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Convex optimization: Minimizing a convex function over a convex set.

Convex sets: Set C is convex iff Vx,y € C, the convex combination z := fx + (1 — )y for
0 € [0,1] is also in C. Examples: Half-space: {x|Ax < b}, Norm-ball: {x||[x||, < r}.

Convex functions: A function f is convex iff its domain D is a convex set, and for all x,y € D
and 0 € [0,1],f(0x + (1 — 0)y) < Of(x) + (1 — 0)f(y).

First-order condition for convexity: If f is differentiable, it is convex iff its domain D is a
convex set and for all x,y € D, f(y) > f(x) + (VFf(x),y — x).

Second-order condition for convexity: If f is twice differentiable, it is convex iff its domain D
is a convex set and for all x € D, V2f(x) = 0.

Examples: All norms |[|x|| ,, Negative entropy: f(x) = x log(x), Logistic regression:

S log (1 + exp (—yi(X;, w))), Ridge regression: L || Xw — y|* + 2 [|w|>.



GD for Smooth, Convex Functions

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer.
Let us analyze the convergence of GD for smooth, convex problems: min,, cra f(w).

2L |lwo—w*||? . .
M iterations to

Claim: For L-smooth, convex functions, GD with n = % requires T >
obtain point wr that is e-suboptimal in the sense that f(wr) < f(w*) + €.
Proof: For L-smooth functions, Vx,y € D, f(y) < f(x) + (VFf(x),y —x) + 5 ||y — x||?. Similar
to Lecture 2, using GD: wy1 = wy — %Vf(wk) yields
1
F(wipr) = F(w™) < F(wi) = F(w*) = o7 V(w1 (1)
Using y = w*, x = wy in the first-order condition for convexity: f(y) > f(x) + (Vf(x),y — x),

f(we) — F(w™) < (VF(wg), we — w™)y < ||VF(w)|l [[wi — w™|| (Cauchy Schwarz)

= [IVF(wi)] = .
[[wic — w|



GD for Smooth, Convex Functions

In addition to descent on the function, when minimizing smooth, convex functions, GD decreases
the distance to a minimizer w*.
2

Claim: For GD with n = %, [lwki1 — W*||2 < fjwg — W*H2 < lwo — w*||".
Proof:
Wi — w2 = flwie = nVF(wie) = w*[|* = [lwi — w*||* = 2(VF(wi), we — w*) +0* | VF(wi) >
Using y = w*, x = wy in the first-order condition for convexity: f(y) > f(x) + (Vf(x),y — x),

Wi — w* < [lwie — w*[|* = 2n[F (wie) — F(w)] +n? | V(i) [|®
For convex functions, L-smoothness is equivalent to
fy) = f(x) + (VF(x),y — x) + 37 [|[VF(x) — V£(y)|?. Using x = w*, y = w, in this equation,

< e — w1 = 2n[f(wi) — F(w)] + 2L 2 [F(wi) — F(w")]

= |Wir1 — w*|? < [lwie — w|? (By setting n = 1)



GD for Smooth, Convex Functions

Combining Eq. 2 with the result of the previous claim,

[VF(we))) > S = FWT) Pl = Fw)

wie —w*l| - [lwo — w|

Combining the above inequality with Eq. 1,

1 [f(wi) = F(w)P?
2L lwo — w|?

F(wipr) — F(w™) < F(wi) — F(w") — i IVF(wi)I* < F(we) = F(w") —

Dividing by [£(wi) — F(w*)] [F(Wict1) — F(w*)]

1 - 1 1 f(we) — f(wh) 1
f(wk) — f(w*) = f(wikpr) — F(w*) 2L ||W0—W*||2 f(Wikt1) — F(w*)
1 f(wy) — W*>)k < 1 1 (3)

f B
2L wo — we|E F(Wicws) — F(w*) = [Flwirn) = F(w™)  Flwi) — F(w")
—_— ——

>1



GD for Smooth, Convex Functions

Summing Eq. 3 from k=0to T — 1,

=i T—1 1
pard L‘an)wn] : Zo { F(Wira —f(w*) - f(wk)f(w*)}
T - 1 B 1 _ 1
2L [lwo — w|® = flwr) — f(w*)  f(wo) — F(w*) = F(wr) — F(w")
T

= f(wr)—f(w*) <
The suboptimality f(wr) — f(w*) decreases at an O () rate, i.e. the function value at iterate
wt approaches the minimum function value f(w*).

In order to obtain a function value at least e-close to the optimal function value, GD requires
* 12
T> M iterations.



Minimizing Smooth, Convex Functions

Recall that GD was optimal (amongst first-order methods with no dependence on the dimension)
when minimizing smooth (possibly non-convex) functions.

Is GD also optimal when minimizing smooth, convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, convex function such that any
first-order method requires Q (ﬁ) iterations/oracle calls.

Possible reasons for the discrepancy between the O(1/¢) upper-bound for GD, and the Q(1/%)
lower-bound:

(1) Our upper-bound analysis of GD is loose, and GD actual matches the lower-bound.

(2) The lower-bound is loose, and there is a function that requires Q(1/) iterations to optimize.

(3) Both the upper and lower-bounds are tight, and GD is sub-optimal. There exists another
algorithm that has an O(1/\¢) upper-bound and is hence optimal.

Option (3) is correct — GD is sub-optimal for minimizing smooth, convex functions. Using
Nesterov acceleration is optimal and requires ©(1/,/) iterations (Will cover it next week!).



Questions?



Strongly convex functions

First-order condition: If f is differentiable, it is u-strongly convex iff its domain D is a convex
set and for all x,y € D and i > 0,

F(y) 2 F() + (VF(x),y = x) + & lly = x]
i.e. for all y, the function is lower-bounded by the quadratic defined in the RHS.

Second-order condition for convexity: If f is twice differentiable, it is strongly-convex iff its
domain D is a convex set and for all x € D,

V2f(x) = ply
i.e. for all x, the eigenvalues of the Hessian are lower-bounded by .

Alternative condition: Function g(x) = f(x) — § |[x||* is convex, i.e. if we “remove” a quadratic
(curvature) from f, it still remains convex.

Examples: Quadratics f(x) = xTAx 4+ bx + ¢ are p-strongly convex if A = ply. If fis a convex
loss function, then g(x) := f(x) + 3 l|x||? (the £5-regularized loss) is A-strongly convex.



Strongly-convex functions

Strict-convexity: If f is differentiable, it is strictly-convex iff its domain D is a convex set and

for all x,y € D,
fy) > f(x) +(VF(x),y — x)

If £ is p strongly-convex, then it is also strictly convex.
Q: For a strictly-convex f, if Vf(w*) =0, then is w* a unique minimizer of f?
Ans: Yes, because for all y € D, f(y) > f(w*) and hence w* is a unique minimizer.

Q: Prove that the ridge regression loss function: f(w) = % || Xw — ylI? + 3 [wlf® is
strongly-convex. Compute .

Ans: Recall that V2f(w) = XTX + My. Since V2f(w) = (Amin[XTX] + ) Iy, ridge regression
is u-strongly convex with 1 = Amin[XTX] + A.

Q: Is f(w) = 3 || Xw — y||? strongly-convex?

Ans: Not necessarily, because V2f(w) = XTX might be low-rank, and have \nin[XTX] = 0.



Strongly-convex functions

Q: Is negative entropy function f(x) = x In(x) strictly-convex on (0,1)7
Ans: Yes. f(x) =1/x > 0 for all x € (0,1).
Q: Is logistic regression: f(w) = >""_ log (1 + exp (—y;(X;, w))) strongly-convex?

Ans:  For logistic regression, V2f(w) = XTDX. Here, D is a diagonal matrix such that

D; i = pi (1 — p;) where p; = o ((Xi, w)) equal to Pr[y; = 1] (probability of prediction that point
i has label equal to 1) and o(z) = m is the sigmoid function.

If X™X is full-rank and p; € (0,1) (the probability of prediction is bounded away from 0 or 1)
then V2f(w) = uly for g1 = Amin[XTDX].

This implies that if X™X is full-rank, and the parameters are bounded (lie in a compact set) for
example, for some finite C > 0, |w|| < C, then, logistic regression is strongly-convex.



Questions?



GD for Smooth, Strongly-Convex Functions

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer,
and for strongly-convex functions, the minimizer w* is unique.

Let us analyze the convergence of GD for smooth, strongly-convex problems: min,, cgd f(w).

Claim: For L-smooth, u-strongly convex functions, GD with n = % requires
* |12
T > /% log (M) iterations to obtain a point wt that is e-suboptimal in the sense that

lwr —w*|* <e.

Proof: Bounding the distance of the iterates to w*,

Wi = w*[|* = lwe =V (wie) = w*|[* = [lwi — w*[|* = 2n(VF (), we — w*) + 177 |V (wi) |*
L-smoothness: f(y) > f(x) 4+ (Vf(x),y — x) + 57 || VF(x) — Vi(y)|?. Using x = w*, y = wj,

= Jwicrs = w™||* < JJwic — w¥l|* = 20(VF(wi), i — w”) + 2L [F (wie) — F(w")] (4)
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GD for Smooth, Strongly-Convex Functions

p-strongly convexity: f(y) > f(x) + (VF(x),y —x) + 5 [ly — x||°. Using x = wx, y = w*,
F(w") > F(wi) + (VF(we), w* = wi) + 5w — w*|?
— (VF(w), we — w) > F(w) = F(w*) + 5w — w | (5)
Combining Eq. 4 and 5,
Iwicsr = WP < llwic = wlI? =2 [F(w) = F(w*) + 5 lwic = w* [P + 2Ll (wid) = F(w")]
= flwic = w*|* (1 = pur) + [F(wi) = F(w")] (=20 + 2Lop%)
I

— [lwesz —wIP < (1= 5) lwe —w? (Since n = L, (=25 + 2Ln?) = 0)

Recursing from k=0to T — 1,

T T .
— llwr —w' P < (1= 7)o — w*|* < exp (’Q) lwo — w1

(Using 1 — x < exp(—x) for all x)
1



GD for Smooth, ngly-Convex Functions

The suboptimality ||wr — w*||* decreases at an O (exp(—T)) rate, i.e. the iterate wr
approaches the unique minimizer w*. In order to obtain an iterate at least e-close to w*, we
need to make the RHS less than e and quantify the number of required iterations.

uT 2 L lwo — w|?
exp|——)[wo—w'|"<e = T>—log| —— | .
L I €

Hence, the convergence rate is O (log (1/¢)) which is exponentially faster compared to the
convergence rate for smooth, convex functions. This rate of convergence rate is referred to as
the linear rate.

Condition number: « := ﬁ is a problem-dependent constant that quantifies the hardness of the
problem (smaller x implies that we need fewer iterations of GD).
Q: What k corresponds to the easiest problem?  Ans: 1 since L > pu.

. o . . 2 2
Q: What is the condition number for ridge regression: 3 | Xw — y||° + 3 [|w||".

Ans: Recall that V2f(w) = XTX + Ay. Hence x = % ”



GD for Smooth, Strongly-Convex Functions

Q: For L-smooth, p-strongly convex functions, how many iterations do we need to ensure that
f(wr) — f(w*) <e€?

Ans: Since f is smooth, f(wr) — f(w*) < £ ||wr — w*||°. Hence, if |wr — w*|* < Z¢, this will

* L|wo—w"|?
€

guarantee that f(wy) — f(w*) < e. This requires T > ﬁlog( ) iterations. We can
also directly bound f(wy) — f(w*) in terms of f(wy) — f(w*) and obtain the same rate as for
)-

the iterates (In Assignment 2!
Gradient Descent is “adaptive’ to strong-convexity i.e. it does not need to know p to converge.

The algorithm remains the same (use step-size ) = 1) regardless of whether we run it on a
convex or strongly-convex function.

Since GD only requires knowledge of L, we can use the Back-tracking Armijo line-search to
estimate the smoothness, and obtain faster convergence in practice (In Assignment 1!).
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Minimizing Smooth, Strongly-Convex Functions

Recall that for smooth, convex functions, GD is sub-optimal (convergence rate of O(/¢)) and
can be improved by using Nesterov acceleration (convergence rate of O(1/./%)).

For smooth, strongly-convex functions, the convergence rate of GD is O (k log (/e)).
Is GD also optimal when minimizing smooth, strongly-convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, strongly-convex function such that
any first-order method requires Q (\/x log (1/¢)) iterations/oracle calls.

GD is sub-optimal for minimizing smooth, convex functions. Using Nesterov acceleration is
optimal and requires © (y/k log (1/¢)) iterations
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Questions?



