CMPT 409/981: Optimization for Machine Learning

Lecture 3

Sharan Vaswani
September 15, 2022

Recap

For L-smooth functions lower-bounded by f^{*}, gradient descent with $\eta=\frac{1}{L}$ returns an ϵ-approximate stationary point and requires $\Theta\left(\frac{1}{\epsilon}\right)$ iterations.
Importantly, the GD rate does not depend on the dimension of w.
In practice, we can set η_{k} in an adaptive manner using an exact line-search:
$\eta_{k}=\arg \min _{\eta} f\left(w_{k}-\eta \nabla f\left(w_{k}\right)\right)$.
An exact line-search can adapt to the "local" L, resulting in larger step-sizes and better performance.

However, we can compute η_{k} analytically only in special cases, whereas solving the sub-problem approximately to set η_{k} can be expensive.

Gradient Descent with Line-search

Usually, the cost of doing an exact line-search is not worth the computational effort.
Armijo condition for a prospective step-size $\tilde{\eta}_{k}$:

$$
f\left(w_{k}-\tilde{\eta}_{k} \nabla f\left(w_{k}\right)\right) \leq f\left(w_{k}\right)-c \tilde{\eta}_{k}\left\|\nabla f\left(w_{k}\right)\right\|^{2}
$$

where $c \in(0,1)$ is a hyper-parameter.

Gradient Descent with Line-search

```
Algorithm GD with Armijo Line-search
    1: function GD with Armijo line-search \(\left(f, w_{0}, \eta_{\text {max }}, c \in(0,1), \beta \in(0,1)\right)\)
    2: for \(k=0, \ldots, T-1\) do
    3: \(\quad \tilde{\eta}_{k} \leftarrow \eta_{\text {max }}\)
    4: \(\quad\) while \(f\left(w_{k}-\tilde{\eta}_{k} \nabla f\left(w_{k}\right)\right)>f\left(w_{k}\right)-c \cdot \tilde{\eta}_{k}\left\|\nabla f\left(w_{k}\right)\right\|^{2}\) do
    5: \(\quad \tilde{\eta}_{k} \leftarrow \tilde{\eta}_{k} \beta\)
    6: end while
    7: \(\quad \eta_{k} \leftarrow \tilde{\eta}_{k}\)
    8: \(\quad w_{k+1}=w_{k}-\eta_{k} \nabla f\left(w_{k}\right)\)
    end for
    10: return \(w_{T}\)
```


Gradient Descent with Line-search

Claim: The (exact) backtracking procedure terminates and returns $\eta_{k} \geq \min \left\{\frac{2(1-c)}{L}, \eta_{\max }\right\}$. Proof:

$$
\begin{aligned}
& f\left(w_{k}-\tilde{\eta}_{k} \nabla f\left(w_{k}\right)\right) \leq \underbrace{f\left(w_{k}\right)-\left\|\nabla f\left(w_{k}\right)\right\|^{2}\left(\tilde{\eta}_{k}-\frac{L \tilde{\eta}_{k}^{2}}{2}\right)}_{h_{1}\left(\tilde{\eta}_{k}\right)} \text { (Quadratic bound using smoothness) } \\
& f\left(w_{k}-\tilde{\eta}_{k} \nabla f\left(w_{k}\right)\right) \leq \underbrace{f\left(w_{k}\right)-\left\|\nabla f\left(w_{k}\right)\right\|^{2}\left(c \tilde{\eta}_{k}\right)}_{h_{2}\left(\tilde{\eta}_{k}\right)} \quad \text { (Armijo condition) }
\end{aligned}
$$

If the Armijo condition is satisfied, the back-tracking line-search procedure terminates.
Case (i): For $\eta_{\max } \leq \frac{2(1-c)}{L}$, $f\left(w_{k}-\eta_{\max } \nabla f\left(w_{k}\right)\right) \leq h_{1}\left(\eta_{\max }\right) \leq h_{2}\left(\eta_{\max }\right)$
 \Longrightarrow if $\eta_{\text {max }} \leq \frac{2(1-c)}{L}$, then the line-search terminates immediately and $\eta_{k}=\eta_{\text {max }}$.

Gradient Descent with Line-search

Case (ii): If $\eta_{\max }>\frac{2(1-c)}{L}$ and the Armijo condition is satisfied for step-size η_{k}, then $f\left(w_{k}-\eta_{k} \nabla f\left(w_{k}\right)\right) \leq h_{2}\left(\eta_{k}\right) \leq h_{1}\left(\eta_{k}\right) \Longrightarrow c \eta_{k} \geq \eta_{k}-\frac{L \eta_{k}^{2}}{2} \Longrightarrow \eta_{k} \geq \frac{2(1-c)}{L}$.
Putting the two cases together, the step-size η_{k} returned by the Armijo line-search satisfies $\eta_{k} \geq \min \left\{\frac{2(1-c)}{L}, \eta_{\max }\right\}$.

Gradient Descent with Line-search

Claim: Gradient Descent with (exact) backtracking Armijo line-search (with $c=1 / 2$) returns point \hat{w} such that $\|\nabla f(\hat{w})\|^{2} \leq \epsilon$ and requires $T \geq \frac{\max \left\{2 L, 2 / \eta_{\max }\right\}\left[f\left(w_{0}\right)-\min _{w} f(w)\right]}{\epsilon}$ oracle calls or iterations.
Proof: Since η_{k} satisfies the Armijo condition and $w_{k+1}=w_{k}-\eta_{k} \nabla f\left(w_{k}\right)$,

$$
\begin{aligned}
f\left(w_{k+1}\right) & \leq f\left(w_{k}\right)-c \eta_{k}\left\|\nabla f\left(w_{k}\right)\right\|^{2} \\
& \leq f\left(w_{k}\right)-\left(\min \left\{\frac{1}{2 L}, \frac{\eta_{\max }}{2}\right\}\right)\left\|\nabla f\left(w_{k}\right)\right\|^{2}
\end{aligned}
$$

$$
\text { (Result from previous slide with } c=1 / 2 \text {) }
$$

Continuing the proof as before,

$$
\Longrightarrow\|\nabla f(\hat{w})\|^{2} \leq \frac{\max \left\{2 L, 2 / \eta_{\max }\right\}\left[f\left(w_{0}\right)-\min _{w} f(w)\right]}{T}
$$

The claim is proved by the same reasoning as in Lecture 2.

Gradient Descent with Line-search - Examples

$\min _{x \in[-10,10]} f(x):=-x \sin (x)$. Compare GD (with $\left.x_{0}=4\right)$ with (i) $\eta=1 / L \approx 0.1$ and (ii) Armijo line-search with $\eta_{\max }=10, c=1 / 2, \beta=0.9$.

Questions?

Convex Optimization

We have seen that we require $\Theta(1 / \epsilon)$ iterations to converge to an ϵ-approximate stationary point for smooth functions. Alternatively, if we care about global optimization (reach the vicinity of the true minimizer) of Lipschitz functions, we require $\Theta\left(1 / \epsilon^{d}\right)$ iterations.

Convex functions: Class of functions where local optimization can result in convergence to the global minimizer of the function.

In general, convex optimization involves minimizing a convex function over a convex set \mathcal{C}.
Examples of convex optimization in ML
Ridge regression: $\min _{w \in \mathbb{R}^{d}} \frac{1}{2}\|X w-y\|^{2}+\frac{\lambda}{2}\|w\|^{2}$.
Logistic regression: $\min _{w \in \mathbb{R}^{d}} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i}\left\langle X_{i}, w\right\rangle\right)\right)$
Support vector machines: $\min _{w \in \mathbb{R}^{d}} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left\langle X_{i}, w\right\rangle\right\}+\frac{\lambda}{2}\|w\|^{2}$
Planning in MDPs in RL: $\max _{\mu \in \mathcal{F}_{\rho}}\langle\mu, r\rangle$ where \mathcal{F}_{ρ} is the flow-polytope.

Convex Sets

A set \mathcal{C} is convex if a point along the line joining two points in \mathcal{C} also lies in the set.
For points x, y, the convex combination of x, y is $z:=\theta x+(1-\theta) y$ for $\theta \in[0,1]$.
A set \mathcal{C} is convex iff $\forall x, y \in \mathcal{C}$, the convex combination $z \in \mathcal{C}$.
Examples of convex sets:

- Positive orthant $\mathbb{R}_{+}^{d}:\{x \mid x \geq 0\}$.
- Hyper-plane: $\{x \mid A x=b\}$.
- Half-space: $\{x \mid A x \leq b\}$.
- Norm-ball: $\left\{x \mid\|x\|_{p} \leq r\right\}$.
- Norm-cone: $\left\{(x, r) \mid\|x\|_{p} \leq r\right\}$.

Convex Sets

Q: Prove that the hyper-plane (set of linear equations): $\mathcal{H}:=\{x \mid A x=b\}$ is a convex set. If $x, y \in \mathcal{H}$, then, $A x=b$ and $A y=b$. Consider a point $z:=\theta x+(1-\theta) y$ for $\theta \in[0,1]$.

$$
A z=A[\theta x+(1-\theta) y]=\theta A x+(1-\theta) A y=b .
$$

Hence, $z \in \mathcal{H}$ and \mathcal{H} is a convex set.
Q: Prove that the ball of radius r centered at point $x_{c}: \mathcal{B}\left(x_{c}, r\right):=\left\{x \mid\left\|x-x_{c}\right\|_{p} \leq r\right\}$ is convex. If $x, y \in \mathcal{B}\left(x_{c}, r\right)$, then, $\left\|x-x_{c}\right\|_{p} \leq r$ and $\left\|y-x_{c}\right\|_{p} \leq r$. Consider a point $z:=\theta x+(1-\theta) y$ for $\theta \in[0,1]$.

$$
\begin{aligned}
\left\|z-x_{c}\right\|_{p} & =\left\|\theta\left(x-x_{c}\right)+(1-\theta)\left(y-x_{c}\right)\right\|_{p} \\
& \leq\left\|\theta\left(x-x_{c}\right)\right\|_{p}+\left\|(1-\theta)\left(y-x_{c}\right)\right\|_{p} \\
& \leq \theta\left\|\left(x-x_{c}\right)\right\|_{p}+(1-\theta)\left\|\left(y-x_{c}\right)\right\|_{p}
\end{aligned}
$$

(Triangle inequality for norms) (Homogeneity of norms)

$$
\Longrightarrow\left\|z-x_{c}\right\|_{p} \leq r
$$

Hence, $z \in \mathcal{B}\left(x_{c}, r\right)$ and $\mathcal{B}\left(x_{c}, r\right)$ is a convex set.

Convex Sets

Q: Prove that the set of symmetric PSD matrices: $S_{+}^{n}=\left\{X \in \mathbb{R}^{n \times n} \mid X \succeq 0\right\}$ is convex. Ans: If $X \in S_{+}^{n}$, for any vector $v, v^{\top} X v \geq 0$. Consider $X, Y \in S_{+}^{n}$, and let $Z=\theta X+(1-\theta) Y$, then, $v^{\top} Z v=\theta v^{\top} X v+(1-\theta) v^{\top} Y v \geq 0$, hence $Z \in S_{+}^{n}$ and S_{+}^{n} is a convex set.

Intersection of convex sets is convex \Longrightarrow can prove the convexity of a set by showing that it is an intersection of convex sets.

Example: We know that a half-space: $\left\langle a_{i}, x\right\rangle \leq b_{i}$ is a convex set. The set of inequalities $A x \leq b$ is an intersection of half-spaces and is hence convex.

Questions?

Convex Functions

Zero-order definition: A function f is convex iff its domain \mathcal{D} is a convex set, and for all $x, y \in \mathcal{D}$ and $\theta \in[0,1]$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

i.e. the function is below the chord between two points.

Alternatively, f is convex iff the set formed by the area above the function is a convex set. Examples of convex functions:

- All norms $\|x\|_{p}$
- $f(x)=1 / \sqrt{x}, f(x)=-\log (x), f(x)=\exp (-x)$
- Negative entropy: $f(x)=x \log (x)$
- Logistic loss: $f(x)=\log (1+\exp (-x))$
- Linear functions $f(x)=\langle a, x\rangle$

Convex Functions

First-order condition: If f is differentiable, it is convex iff its domain \mathcal{D} is a convex set and for all $x, y \in \mathcal{D}$,

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle
$$

i.e. the function is above the tangent to the function at any point x.

For a convex f, consider w^{*} such that $\nabla f\left(w^{*}\right)=0$, then using convexity, for all $y \in \mathcal{D}$, $f(y) \geq f\left(w^{*}\right)$. If w^{*} is a stationary point i.e. $\left\|\nabla f\left(w^{*}\right)\right\|^{2}=0$, then it is a global minimum. Hence, local optimization to make the gradient zero results in convergence to a global minimum! Q: For a convex f, if $\nabla f\left(w^{*}\right)=0$, then is w^{*} a unique minimizer of f ?

Ans: No, there might many minimizers that all have the same function value
Second-order condition: If f is twice differentiable, it is convex iff its domain \mathcal{D} is a convex set and for all $x \in \mathcal{D}$,

$$
\nabla^{2} f(x) \succeq 0
$$

i.e. the Hessian is positive semi-definite ("curved upwards") for all x.

Convex Functions

Q: Prove that $f(x)=\max _{i} x_{i}$ is a convex function

$$
f(\theta x+(1-\theta) y)=\max _{i}\left[\theta x_{i}+(1-\theta) y_{i}\right] \leq \theta \max _{i} x_{i}+(1-\theta) \max _{i} y_{i}=\theta f(x)+(1-\theta) f(y)
$$

Hence, by using the zero-order definition of convexity, $f(x)$ is convex.
Q: Prove that $f(x)=\frac{1}{2} x^{2}$ is a convex function

$$
f(y)-f(x)-\langle\nabla f(x), y-x\rangle=\frac{y^{2}}{2}-\frac{x^{2}}{2}-x(y-x)=\frac{1}{2}\left[y^{2}+x^{2}-2 x y\right]=\frac{(x-y)^{2}}{2} \geq 0
$$

Hence, by using the first-order condition of convexity, $f(x)$ is convex.

Convex Functions

Q: Prove that $f(x)=\log (1+\exp (-x))$ is a convex function

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-\exp (-x)}{1+\exp (-x)}=\frac{-1}{1+\exp (x)} \\
f^{\prime \prime}(x) & =\frac{\exp (x)}{(1+\exp (x))^{2}}>0
\end{aligned}
$$

Hence, by using the second-order condition of convexity, $f(x)$ is convex.
Q: Prove that the ridge regression loss function: $f(w)=\frac{1}{2}\|X w-y\|^{2}+\frac{\lambda}{2}\|w\|^{2}$ is convex Recall that $\nabla^{2} f(w)=X^{\top} X+\lambda I_{d}$. For vector v, let us consider $v^{\top} \nabla^{2} f(w) v$,

$$
\begin{aligned}
& v^{\top} \nabla^{2} f(w) v \\
&=v^{\top}\left[X^{\top} X+\lambda I_{d}\right] v=v^{\top}\left[X^{\top} X\right] v+\lambda v^{\top} v=[X v]^{\top}[X v]+\lambda\|v\|^{2}=\|X v\|^{2}+\lambda\|v\|^{2} \\
& v^{\top} \nabla^{2} f(w) v \geq 0 \Longrightarrow \nabla^{2} f(w) \succeq 0 .
\end{aligned}
$$

Hence, by using the second-order condition of convexity, $f(w)$ is convex.

Convex Functions

Operations that preserve convexity: if $f(x)$ and $g(x)$ are convex functions, then $h(x)$ is convex if,

- $h(x)=\alpha f(x)$ for $\alpha \geq 0 \quad$ (Non-negative scaling)
E.g: For $w \in R^{d}, f(w)=\|w\|^{2}$ is convex, and hence $h(w)=\frac{\lambda}{2}\|w\|^{2}$ for $\lambda \geq 0$ is convex.
- $h(x)=\max \{f(x), g(x)\} \quad$ (Point-wise maximum)
E.g: $f(w)=0$ and $g(w)=1-w$ are convex functions, and hence $h(w)=\max \{0,1-w\}$ is convex.
- $h(x)=f(A x+b) \quad$ (Composition with affine map)
E.g.: $f(w)=\max \{0,1-w\}$ is convex, and hence $h(w)=\max \left\{0,1-y_{i}\left\langle w, x_{i}\right\rangle\right\}$ for $x_{i} \in \mathbb{R}^{d}$ and $y_{i} \in \mathbb{R}$ is convex
- $h(x)=f(x)+g(x)$ (Sum)
E.g.: $f(w)=\max \left\{0,1-y_{i}\left\langle w, x_{i}\right\rangle\right\}$ is convex, and hence
$h(w)=\sum_{i=1}^{n} \max \left\{0,1-y_{i}\left\langle w, x_{i}\right\rangle\right\}+\frac{\lambda}{2}\|w\|^{2}$ is convex.
Hence, the SVM loss function: $f(w):=\sum_{i=1}^{n} \max \left\{0,1-y_{i}\left\langle X_{i}, w\right\rangle\right\}+\frac{\lambda}{2}\|w\|^{2}$ is convex.

Convex Functions

Q: Prove that ℓ_{1}-regularized logistic regression:

$$
f(w):=\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i}\left\langle X_{i}, w\right\rangle\right)\right)+\lambda\|w\|_{1} \text { is convex }
$$

We have proved that the logistic loss $f(x)=\log (1+\exp (-x))$ is convex. Since composition with an affine map is convex, and the sum of convex functions is convex, the first term is convex. Since all norms are convex, and a non-negative scaling of a convex function is convex, the second term is convex. Hence, $f(w)$ is convex.

Another way to prove convexity for logistic regression is to compute the Hessian and show that it is positive semi-definite (In Assignment 1!)

Jensen's Inequality

Recall the zero-order definition of convexity: $\forall x, y \in \mathcal{D}$ and $\theta \in[0,1]$, $f(\theta x+(1-\theta) x) \leq \theta f(x)+(1-\theta) f(y)$.
This can be generalized to n points $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, i.e. for $p_{i} \geq 0$ and $\sum_{i} p_{i}=1$,

$$
f\left(p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n}\right) \leq p_{1} f\left(x_{1}\right)+p_{2} f\left(x_{2}\right)+\ldots+p_{n} f\left(x_{n}\right) \Longrightarrow f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)
$$

i.e. if X is a discrete r.v. that can take value x_{i} with probability p_{i}, and f is convex, then,

$$
f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]
$$

Can be used to prove inequalities like the AM-GM inequality: $\sqrt{a b} \leq \frac{a+b}{2}$.
Choose $f(x)=-\log (x)$ as the convex function, and consider two points a and b with $\theta=1 / 2$. By Jensen's inequality,

$$
-\log \left(\frac{a+b}{2}\right) \leq \frac{-\log (a)-\log (b)}{2} \Longrightarrow \log \left(\frac{a+b}{2}\right) \geq \log (\sqrt{a b})
$$

Holder's Inequality

Q: Prove Holder's inequality, for $p, q>1$ s.t. $\frac{1}{p}+\frac{1}{q}=1$ and $x, y \in R^{d},\langle x, y\rangle \leq\|x\|_{p}\|y\|_{q}$ By repeating the AM-GM proof, but for a general $\theta \in[0,1]$, for $a, b \geq 0$,

$$
a^{\theta} b^{1-\theta} \leq \theta a+(1-\theta) b
$$

Use $a=\frac{\left|x_{i}\right|^{p}}{\sum_{j=1}^{n}\left|x_{j}\right|^{p}}, b=\frac{\left|y_{i}\right|^{q}}{\sum_{j=1}^{j}\left|y_{j}\right|^{q}}, \theta=1 / p$, and using the fact that $1-\theta=1-1 / p=1 / q$

$$
\left(\frac{\left|x_{i}\right|^{p}}{\sum_{j=1}^{n}\left|x_{j}\right|^{p}}\right)^{1 / p}\left(\frac{\left|y_{i}\right|^{q}}{\sum_{j=1}^{n}\left|y_{j}\right|^{q}}\right)^{1 / q} \leq \frac{1}{p} \frac{\left|x_{i}\right|^{p}}{\sum_{j=1}^{n}\left|x_{j}\right|^{p}}+\frac{1}{q} \frac{\left|y_{i}\right|^{p}}{\sum_{j=1}^{n}\left|y_{j}\right|^{p}}
$$

Summing both sides from $i=1$ to n,

$$
\sum_{i=1}^{n} \frac{\left|x_{i}\right|}{\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}} \frac{\left|y_{i}\right|}{\left(\sum_{j=1}^{n}\left|y_{j}\right|^{q}\right)^{1 / q}} \leq 1 \Longrightarrow \sum_{i} x_{i} y_{i} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{1 / q}
$$

Questions?

