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For L-smooth functions lower-bounded by f*, gradient descent with = % returns an
e-approximate stationary point and requires © (1) iterations.

Importantly, the GD rate does not depend on the dimension of w.

In practice, we can set 7 in an adaptive manner using an exact line-search:
nk = argmin, f(wx — nVFf(wy)).
An exact line-search can adapt to the “local” L, resulting in larger step-sizes and better

performance.

However, we can compute 7, analytically only in special cases, whereas solving the sub-problem
approximately to set 7, can be expensive.



Gradient Descent with Line-search

Usually, the cost of doing an exact line-search is not worth the computational effort.
Armijo condition for a prospective step-size 7j:

F(wic — iV F(wi)) < F(wi) = c i [ VF(wi)®
where ¢ € (0,1) is a hyper-parameter.
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Gradient Descent with Line-search

Algorithm GD with Armijo Line-search
1: function GD with Armijo line-search(f, wo, 7max, ¢ € (0,1), 8 € (0,1))
2. for k=0,...,7T—1do

3: Mk < TMmax

4. while f(wy — i VF(wi)) > F(wie) — ¢ ik [ VF(wi)|) do
5 Tk < kB

6: end while

7o Mk Tk

8 Wip1 = wk — i VF(wi)

9: end for

10: return wr




Gradient Descent with Line-search

Claim: The (exact) backtracking procedure terminates and returns 7 > min {2(17[6)77]”]8)(}.
Proof:

~2
Fwi — iV F(wie)) < F(wie) — |V F(wi)||? (ﬁk — Lg") (Quadratic bound using smoothness)

ha (k)
f(wi — e VE(wi)) < f(wg) — ||Vf"(wk)H2 (cTjk) (Armijo condition)

ha (k)

If the Armijo condition is satisfied, the back-tracking line-search

(wi) Smoothness:
procedure terminates. Flw) + (57 — i) [V F(wi) 2
q 2(1—
Case (l): For Tmax S ( L C), Line search

f(wie) = ciiu |V (wi) |12

f(Wk - ”Imafo(Wk)) < hl(nmax) < h2(7]max)
= if Nmax < 2(17[6) then the line-search terminates

k=0 ﬁk:¥

immediately and 7x = Nmax-



Gradient Descent with Line-search

Case (ii): If Nmax > 2(1=9) and the Armijo condition is satisfied for step-size 7y, then
L

72 —C
f(wi — V(W) < ha(mi) < (k) = e > i — 2 = > 2479

Putting the two cases together, the step-size 7, returned by the Armijo line-search satisfies
Nk > min {¥7nmax}-



Gradient Descent with Line-search

Claim: Gradient Descent with (exact) backtracking Armijo line-search (with ¢ = 1/2) returns

point W such that ||V£(#)||* < € and requires T > M2{2L:3/ max} [Z(W°)_mi"“” FW oracle calls or

iterations.
Proof: Since 7y satisfies the Armijo condition and wy1 = wx — nx V1 (wy),

) < Fe) — e [V F(me) P
< f(we) = (min{ o7 Mo L) 9 P

(Result from previous slide with ¢ = 1/2)

Continuing the proof as before,

max{2L,2/77max} [f(WO) — min,, f(W)]
T

= |[VFW)I* <

The claim is proved by the same reasoning as in Lecture 2.



Gradient Descent with Line-search — Examples

min,e[—10,10] f (x) := —x sin(x). Compare GD (with xo = 4) with (i)  =1/L ~ 0.1 and (ii)
Armijo line-search with 7. = 10,c =1/2, 8 =0.9.

(Gradient norm)

Iterations Iterations

(a) Gradient norm (b) Function value
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Questions?



Convex Optimization

We have seen that we require ©(1/¢) iterations to converge to an e-approximate stationary point
for smooth functions. Alternatively, if we care about global optimization (reach the vicinity of
the true minimizer) of Lipschitz functions, we require ©(1/e9) iterations.

Convex functions: Class of functions where local optimization can result in convergence to the
global minimizer of the function.

In general, convex optimization involves minimizing a convex function over a convex set C.

Examples of convex optimization in ML
Ridge regression: min,,cgs L || Xw — y||* + 3 [|w|*.

Logistic regression: min,,cgs » ;- log (1 + exp (—yi(Xi, w)))
Support vector machines: min,cgs > ; max{0,1 — y;(X;, w)} + 3 | w]?

Planning in MDPs in RL: max,c 7, (i1, r) where F, is the flow-polytope.



A set C is convex if a point along the line joining two points in C also lies in the set.
For points x, y, the convex combination of x,y is z := 6x + (1 — )y for 6 € [0, 1].
A set C is convex iff Vx, y € C, the convex combination z € C.

Examples of convex sets:

e Positive orthant RY : {x|x > 0}.

Hyper-plane: {x|Ax = b}.
Half-space: {x|Ax < b}.
Norm-ball: {x[|x|[, < r}.

Norm-cone: {(x, r)| ||X||p <r}



Q: Prove that the hyper-plane (set of linear equations): H := {x|Ax = b} is a convex set.
If x,y € H, then, Ax = b and Ay = b. Consider a point z := 0x + (1 — )y for 6 € [0, 1].
Az = Alfx + (1 — 0)y] = 0Ax + (1 — 0)Ay = b.
Hence, z € H and H is a convex set.
Q: Prove that the ball of radius r centered at point xc: B(xc, r) := {x|[[x — x|, < r} is convex.

If x,y € B(xc, r), then, [|x — xc||, < rand |ly — x|, < r. Consider a point z := 0x + (1 — 0)y
for 0 € [0,1].
1z = Xcll, = 10(x = xc) + (1 = O)(y —x)ll,,
< |16(x — XC)HP + (1 =0)(y — XC)HP (Triangle inequality for norms)
<0|(x— XC)HP +(1-0)|(y - XC)HP (Homogeneity of norms)
= ||Z—Xc||p <r

Hence, z € B(xc,r) and B(xc,r) is a convex set. 10



Q: Prove that the set of symmetric PSD matrices: S = {X € R"*"|X = 0} is convex.

Ans: If X € S7, for any vector v, vT Xv > 0. Consider X, Y € S7, and let Z=6X+ (1 —-6)Y,
then, vTZv =0 v Xv+ (1 —0) vTYv > 0, hence Z € S and S7 is a convex set.

Intersection of convex sets is convex = can prove the convexity of a set by showing that it is
an intersection of convex sets.

Example: We know that a half-space: (a;, x) < b; is a convex set. The set of inequalities
Ax < b is an intersection of half-spaces and is hence convex.

11



Questions?



Convex Functions

Zero-order definition: A function f is convex iff its domain D is a convex set, and for all
x,y € D and 6 €[0,1],

f(Ox + (1 —0)y) < 0f(x) + (1L —0)f(y)
i.e. the function is below the chord between two points.
Alternatively, f is convex iff the set formed by the area above the function is a convex set.
Examples of convex functions:

o All norms ||x|[,

F(x) = 1)V, F(x) = — log(x), (x) = exp(—x)

o Negative entropy: f(x) = x log(x)

Logistic loss: f(x) = log(1 + exp(—x))

@ Linear functions f(x) = (a, x)

12



Convex Functions

First-order condition: If f is differentiable, it is convex iff its domain D is a convex set and for
all x,y € D,

fly) = f(x) + (VF(x),y — x)
i.e. the function is above the tangent to the function at any point x.

For a convex f, consider w* such that Vf(w*) = 0, then using convexity, for all y € D,
f(y) > f(w*). If w* is a stationary point i.e. |[Vf(w*)||* =0, then it is a global minimum.
Hence, local optimization to make the gradient zero results in convergence to a global minimum!

Q: For a convex f, if Vf(w*) =0, then is w* a unique minimizer of 7
Ans: No, there might many minimizers that all have the same function value

Second-order condition: If f is twice differentiable, it is convex iff its domain D is a convex set
and for all x € D,
V2f(x) =0

i.e. the Hessian is positive semi-definite (“curved upwards”) for all x.
13



Convex Functions

Q: Prove that f(x) = max; x; is a convex function
f(Ox+(1—0)y)=max[fx; + (1 —0)y;] < Omaxx; + (1 —0)maxy; = 0f(x) + (1 — 0)f(y)

Hence, by using the zero-order definition of convexity, f(x) is convex.

Q: Prove that f(x) = x? is a convex function

f(y)—f(x)—{Vf(X),y—x)z%—é—x(y—x):%[y2+X2—2xy] :@20

Hence, by using the first-order condition of convexity, f(x) is convex.
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Convex Functions

Q: Prove that f(x) = log(1 + exp(—x)) is a convex function

gy —ee(=x) _ —1
Fila) = 1+exp(—x) 1+ exp(x)
£1(x) = xp(x)

(1 + exp(x))?
Hence, by using the second-order condition of convexity, f(x) is convex.

Q: Prove that the ridge regression loss function: f(w) = 1 | Xw — y[|*> + 3 ||w||* is convex
Recall that V2f(w) = XTX + Ay. For vector v, let us consider vTV2f(w)yv,

VIV2F(w)v = vI[XTX + Mglv = vTIXTX]v + AvTv = [XV]T[XV] + A v)? = IXv])? + A ||v]?
— VTV f(w)v >0 = V?f(w) > 0.

Hence, by using the second-order condition of convexity, f(w) is convex.

15



Convex Functions

Operations that preserve convexity: if f(x) and g(x) are convex functions, then h(x) is convex if,

@ h(x) = af(x) for « >0 (Non-negative scaling)
E.g: For w € R?, f(w) = ||w||® is convex, and hence h(w) = 3 ||w||* for A > 0 is convex.
@ h(x) = max{f(x),g(x)} (Point-wise maximum)
E.g: f(w) =0 and g(w) =1 — w are convex functions, and hence h(w) = max{0,1 — w} is
convex.
@ h(x) = f(Ax + b) (Composition with affine map)
E.g.: f(w) = max{0,1 — w} is convex, and hence h(w) = max{0,1 — yi(w, x;)} for x; € RY and
yi € R is convex
o h(x) = F(x) + g(x) (Sum)
E.g.: f(w) =max{0,1 — y;j{(w,x)} is convex, and hence
h(w) =37 max{0,1 — y;(w,x)} + 3 |wl? is convex.

Hence, the SVM loss function: f(w) := " max{0,1— y;(X;, w)} + % | wl[® is convex.
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Convex Functions

Q: Prove that ¢;-regularized logistic regression:

f(w):=>""_ log (14 exp(—yi(Xi,w))) + X|w]|, is convex

We have proved that the logistic loss f(x) = log(1 + exp(—x)) is convex. Since composition
with an affine map is convex, and the sum of convex functions is convex, the first term is convex.
Since all norms are convex, and a non-negative scaling of a convex function is convex, the second

term is convex. Hence, f(w) is convex.

Another way to prove convexity for logistic regression is to compute the Hessian and show that it

is positive semi-definite (In Assignment 1!)

17



Jensen’s Inequality

Recall the zero-order definition of convexity: Vx,y € D and 6 € [0, 1],
f(fx + (1 —0)x) < Of(x) 4+ (1 —0)f(y).

This can be generalized to n points {xi,x,..., X}, i.e. for p; >0and Y, pi =1,
n n
f(prxitp2xat. . +pnxa) < prf(xa)+pa f(x2)+. .. +pnf(x,) = f (Z Pixi> < Zpif(xi)

i=1 i=1
i.e. if X is a discrete r.v. that can take value x; with probability p;, and f is convex, then,

f(E[X]) <E[f(X)]. (Jensen’s inequality)
Can be used to prove inequalities like the AM-GM inequality: vab < %b.

Choose f(x) = —log(x) as the convex function, and consider two points a and b with 6 = 1/2.
By Jensen's inequality,

g <a—;—b) < —log(a) — log(b) . log (a+2b> > log(v/3b)

2
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Holder's Inequality

: e : 1,1 _ d
Q: Prove Holder's inequality, for p,g > 1st. o+ ¢ =1and x,y € R (x,y) <[], ll¥l,
By repeating the AM-GM proof, but for a general 6 € [0, 1], for a,b > 0,
a’b'=% < fa+(1-0)b

|xi]?

Use a = —, b= Jy"lq’ , 0 =1/p, and using the fact that 1 —0 =1 —1/p =1/q
Z/:l Ixj1P Z,’::. E

e NP e )
Zj:l |x;1P Zj:l lyjl9

Summing both sides from i =1 to n,

|| || n 1/p n 1/q
al Yi
LWL S (Sop) (o)
= (S bl) T (Zh le) ,

1P 1l
P Zle 1P q Zle ;1P

IN

n
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Questions?



