
CMPT 409/981: Optimization for Machine Learning

Lecture 4

Sharan Vaswani

September 22, 2022

Recap

Convex optimization: Minimizing a convex function over a convex set.

Convex sets: Set C is convex iff ∀x , y ∈ C, the convex combination z := θx + (1 − θ)y for
θ ∈ [0, 1] is also in C. Examples: Half-space: {x |Ax ≤ b}, Norm-ball: {x | ∥x∥p ≤ r}.

Convex functions: A function f is convex iff its domain D is a convex set, and for all x , y ∈ D
and θ ∈ [0, 1],f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y).

First-order condition for convexity: If f is differentiable, it is convex iff its domain D is a
convex set and for all x , y ∈ D, f (y) ≥ f (x) + ⟨∇f (x), y − x⟩.

Second-order condition for convexity: If f is twice differentiable, it is convex iff its domain D
is a convex set and for all x ∈ D, ∇2f (x) ⪰ 0.

Examples: All norms ∥x∥p, Negative entropy: f (x) = x log(x), Logistic regression:∑n
i=1 log (1 + exp (−yi ⟨Xi ,w⟩)), Ridge regression: 1

2 ∥Xw − y∥2 + λ
2 ∥w∥2.

1

GD for Smooth, Convex Functions

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer.
Let us analyze the convergence of GD for smooth, convex problems: minw∈Rd f (w).

Claim: For L-smooth, convex functions, GD with η = 1
L requires T ≥ 2L ∥w0−w∗∥2

ϵ iterations to
obtain point wT that is ϵ-suboptimal in the sense that f (wT) ≤ f (w∗) + ϵ.

Proof: For L-smooth functions, ∀x , y ∈ D, f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L
2 ∥y − x∥2. Similar

to Lecture 2, using GD: wk+1 = wk − 1
L∇f (wk) yields

f (wk+1)− f (w∗) ≤ f (wk)− f (w∗)− 1
2L

∥∇f (wk)∥2 (1)

Using y = w∗, x = wk in the first-order condition for convexity: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩,

f (wk)− f (w∗) ≤ ⟨∇f (wk),wk − w∗⟩ ≤ ∥∇f (wk)∥ ∥wk − w∗∥ (Cauchy Schwarz)

=⇒ ∥∇f (wk)∥ ≥ f (wk)− f (w∗)

∥wk − w∗∥
(2)

2

GD for Smooth, Convex Functions

In addition to descent on the function, when minimizing smooth, convex functions, GD decreases
the distance to a minimizer w∗.

Claim: For GD with η = 1
L , ∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 ≤ ∥w0 − w∗∥2.

Proof:

∥wk+1 − w∗∥2 = ∥wk − η∇f (wk)− w∗∥2 = ∥wk − w∗∥2 − 2η⟨∇f (wk),wk − w∗⟩+ η2 ∥∇f (wk)∥2

Using y = w∗, x = wk in the first-order condition for convexity: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩,

∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 − 2η[f (wk)− f (w∗)] + η2 ∥∇f (wk)∥2

For convex functions, L-smoothness is equivalent to
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ 1

2L ∥∇f (x)−∇f (y)∥2. Using x = w∗, y = wk in this equation,

≤ ∥wk − w∗∥2 − 2η[f (wk)− f (w∗)] + 2L η2[f (wk)− f (w∗)]

=⇒ ∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 (By setting η = 1
L
)

3

GD for Smooth, Convex Functions

Combining Eq. 2 with the result of the previous claim,

∥∇f (wk)∥ ≥ f (wk)− f (w∗)

∥wk − w∗∥
≥ f (wk)− f (w∗)

∥w0 − w∗∥

Combining the above inequality with Eq. 1,

f (wk+1)− f (w∗) ≤ f (wk)− f (w∗)− 1
2L

∥∇f (wk)∥2 ≤ f (wk)− f (w∗)− 1
2L

[f (wk)− f (w∗)]2

∥w0 − w∗∥2

Dividing by [f (wk)− f (w∗)] [f (wk+1)− f (w∗)]

1
f (wk)− f (w∗)

≤ 1
f (wk+1)− f (w∗)

− 1
2L

f (wk)− f (w∗)

∥w0 − w∗∥2
1

f (wk+1)− f (w∗)

=⇒ 1

2L ∥w0 − w∗∥2
f (wk)− f (w∗)

f (wk+1)− f (w∗)︸ ︷︷ ︸
≥1

≤
[

1
f (wk+1)− f (w∗)

− 1
f (wk)− f (w∗)

]
(3)

4

GD for Smooth, Convex Functions

Summing Eq. 3 from k = 0 to T − 1,

T−1∑
k=0

[
1

2L ∥w0 − w∗∥2

]
≤

T−1∑
k=0

[
1

f (wk+1)− f (w∗)
− 1

f (wk)− f (w∗)

]
T

2L ∥w0 − w∗∥2 ≤ 1
f (wT)− f (w∗)

− 1
f (w0)− f (w∗)

≤ 1
f (wT)− f (w∗)

=⇒ f (wT)− f (w∗) ≤ 2L ∥w0 − w∗∥2

T

The suboptimality f (wT)− f (w∗) decreases at an O
(1
T

)
rate, i.e. the function value at iterate

wT approaches the minimum function value f (w∗).

In order to obtain a function value at least ϵ-close to the optimal function value, GD requires
T ≥ 2L ∥w0−w∗∥2

ϵ iterations.

5

Minimizing Smooth, Convex Functions

Recall that GD was optimal (amongst first-order methods with no dependence on the dimension)
when minimizing smooth (possibly non-convex) functions.

Is GD also optimal when minimizing smooth, convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, convex function such that any
first-order method requires Ω

(
1√
ϵ

)
iterations/oracle calls.

Possible reasons for the discrepancy between the O(1/ϵ) upper-bound for GD, and the Ω(1/
√
ϵ)

lower-bound:

(1) Our upper-bound analysis of GD is loose, and GD actual matches the lower-bound.
(2) The lower-bound is loose, and there is a function that requires Ω(1/ϵ) iterations to optimize.
(3) Both the upper and lower-bounds are tight, and GD is sub-optimal. There exists another

algorithm that has an O(1/
√
ϵ) upper-bound and is hence optimal.

Option (3) is correct – GD is sub-optimal for minimizing smooth, convex functions. Using
Nesterov acceleration is optimal and requires Θ(1/

√
ϵ) iterations (Will cover it next week!).

6

Questions?

6

Strongly convex functions

First-order condition: If f is differentiable, it is µ-strongly convex iff its domain D is a convex
set and for all x , y ∈ D and µ > 0,

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ µ

2
∥y − x∥2

i.e. for all y , the function is lower-bounded by the quadratic defined in the RHS.

Second-order condition for convexity: If f is twice differentiable, it is strongly-convex iff its
domain D is a convex set and for all x ∈ D,

∇2f (x) ⪰ µId

i.e. for all x , the eigenvalues of the Hessian are lower-bounded by µ.

Alternative condition: Function g(x) = f (x)− µ
2 ∥x∥2 is convex, i.e. if we “remove” a quadratic

(curvature) from f , it still remains convex.

Examples: Quadratics f (x) = xTAx + bx + c are µ-strongly convex if A ⪰ µId . If f is a convex
loss function, then g(x) := f (x) + λ

2 ∥x∥2 (the ℓ2-regularized loss) is λ-strongly convex.
7

Strongly-convex functions

Strict-convexity: If f is differentiable, it is strictly-convex iff its domain D is a convex set and
for all x , y ∈ D,

f (y) > f (x) + ⟨∇f (x), y − x⟩
If f is µ strongly-convex, then it is also strictly convex.

Q: For a strictly-convex f , if ∇f (w∗) = 0, then is w∗ a unique minimizer of f ?

Ans: Yes, because for all y ∈ D, f (y) > f (w∗) and hence w∗ is a unique minimizer.

Q: Prove that the ridge regression loss function: f (w) = 1
2 ∥Xw − y∥2 + λ

2 ∥w∥2 is
strongly-convex. Compute µ.

Ans: Recall that ∇2f (w) = XTX + λId . Since ∇2f (w) ⪰ (λmin[X
TX] + λ) Id , ridge regression

is µ-strongly convex with µ = λmin[X
TX] + λ.

Q: Is f (w) = 1
2 ∥Xw − y∥2 strongly-convex?

Ans: Not necessarily, because ∇2f (w) = XTX might be low-rank, and have λmin[X
TX] = 0.

8

Strongly-convex functions

Q: Is negative entropy function f (x) = x ln(x) strictly-convex on (0, 1)?

Ans: Yes. f ′′(x) = 1/x > 0 for all x ∈ (0, 1).

Q: Is logistic regression: f (w) =
∑n

i=1 log (1 + exp (−yi ⟨Xi ,w⟩)) strongly-convex?

Ans: For logistic regression, ∇2f (w) = XTDX . Here, D is a diagonal matrix such that
Di,i = pi (1 − pi) where pi = σ (⟨Xi ,w⟩) equal to Pr[ŷi = 1] (probability of prediction that point
i has label equal to 1) and σ(z) = 1

1+exp(−z) is the sigmoid function.
If XTX is full-rank and pi ∈ (0, 1) (the probability of prediction is bounded away from 0 or 1)
then ∇2f (w) ⪰ µId for µ = λmin[X

TDX].
This implies that if XTX is full-rank, and the parameters are bounded (lie in a compact set) for
example, for some finite C ≥ 0, ∥w∥ ≤ C , then, logistic regression is strongly-convex.

9

Questions?

9

GD for Smooth, Strongly-Convex Functions

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer,
and for strongly-convex functions, the minimizer w∗ is unique.

Let us analyze the convergence of GD for smooth, strongly-convex problems: minw∈Rd f (w).

Claim: For L-smooth, µ-strongly convex functions, GD with η = 1
L requires

T ≥ L
µ log

(
∥w0−w∗∥2

ϵ

)
iterations to obtain a point wT that is ϵ-suboptimal in the sense that

∥wT − w∗∥2 ≤ ϵ.

Proof: Bounding the distance of the iterates to w∗,

∥wk+1 − w∗∥2 = ∥wk − η∇f (wk)− w∗∥2 = ∥wk − w∗∥2 − 2η⟨∇f (wk),wk − w∗⟩+ η2 ∥∇f (wk)∥2

L-smoothness: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ 1
2L ∥∇f (x)−∇f (y)∥2. Using x = w∗, y = wk ,

=⇒ ∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 − 2η⟨∇f (wk),wk − w∗⟩+ 2L η2[f (wk)− f (w∗)] (4)

10

GD for Smooth, Strongly-Convex Functions

µ-strongly convexity: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ µ
2 ∥y − x∥2. Using x = wk , y = w∗,

f (w∗) ≥ f (wk) + ⟨∇f (wk),w
∗ − wk⟩+

µ

2
∥wk − w∗∥2

=⇒ ⟨∇f (wk),wk − w∗⟩ ≥ f (wk)− f (w∗) +
µ

2
∥wk − w∗∥2 (5)

Combining Eq. 4 and 5,

∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 − 2η
[
f (wk)− f (w∗) +

µ

2
∥wk − w∗∥2

]
+ 2L η2[f (wk)− f (w∗)]

= ∥wk − w∗∥2 (1 − µη) + [f (wk)− f (w∗)]
(
−2η + 2Lη2)

=⇒ ∥wk+1 − w∗∥2 ≤
(
1 − µ

L

)
∥wk − w∗∥2 (Since η = 1

L ,
(
−2η + 2Lη2

)
= 0)

Recursing from k = 0 to T − 1,

=⇒ ∥wT − w∗∥2 ≤
(
1 − µ

L

)T
∥w0 − w∗∥2 ≤ exp

(
−µT

L

)
∥w0 − w∗∥2

(Using 1 − x ≤ exp(−x) for all x)
11

GD for Smooth, Strongly-Convex Functions

The suboptimality ∥wT − w∗∥2 decreases at an O (exp(−T)) rate, i.e. the iterate wT

approaches the unique minimizer w∗. In order to obtain an iterate at least ϵ-close to w∗, we
need to make the RHS less than ϵ and quantify the number of required iterations.

exp

(
−µT

L

)
∥w0 − w∗∥2 ≤ ϵ =⇒ T ≥ L

µ
log

(
∥w0 − w∗∥2

ϵ

)
.

Hence, the convergence rate is O (log (1/ϵ)) which is exponentially faster compared to the
convergence rate for smooth, convex functions. This rate of convergence rate is referred to as
the linear rate.

Condition number: κ := L
µ is a problem-dependent constant that quantifies the hardness of the

problem (smaller κ implies that we need fewer iterations of GD).

Q: What κ corresponds to the easiest problem? Ans: 1 since L ≥ µ.

Q: What is the condition number for ridge regression: 1
2 ∥Xw − y∥2 + λ

2 ∥w∥2.

Ans: Recall that ∇2f (w) = XTX + λId . Hence κ = λmax[X
TX]+λ

λmin[XTX]+λ 12

GD for Smooth, Strongly-Convex Functions

Q: For L-smooth, µ-strongly convex functions, how many iterations do we need to ensure that
f (wT)− f (w∗) ≤ ϵ?

Ans: Since f is smooth, f (wT)− f (w∗) ≤ L
2 ∥wT − w∗∥2. Hence, if ∥wT − w∗∥2 ≤ 2ϵ

L , this will

guarantee that f (wT)− f (w∗) ≤ ϵ. This requires T ≥ L
µ log

(
L ∥w0−w∗∥2

2ϵ

)
iterations. We can

also directly bound f (wT)− f (w∗) in terms of f (w0)− f (w∗) and obtain the same rate as for
the iterates (In Assignment 2!).

Gradient Descent is “adaptive” to strong-convexity i.e. it does not need to know µ to converge.

The algorithm remains the same (use step-size η = 1
L) regardless of whether we run it on a

convex or strongly-convex function.

Since GD only requires knowledge of L, we can use the Back-tracking Armijo line-search to
estimate the smoothness, and obtain faster convergence in practice (In Assignment 1!).

13

Minimizing Smooth, Strongly-Convex Functions

Recall that for smooth, convex functions, GD is sub-optimal (convergence rate of O(1/ϵ)) and
can be improved by using Nesterov acceleration (convergence rate of O(1/

√
ϵ)).

For smooth, strongly-convex functions, the convergence rate of GD is O (κ log (1/ϵ)).

Is GD also optimal when minimizing smooth, strongly-convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, strongly-convex function such that
any first-order method requires Ω (

√
κ log (1/ϵ)) iterations/oracle calls.

GD is sub-optimal for minimizing smooth, convex functions. Using Nesterov acceleration is
optimal and requires Θ(

√
κ log (1/ϵ)) iterations

14

Questions?

14

