥w1−w∗∥√
ϵ

iterations to obtain point wT+1 that is ϵ-suboptimal in the
sense that f (wT+1) ≤ f (w∗) + ϵ.

Hence, Nesterov acceleration is optimal for minimizing the class of smooth, convex functions.
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Nesterov Acceleration for Smooth, Convex Functions

In order to prove the claim, we will need the following lemma:
Lemma: When using Nesterov acceleration with η = 1

L , for any vector y ,
f (wk+1)− f (y) ≤ ⟨∇f (wk + dk),wk + dk − y⟩ − 1

2L ∥∇f (wk + dk)∥2.

Proof: Using L-smoothness, since Nesterov acceleration is equivalent to GD on wk + dk ,

f (wk+1)− f (wk + dk) ≤ ⟨∇f (wk + dk),wk+1 − wk − dk⟩+
L

2
∥wk+1 − wk − dk∥2

= −1
L
⟨∇f (wk + dk),∇f (wk + dk)⟩+

1
2L

∥∇f (wk + dk)∥2

=⇒ f (wk+1)− f (wk + dk) ≤
−1
2L

∥∇f (wk + dk)∥2

=⇒ f (wk+1)− f (y) ≤ f (wk + dk)− f (y)− 1
2L

∥∇f (wk + dk)∥2

Using convexity: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩ with x = wk + dk and y = y

=⇒ f (wk+1)− f (y) ≤ ⟨∇f (wk + dk),wk + dk − y⟩ − 1
2L

∥∇f (wk + dk)∥2 (3)
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Nesterov Acceleration for Smooth, Convex Functions

Using the lemma with y = w∗, with f ∗ := f (w∗) and define ∆k := f (wk)− f ∗,

∆k+1 = f (wk+1)− f ∗ ≤ ⟨∇f (wk + dk),wk + dk − w∗⟩ − 1
2L

∥∇f (wk + dk)∥2

≤ −L

2

[
2
〈
−∇f (wk + dk)

L
, (wk − w∗) + dk

〉
+

1
L2 ∥∇f (wk + dk)∥2

]
=⇒ ∆k+1 ≤ −L

2

[
2⟨gk ,wk − w∗ + dk⟩+ ∥gk∥2

]
(4)

Using the lemma with y = wk ,

[f (wk+1)− f ∗]− [f (wk)− f ∗] ≤ ⟨∇f (wk + dk), dk⟩ −
1
2L

∥∇f (wk + dk)∥2

=⇒ ∆k+1 −∆k ≤ −L

2

[
2
〈
−∇f (wk + dk)

L
, dk

〉
+

1
L2 ∥∇f (wk + dk)∥2

]
=⇒ ∆k+1 −∆k ≤ −L

2

[
2⟨gk , dk⟩+ ∥gk∥2

]
(5)

10



Nesterov Acceleration for Smooth, Convex Functions

For λk > 1,

(λk − 1)Eq. (5) + Eq. (4) ≤ −L

2

[
(λk − 1)

[
2⟨gk , dk⟩+ ∥gk∥2

]
+
[
2⟨gk ,wk − w∗ + dk⟩+ ∥gk∥2

]]
Let us first simplify the RHS,[

(λk − 1)
[
2⟨gk , dk⟩+ ∥gk∥2

]
+

[
2⟨gk ,wk − w∗ + dk⟩+ ∥gk∥2

]]
= λk

[
2⟨gk , dk⟩+ ∥gk∥2

]
−

[
2⟨gk , dk⟩+ ∥gk∥2 − 2⟨gk ,wk − w∗ + dk⟩ − ∥gk∥2

]
=

1
λk

[
λ2
k

(
2⟨gk , dk⟩+ ∥gk∥2

)
+ 2λk⟨gk ,wk − w∗⟩

]
=

1
λk

[
∥wk − w∗ + λkdk + λkgk∥2 − ∥wk − w∗ + λkdk∥2

]
Putting everything together,

λk [(λk − 1)Eq. (5) + Eq. (4)] ≤ L

2

[
∥wk − w∗ + λkdk∥2 − ∥wk − w∗ + λkdk + λkgk∥2

]
(6)
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Nesterov Acceleration for Smooth, Convex Functions

Now let us simplify the LHS of Eq. (6),

λk [(λk − 1)Eq. (5) + Eq. (4)] = λk [(λk − 1) (∆k+1 −∆k) + ∆k+1] = λ2
k ∆k+1 − (λ2

k − λk)∆k

Putting everything together,

λ2
k ∆k+1 − (λ2

k − λk)∆k ≤ L

2

[
∥wk − w∗ + λkdk∥2 − ∥wk − w∗ + λkdk + λkgk∥2

]
We wish to sum from k = 1 to T , and telescope the terms. For the RHS, we want that,

wk − w∗ + λkdk + λkgk = wk+1 − w∗ + λk+1dk+1 = wk + dk + gk − w∗ + λk+1dk+1

= wk + dk + gk − w∗ + λk+1βk+1[wk+1 − wk ]

= wk + dk + gk − w∗ + λk+1 βk+1[wk + dk + gk − wk ]

=⇒ We want that: wk − w∗ + λk(dk + gk) = wk − w∗ + (1 + λk+1 βk+1) [dk + gk ]

This can be achieved if βk+1 = λk−1
λk+1

.
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Nesterov Acceleration for Smooth, Convex Functions

Recall that: λ2
k ∆k+1 − (λ2

k − λk)∆k ≤ L
2

[
∥wk − w∗ + λkdk∥2 − ∥wk − w∗ + λkdk + λkgk∥2

]
.

In order to telescope the LHS, we want that,

λ2
k−1 = λ2

k − λk =⇒ λk =
1 +

√
1 + 4λ2

k−1

2

By using the sequence λk =
1+
√

1+4λ2
k−1

2 and setting βk+1 = λk−1
λk+1

,

λ2
k ∆k+1 − λ2

k−1 ∆k ≤ L

2

[
∥wk − w∗ + λkdk∥2 − ∥wk+1 − w∗ + λk+1dk+1∥2

]
Summing from k = 1 to T , since λ0 = 0

λ2
T∆T+1 ≤ L

2

[
∥w1 − w∗ + λ1d1∥2 − ∥wT+1 − w∗ + λT+1dT+1∥2

]
≤ L

2
∥w1 − w∗∥2 (Since w0 = w1 =⇒ d1 = β1(w1 − w0) = 0)

=⇒ ∆T+1 = f (wT+1)− f ∗ ≤ L

2λ2
T

∥w1 − w∗∥2 (7)
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Nesterov Acceleration for Smooth, Convex Functions

Recall that f (wT+1)− f ∗ ≤ L
2λ2

T
∥w1 − w∗∥2. Let us prove that λk ≥ k

2 by induction.

Base case: k = 1, λ1 =
1+
√

1+4λ2
0

2 = 1 ≥ 1
2 .

Inductive step: Assuming the statement is true for k − 1 i.e. λk−1 ≥ k−1
2 ,

λk =
1+
√

1+4λ2
k−1

2 =
1+
√

1+(k−1)2

2 ≥ k
2 .

Hence, λk ≥ k
2 and λT ≥ T

2 . Hence,

f (wT+1)− f ∗ ≤ 2L ∥w1 − w∗∥2

T 2

Hence, Nesterov acceleration with η = 1
L and a carefully engineered βk sequence can obtain the

accelerated O
( 1
T2

)
rate for smooth, convex functions.
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Nesterov Acceleration for Smooth, Strongly-Convex Functions

Nesterov acceleration also results in the accelerated O (
√
κ log(1/ϵ)) rate for smooth,

strongly-convex functions.

In order to obtain this rate, the algorithm requires the following parameter settings: η = 1
L and,

βk =

√
κ− 1√
κ+ 1

Refer to Bubeck, 3.7.1 for the analysis.

Compared to the smooth, convex setting for which βk decreases, the strongly-convex setting
requires a constant βk in order to attain the accelerated rate.

Compared to GD, for smooth, strongly-convex functions, Nesterov acceleration requires
knowledge of κ (and hence µ) in order to set βk .

Unlike estimating L, estimating µ is difficult, and misestimating it can result in bad empirical
performance. Common trick that results in decent performance is to use the convex parameters
(with the decreasing βk) with restarts.
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Questions?
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