CMPT 409/981: Optimization for Machine Learning

Lecture 4

Sharan Vaswani

September 22, 2022

Convex optimization: Minimizing a convex function over a convex set.

Convex sets: Set C is convex iff $\forall x, y \in C$, the convex combination $z := \theta x + (1 - \theta)y$ for $\theta \in [0, 1]$ is also in C. *Examples*: Half-space: $\{x | Ax \leq b\}$, Norm-ball: $\{x | \|x\|_p \leq r\}$.

Convex functions: A function f is convex iff its domain \mathcal{D} is a convex set, and for all $x, y \in \mathcal{D}$ and $\theta \in [0,1], f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$.

First-order condition for convexity: If f is differentiable, it is convex iff its domain \mathcal{D} is a convex set and for all $x, y \in \mathcal{D}$, $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$.

Second-order condition for convexity: If f is twice differentiable, it is convex iff its domain \mathcal{D} is a convex set and for all $x \in \mathcal{D}$, $\nabla^2 f(x) \succeq 0$.

1

Examples: All norms $||x||_p$, Negative entropy: $f(x) = x \log(x)$, Logistic regression: $\sum_{i=1}^{n} \log (1 + \exp(-y_i \langle X_i, w \rangle))$, Ridge regression: $\frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2$.

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer. Let us analyze the convergence of GD for smooth, convex problems: $\min_{w \in \mathbb{R}^d} f(w)$.

Claim: For *L*-smooth, convex functions, GD with $\eta = \frac{1}{L}$ requires $T \ge \frac{2L ||w_0 - w^*||^2}{\epsilon}$ iterations to obtain point w_T that is ϵ -suboptimal in the sense that $f(w_T) \le f(w^*) + \epsilon$.

Proof: For *L*-smooth functions, $\forall x, y \in D$, $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$. Similar to Lecture 2, using GD: $w_{k+1} = w_k - \frac{1}{L} \nabla f(w_k)$ yields

$$f(w_{k+1}) - f(w^*) \le f(w_k) - f(w^*) - \frac{1}{2L} \left\| \nabla f(w_k) \right\|^2 \tag{1}$$

Using $y = w^*$, $x = w_k$ in the first-order condition for convexity: $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$,

$$f(w_k) - f(w^*) \le \langle \nabla f(w_k), w_k - w^* \rangle \le \|\nabla f(w_k)\| \|w_k - w^*\| \qquad (Cauchy Schwarz)$$

$$\implies \|\nabla f(w_k)\| \ge \frac{f(w_k) - f(w^*)}{\|w_k - w^*\|} \qquad (2)$$

In addition to descent on the function, when minimizing smooth, convex functions, GD decreases the distance to a minimizer w^* .

Claim: For GD with
$$\eta = \frac{1}{L}$$
, $||w_{k+1} - w^*||^2 \le ||w_k - w^*||^2 \le ||w_0 - w^*||^2$.
Proof:

$$\begin{split} \|w_{k+1} - w^*\|^2 &= \|w_k - \eta \nabla f(w_k) - w^*\|^2 = \|w_k - w^*\|^2 - 2\eta \langle \nabla f(w_k), w_k - w^* \rangle + \eta^2 \|\nabla f(w_k)\|^2 \\ \text{Using } y &= w^*, \, x = w_k \text{ in the first-order condition for convexity: } f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \\ \|w_{k+1} - w^*\|^2 \le \|w_k - w^*\|^2 - 2\eta [f(w_k) - f(w^*)] + \eta^2 \|\nabla f(w_k)\|^2 \end{split}$$

For convex functions, *L*-smoothness is equivalent to $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|^2. \text{ Using } x = w^*, y = w_k \text{ in this equation,}$ $\le \| w_k - w^* \|^2 - 2\eta [f(w_k) - f(w^*)] + 2L \eta^2 [f(w_k) - f(w^*)]$ $\implies \| w_{k+1} - w^* \|^2 \le \| w_k - w^* \|^2 \qquad (\text{By setting } \eta = \frac{1}{L})$

Combining Eq. 2 with the result of the previous claim,

$$\|
abla f(w_k)\| \geq rac{f(w_k) - f(w^*)}{\|w_k - w^*\|} \geq rac{f(w_k) - f(w^*)}{\|w_0 - w^*\|}$$

Combining the above inequality with Eq. 1,

$$f(w_{k+1}) - f(w^*) \leq f(w_k) - f(w^*) - \frac{1}{2L} \|\nabla f(w_k)\|^2 \leq f(w_k) - f(w^*) - \frac{1}{2L} \frac{[f(w_k) - f(w^*)]^2}{\|w_0 - w^*\|^2}$$

Dividing by $[f(w_k) - f(w^*)] [f(w_{k+1}) - f(w^*)]$
$$\frac{1}{f(w_k) - f(w^*)} \leq \frac{1}{f(w_{k+1}) - f(w^*)} - \frac{1}{2L} \frac{f(w_k) - f(w^*)}{\|w_0 - w^*\|^2} \frac{1}{f(w_{k+1}) - f(w^*)}$$
$$\implies \frac{1}{2L \|w_0 - w^*\|^2} \underbrace{\frac{f(w_k) - f(w^*)}{f(w_{k+1}) - f(w^*)}}_{\geq 1} \leq \left[\frac{1}{f(w_{k+1}) - f(w^*)} - \frac{1}{f(w_k) - f(w^*)}\right]$$
(3)

Summing Eq. 3 from k = 0 to T - 1,

$$\begin{split} \sum_{k=0}^{T-1} \left[\frac{1}{2L \|w_0 - w^*\|^2} \right] &\leq \sum_{k=0}^{T-1} \left[\frac{1}{f(w_{k+1}) - f(w^*)} - \frac{1}{f(w_k) - f(w^*)} \right] \\ & \frac{T}{2L \|w_0 - w^*\|^2} \leq \frac{1}{f(w_T) - f(w^*)} - \frac{1}{f(w_0) - f(w^*)} \leq \frac{1}{f(w_T) - f(w^*)} \\ f(w_T) - f(w^*) &\leq \frac{2L \|w_0 - w^*\|^2}{T} \end{split}$$

The suboptimality $f(w_T) - f(w^*)$ decreases at an $O(\frac{1}{T})$ rate, i.e. the function value at iterate w_T approaches the minimum function value $f(w^*)$.

In order to obtain a function value at least ϵ -close to the optimal function value, GD requires $T \geq \frac{2L \|w_0 - w^*\|^2}{\epsilon}$ iterations.

Recall that GD was optimal (amongst first-order methods with no dependence on the dimension) when minimizing smooth (possibly non-convex) functions.

Is GD also optimal when minimizing smooth, convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, convex function such that any first-order method requires $\Omega\left(\frac{1}{\sqrt{\epsilon}}\right)$ iterations/oracle calls.

Possible reasons for the discrepancy between the $O(1/\epsilon)$ upper-bound for GD, and the $\Omega(1/\sqrt{\epsilon})$ lower-bound:

- (1) Our upper-bound analysis of GD is loose, and GD actual matches the lower-bound.
- (2) The lower-bound is loose, and there is a function that requires $\Omega(1/\epsilon)$ iterations to optimize.
- (3) Both the upper and lower-bounds are tight, and GD is sub-optimal. There exists another algorithm that has an $O(1/\sqrt{\epsilon})$ upper-bound and is hence optimal.

Option (3) is correct – GD is sub-optimal for minimizing smooth, convex functions. Using Nesterov acceleration is optimal and requires $\Theta(1/\sqrt{\epsilon})$ iterations (Will cover it next week!).

Questions?

Strongly convex functions

First-order condition: If *f* is differentiable, it is μ -strongly convex iff its domain \mathcal{D} is a convex set and for all $x, y \in \mathcal{D}$ and $\mu > 0$,

$$f(y) \geq f(x) + \langle
abla f(x), y - x
angle + rac{\mu}{2} \left\|y - x
ight\|^2$$

i.e. for all y, the function is lower-bounded by the quadratic defined in the RHS.

Second-order condition for convexity: If f is twice differentiable, it is strongly-convex iff its domain \mathcal{D} is a convex set and for all $x \in \mathcal{D}$,

$$\nabla^2 f(x) \succeq \mu I_d$$

i.e. for all x, the eigenvalues of the Hessian are lower-bounded by μ .

Alternative condition: Function $g(x) = f(x) - \frac{\mu}{2} ||x||^2$ is convex, i.e. if we "remove" a quadratic (curvature) from f, it still remains convex.

Examples: Quadratics $f(x) = x^{T}Ax + bx + c$ are μ -strongly convex if $A \succeq \mu I_d$. If f is a convex loss function, then $g(x) := f(x) + \frac{\lambda}{2} ||x||^2$ (the ℓ_2 -regularized loss) is λ -strongly convex.

Strongly-convex functions

Strict-convexity: If *f* is differentiable, it is strictly-convex iff its domain \mathcal{D} is a convex set and for all $x, y \in \mathcal{D}$,

 $f(y) > f(x) + \langle \nabla f(x), y - x \rangle$

If f is μ strongly-convex, then it is also strictly convex.

Q: For a strictly-convex f, if $\nabla f(w^*) = 0$, then is w^* a unique minimizer of f?

Ans: Yes, because for all $y \in D$, $f(y) > f(w^*)$ and hence w^* is a unique minimizer.

Q: Prove that the ridge regression loss function: $f(w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2$ is strongly-convex. Compute μ .

Ans: Recall that $\nabla^2 f(w) = X^{\mathsf{T}} X + \lambda I_d$. Since $\nabla^2 f(w) \succeq (\lambda_{\min}[X^{\mathsf{T}}X] + \lambda) I_d$, ridge regression is μ -strongly convex with $\mu = \lambda_{\min}[X^{\mathsf{T}}X] + \lambda$.

Q: Is $f(w) = \frac{1}{2} ||Xw - y||^2$ strongly-convex?

Ans: Not necessarily, because $\nabla^2 f(w) = X^T X$ might be low-rank, and have $\lambda_{\min}[X^T X] = 0$.

Q: Is negative entropy function $f(x) = x \ln(x)$ strictly-convex on (0, 1)?

Ans: Yes. f''(x) = 1/x > 0 for all $x \in (0, 1)$.

Q: Is logistic regression: $f(w) = \sum_{i=1}^{n} \log (1 + \exp(-y_i \langle X_i, w \rangle))$ strongly-convex?

Ans: For logistic regression, $\nabla^2 f(w) = X^{\mathsf{T}} D X$. Here, D is a diagonal matrix such that $D_{i,i} = p_i (1 - p_i)$ where $p_i = \sigma (\langle X_i, w \rangle)$ equal to $\Pr[\hat{y}_i = 1]$ (probability of prediction that point i has label equal to 1) and $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function. If $X^{\mathsf{T}} X$ is full-rank and $p_i \in (0, 1)$ (the probability of prediction is bounded away from 0 or 1) then $\nabla^2 f(w) \succeq \mu I_d$ for $\mu = \lambda_{\min}[X^{\mathsf{T}} D X]$.

This implies that if $X^{T}X$ is full-rank, and the parameters are bounded (lie in a compact set) for example, for some finite $C \ge 0$, $||w|| \le C$, then, logistic regression is strongly-convex.

Questions?

GD for Smooth, Strongly-Convex Functions

Recall that for convex functions, minimizing the gradient norm results in finding the minimizer, and for strongly-convex functions, the minimizer w^* is unique.

Let us analyze the convergence of GD for smooth, strongly-convex problems: $\min_{w \in \mathbb{R}^d} f(w)$.

Claim: For *L*-smooth, μ -strongly convex functions, GD with $\eta = \frac{1}{L}$ requires $T \ge \frac{L}{\mu} \log \left(\frac{\|w_0 - w^*\|^2}{\epsilon} \right)$ iterations to obtain a point w_T that is ϵ -suboptimal in the sense that $\|w_T - w^*\|^2 \le \epsilon$.

Proof: Bounding the distance of the iterates to w^* ,

$$\|w_{k+1} - w^*\|^2 = \|w_k - \eta \nabla f(w_k) - w^*\|^2 = \|w_k - w^*\|^2 - 2\eta \langle \nabla f(w_k), w_k - w^* \rangle + \eta^2 \|\nabla f(w_k)\|^2$$

L-smoothness: $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|^2$. Using $x = w^*$, $y = w_k$,

$$\implies \|w_{k+1} - w^*\|^2 \le \|w_k - w^*\|^2 - 2\eta \langle \nabla f(w_k), w_k - w^* \rangle + 2L\eta^2 [f(w_k) - f(w^*)]$$
(4)

GD for Smooth, Strongly-Convex Functions

$$\mu\text{-strongly convexity: } f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2. \text{ Using } x = w_k, \ y = w^*, f(w^*) \ge f(w_k) + \langle \nabla f(w_k), w^* - w_k \rangle + \frac{\mu}{2} \|w_k - w^*\|^2 \implies \langle \nabla f(w_k), w_k - w^* \rangle \ge f(w_k) - f(w^*) + \frac{\mu}{2} \|w_k - w^*\|^2$$
(5)

Combining Eq. 4 and 5,

$$\begin{split} \|w_{k+1} - w^*\|^2 &\leq \|w_k - w^*\|^2 - 2\eta \left[f(w_k) - f(w^*) + \frac{\mu}{2} \|w_k - w^*\|^2 \right] + 2L \eta^2 [f(w_k) - f(w^*)] \\ &= \|w_k - w^*\|^2 \left(1 - \mu\eta\right) + [f(w_k) - f(w^*)] \left(-2\eta + 2L\eta^2\right) \\ \implies \|w_{k+1} - w^*\|^2 &\leq \left(1 - \frac{\mu}{L}\right) \|w_k - w^*\|^2 \qquad (\text{Since } \eta = \frac{1}{L}, \left(-2\eta + 2L\eta^2\right) = 0) \end{split}$$

Recursing from k = 0 to T - 1,

$$\implies \|w_{\mathcal{T}} - w^*\|^2 \le \left(1 - \frac{\mu}{L}\right)^{\mathcal{T}} \|w_0 - w^*\|^2 \le \exp\left(-\frac{\mu}{L}\right) \|w_0 - w^*\|^2$$

$$(\text{Using } 1 - x \le \exp(-x) \text{ for all } x)$$

GD for Smooth, Strongly-Convex Functions

The suboptimality $||w_T - w^*||^2$ decreases at an $O(\exp(-T))$ rate, i.e. the iterate w_T approaches the unique minimizer w^* . In order to obtain an iterate at least ϵ -close to w^* , we need to make the RHS less than ϵ and quantify the number of required iterations.

$$\exp\left(-\frac{\mu T}{L}\right) \left\|w_0 - w^*\right\|^2 \le \epsilon \implies T \ge \frac{L}{\mu} \log\left(\frac{\left\|w_0 - w^*\right\|^2}{\epsilon}\right)$$

Hence, the convergence rate is $O(\log(1/\epsilon))$ which is exponentially faster compared to the convergence rate for smooth, convex functions. This rate of convergence rate is referred to as the **linear rate**.

Condition number: $\kappa := \frac{L}{\mu}$ is a problem-dependent constant that quantifies the hardness of the problem (smaller κ implies that we need fewer iterations of GD).

Q: What κ corresponds to the easiest problem? Ans: 1 since $L \ge \mu$.

Q: What is the condition number for ridge regression: $\frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2$.

Ans: Recall that $\nabla^2 f(w) = X^T X + \lambda I_d$. Hence $\kappa = \frac{\lambda_{\max}[X^T X] + \lambda}{\lambda_{\min}[X^T X] + \lambda}$ 12

Q: For L-smooth, μ -strongly convex functions, how many iterations do we need to ensure that $f(w_T) - f(w^*) \le \epsilon$?

Ans: Since f is smooth, $f(w_T) - f(w^*) \leq \frac{L}{2} ||w_T - w^*||^2$. Hence, if $||w_T - w^*||^2 \leq \frac{2\epsilon}{L}$, this will guarantee that $f(w_T) - f(w^*) \leq \epsilon$. This requires $T \geq \frac{L}{\mu} \log \left(\frac{L ||w_0 - w^*||^2}{2\epsilon}\right)$ iterations. We can also directly bound $f(w_T) - f(w^*)$ in terms of $f(w_0) - f(w^*)$ and obtain the same rate as for the iterates (In Assignment 2!).

Gradient Descent is "adaptive" to strong-convexity i.e. it does not need to know μ to converge. The algorithm remains the same (use step-size $\eta = \frac{1}{L}$) regardless of whether we run it on a convex or strongly-convex function.

Since GD only requires knowledge of L, we can use the Back-tracking Armijo line-search to estimate the smoothness, and obtain faster convergence in practice (In Assignment 1!).

Recall that for smooth, convex functions, GD is sub-optimal (convergence rate of $O(1/\epsilon)$) and can be improved by using Nesterov acceleration (convergence rate of $O(1/\sqrt{\epsilon})$).

For smooth, strongly-convex functions, the convergence rate of GD is $O(\kappa \log(1/\epsilon))$.

Is GD also optimal when minimizing smooth, strongly-convex functions, or can we do better?

Lower Bound: For any initialization, there exists a smooth, strongly-convex function such that any first-order method requires $\Omega(\sqrt{\kappa} \log(1/\epsilon))$ iterations/oracle calls.

GD is sub-optimal for minimizing smooth, convex functions. Using Nesterov acceleration is optimal and requires $\Theta(\sqrt{\kappa} \log (1/\epsilon))$ iterations

Questions?