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Convex-concave games: min,cyy max,cy f(w, v), where W C R% and ¥V C R% are convex
sets and f is convex in w and concave in v. For convex-concave games, (w*, v*) is a solution iff
forall we W, veV, f(w",v) < f(w,v*) < f(w,v").

To characterize the sub-optimality of (W, ¥):
Duality Gap((w, 7)) := max,ey f(W, v) — minyew f(w, 7).

Gradient Descent Ascent: At iteration k, for a step-size 1, (simultaneous) projected Gradient
Descent Ascent (GDA) has the following update:

Wirr = Mw[wi — iV f(wi, vi)l 5 viern = My v + mc Vo F (i, v,

where [yy, and [Ty, are Euclidean projections onto WW and V respectively



G-Lipschitz convex-concave games: Projected GDA has the guarantee that

Duality Gap((wr, vr)) < % where wr and v are the average iterates.

Smooth, convex-concave games: Last iterate of GDA will move away from the solution,
diverging in the unconstrained setting or hitting the boundary in the constrained setting. For sets
with bounded diameter, the average iterates result in an O (1/v/T) decrease on the duality gap.

The GDA update for unconstrained games can be written as zx11 = zx — N« F(zx) where

Z= [V\fl and F(z) = _vavff(('/:; VV))

If fis L-smooth, then F is 2L-Lipschitz i.e. ||F(z1) — F(z2)| < 2L ||z1 — z]].

*

]. For unconstrained games, F(z*) = 0 where z* = [W 1 .
v

Strongly-convex, strongly-concave games: (-, v) is p,, strongly-convex and f(w,-) is p,
strongly-concave. The Nash equilibrium (w*, v*) is unique.



Gradient Descent Ascent for smooth, strongly-convex strongly-concave games

Claim: If f is strongly-convex strongly-concave with p,, = p, = p, then Fis i
strongly-monotone i.e. (F(z) — F(2), 21 — z) > p |21 — 2|°.
Proof: By strong-convexity of (-, v),

F(way vi) > F(wi, v1) + (Vi F(wy,v1), wa — wy) + g lwy — wa)? (With v = ;)

f(wa,va) > f(wa, vo) + (Vy (w2, v2), ws — wa) + g [wy — wal? (With v = )
By strong-concavity of f(w, ),

— f(wi,v2) = —F(wa, ) + (Vo w)ve =) + 5 I =l (With w = w)

— F(we, 1) = —F(wa, v2) + (Vo f(weva)ova — o) + 5 I — el (With w = wy)
Adding all the 4 equations,

(Vwf(wi, vi) = Vi f(wa, v2), w1 — wa) + (V, f(wa, v2) = Vi f(wi,v1), vi — v2)

2 2 2
> plllwvs = wall” + [vi — v2||*] = g |21 — 22|



Gradient Descent Ascent for smooth, strongly-convex strongly-concave games

Rewriting
(Vi f(wi,vi) = Vi f(wa, va),wy — wa) +(V, f(wa, o) =V, f(wi,vi),vi — o) > 1 ||lz1 — 2 2

Vuwf(wi,vi) — Vuf(ws, v) Wy — W 2
7 > p |z — 2z
—V.f(wi,v1) + V., f(ws, v2) Vi — W

Vi f(wa, vo) wi Wy 2
: _ > _
e NI I BT

= (F(21) = F(z2), 21 — 2) > pt |21 — 2|?

wa(Wl, V1)
—va(wl, Vl)

Hence, if f is j strongly-convex and strongly-concave and L-smooth, then the operator F is
2L-Lipschitz and p strongly-monotone.



Gradient Descent Ascent for smooth, strongly-convex strongly-concave games

Claim: For L-smooth, 1 strongly-convex strongly-concave games, T iterations of GDA with

u
<e -T wo — w*
oo (|
= &P\ 252 vo — v*

Nk = = results in the following bound,
2 2
Proof: Since GDA can be equivalently written as zxy1 = zx — nF(zx).

=]

lzks = 27117 = 2k — 2 = nF(2)1* = llzx — 21 — 2n(F (&), 2 — 2°) + 77 |F (2)1®
= |lzx — 211> = 2n(F(2) — F(2*), 2 — 2*) + n* | F(2x) — F(z")|I?
(F(z*) = 0 for unconstrained strongly-convex, strongly-concave games)
< lzw = 21> = 2n(F(2¢) — F(2*), 2 — 2*) + 42 || 22 — 2*°
(F is 2L-Lipschitz)
<lzw — 2°|° = 2um |2 — 2*))* + 4L 7 ||z — 2°|
(F is p strongly-monotone)

= |lzx — 2*|)* (1 — 2un + 4L%7?) s



Gradient Descent Ascent for smooth, strongly-convex strongly-concave games

Recall that ||zjy1 — z*|)* < ||z — 2* || (1 —2un + 4L%n?). We need to set 7 such that
(1 — 2un+4L2n2) <1 = n < Ffz. Setting n = 7>

L 12
2t = 27| < llz = 2*)° (1—2 bap * L2’f6L4) — llzer =21 < (1—”) 2 — 2|1

Recursing from k=0to T — 1,

2 2\ " 2 -T 2
lor =21 < (1- 257) =21 < o0 (55 ) o= 27

(Since 1 — x < exp(—x) for all x)

Hence, for smooth, strongly-convex strongly-concave games with condition number x, we need
to run GDA for T = O (52 log (%)) in order to get e-close to the Nash equilibrium. The O(x?)
dependence can not be improved for GDA.

In contrast, for minimizing smooth, strongly-convex functions GD requires O (K] log (%))
iterations in order to get e-close to the minimizer.



Questions?



Proximal Point Method

Recall that the last iterate of GDA diverges on bilinear games of the form f(w, v) = wv, and
only the averaged iterate converges at an O(1/vT) rate. The proximal point method and its
approximations obtain last-iterate convergence for this class of games.

Proximal Point Method (PPM): At iteration k, PPM has the following update:

Wit1 = Wik — NV F (W1, Vkr1) 5 Vi1 = Ve + Vo F (W1, Vi)

@ Has a built in “lookahead” which prevents the cycling behaviour like GDA.
@ For bilinear games, attains an O(log(1/€)) last-iterate convergence to the Nash equilibrium.

@ Since computing w1 relies on computing V, f (Wk1, vk+1), PPM is an implicit method
and implementing it requires a computationally expensive matrix inversion.



Optimistic GDA and Extra-Gradient Method

Two computationally efficient ways of reproducing the favourable behaviour of PPM:
Extra-Gradient Method (EG): At iteration k, EG has the following update,
Wit1/2 = Wk — DV F (Wi, Vi) 5 Viey1/2 = Vi + 1V F (i, vi)
Wi+1 = Wk — vaf(Wk+1/27 Vk+1/2) P V4l = Vi T+ vaf(WkH/z, Vk+1/2)

® The (Wyi1/2, Vki1/2) iterates approximate the implicit update in PPM.
e Each iteration requires computing two gradients (there are recent “single-call” EG methods).

Optimistic GDA (OGDA): At iteration k, OGDA has the following update,
Wiy1 = Wk — NV (Wi, vii) — 1 [V f (Wi, vii) = Vi F(wk—1, vik—1)]
Vkr1 = Vi + Vo f (Wi, vie) = 0 [V f (W1, vie1) — Vo f (W, vk)]
@ The second term acts as “negative momentum” preventing the cycling behaviour.
e Compared to EG, each iteration of OGDA requires computing only one gradient.

@ For bilinear games, EG and OGDA result in O(log(1/€)) convergence similar to PPM.
@ EG and OGDA have been used to train GANs [DISZ17, GBV'18]. 8



Comparing GDA, PPM, EG, OGDA on a bilinear game [MOP20]

Figure 1: Convergence trajectories of proximal point (PP), extra-gradient (EG), optimistic gradient
descent ascent (OGDA), and gradient descent ascent (GDA) for min, max, zy. The proximal point
method has the fastest convergence. EG and OGDA approximate the trajectory of PP and both
converge to the optimal solution. The GDA method is the only method that diverges.

Need to implement in Assignment 4!



Extra-Gradient Method

In order to analyze the convergence of projected EG, we write in the following equivalent way,

Ziy12 = NzlZei12]l 0 Zeprye = 2z — nF (24)
zip1 = Nz[Za] 3 2 = 2k — F(2kq1/2)
f(w,
where z = | , (@) = Vuf(w,v) and [z is Euclidean projection onto W x V.
v —V,f(w,v)

Using the property of Euclidean projections onto Z, for z € Z,

(Zkv1/2 = Zk41/2: 2 = Zkp1y2) S0 = (=Zkq1/2, Zkr172 — 2) < (—Zkg1/2: 24172 — 2) (1)

(Zky1 — 241, 2 — Zk41) <0 = (—Zk41, Zk41 — 2) < {—Zk41, Zkg1 — 2) (2)

10



Extra-Gradient Method

If z* = [W*l is the solution, then using the definition of optimality, for all w € W and v € V,
v

(Vuf(w*,v),w —w*) >0; (=V,f(w,v*),v—v") >0

Setting v = v* in the first equation, and w = w* in the second equation, then for all z € Z,
Wf' *’ * * N N
:>< VAW V)],[W]—[W*]>EO:>(F(z),z—z)ZO (3)

=V, f(w*,v*) v v
We will consider the case when f(w, v) is a smooth game, and using the same derivation as
before F is a 2L-Lipschitz operator i.e. ||F(z1) — F(z)|| < 2L ||z1 — z||.

11



Extra-Gradient for smooth, convex-concave games

Claim: For L-smooth, convex-concave games where WV and V have diameter D, EG with

Nk = 37 results in the following bound for W := e wkia/2/T and Vr := X1 Vera/2/T,

2D%L
T

Duality Gap((wr, v1)) <
Proof: For w e W, Vv €V,
f(Wiy1/2, V) — F(W, Viy1)2)
= f(Wiy1/2, V) — F(Wir1/2, Vierny2) + F(Wai1y2, Vierr2) — F(W, Vig1)2)
<AV F(Wig1/2, Vir1/2)s V = Vip12) + (Vuf (Wir1/25 Vis1/2), Wi1/2 — W)
(Convexity of (-, vit1/2) and concavity of f(wyy1/2,-))

Vi f(Wit1/2, Viy1/2) ] ka+1/2 = VT/} >
= f(Wkt1/2, V) — F(W, Vig1/2) < (F(Zks1/2), Zks1y2 — 2) (4)

=V f(Wiy1/2, Viy1/2) Vkt1/2 — V

We will bound the (F(zx41/2), Zk+1/2 — Z) term in order to get a handle on
f(Wky1/2, 7) — (W, Viy1/2) and hence the duality gap. 12



Extra-Gradient for smooth, convex-concave games

. zx — 2k - :
(F(Zk41/2)s Zk41/2 — 2) = <n+1,2k+1/2 - Z> (Using the update)
ZKk — Z zZKk — Z
= <k77k+1,2k+1/2 = Zk+1> + <k77k+172k+1 = 2> (Add/Subtract Zk+1)
2z — Z Zk — Z =
< (A Zk+1/2—2k+1>+<knk+1,2k+1—2>

(Using Eq. (2) for the second term)

Zk — Zk+1/2 Zk+1/2 — Zky1 Zk — Zk+1
y Zk+1/2 = Zk+1 ) T y Zk+1/2 — Zk+1 Zk+1 — Z

(Add/Subtract Ziy1/2)

Zk — Zk+1/2 Zk+1/2 = Zkt1 Zk — Zk+1 .
) Zk+1/2 — Zk+1 ) + 1 Zk+1/2 — Zk+1 ) + R 1 Zk41 — Z

(Using Eq. (1) for the first term)

IN

13



Extra-Gradient for smooth, convex-concave games

Recall that <F(Zk+1/2), Zt1/2 — 2> <

Zk —Zk+1/2 fk+1/2—fk+1 Zk—2Zk ~
<7n yZk41/2 — Zk+1> + <f;zk+1/2 - Zk+1> + <T“7Zk+1 = Z>-

= 0 (F(zk11/2)s Zks1/2 — Z)

< (zk — Zky1/20 Zks1/2 — Zk1) T (Zer1/2 — Zkt1 Zkt1/2 — Zkir) + {2k — Zkg1, Zkyr — 2)

=A =B =C
Let us first simplify term B.
B = (Zi41/2 — Zkt1s Zkt1/2 — Zk41)

= (Zkt1/2 = 2k, Zkg1/2 — Zur1) + (2k — Zit1, Zkprj2 — Z41)  (Add/subtract z)

=1 (F(zkg1/2) — F(2)s Zk1/2 — Zks1) (Using the updates)
< n||F(zks1/2) — F(z0)]| [|2kr1/2 — Zosn ] (Cauchy-Schwarz)
<(2L)n sz+1/2 — ZkH sz+1/2 — Zk+1H (Since F is 2L-Lipschitz)
1 . .
= B<3 {4L2n2 26172 — 2e||” + || 2ks1/2 — Zk+1H2} (Young's inequality) »



Extra-Gradient for smooth, convex-concave games

Recall that 1 (F(zkt1/2), Zks1/2 — Z) < A+ B+ C where
2 2
B S % [4L27)2 sz+1/2 = zk” ols ||Zk+1/2 - Zk+1H }, A= <Zk — zk+1/2,zk+1/2 — Zk+1> and

— (7 — s q imolify A C " _ llatblP=[lal2=[1b]1
C := (zk — Zkt+1,2k+1 — Z). In order to simplify A, C, we will use (a, b) = X :

1 2 2 2
A= <Zk — Zk11/2, Zkt1/2 — Zk+1> =3 [sz — Ziepall® = |2k — Zksrs2]|” = || Zks1/2 — Zesa | }

=a =h
S\ 1 e 2 o
C=(z—zen 2001 =2 ) =5 [l — 217 = |20 — z00al® = lzkss — 2]
——— —— 2
=a =b
2[A+ B+ (]

< flzx = Zk+1H2 - sz - Zk+1/2H2 - sz+1/2 - Zk+1H2 + 415 ||Zk+1/2 - ZkH2 + H2k+1/2 - Zk+1H2
+ |1z = 2° = |z = zis1l® = llzwes — 2)°

= 2[A+ B+ C] < ||z — zisage|” (4207 = 1) + llzi — 27 = [l zesr — 2|
15



Extra-Gradient for smooth, convex-concave games

Putting everything together,
1 2 2 2 ~112 ~12
N {F(2ky1/2)s Zks1/2 — 2) < 5 U|Zk — zirrpe||” (4507 = 1) + [z — 2|1 = llzkss — 2|l }
(5)
Setting n = 2—11_,
(F(zks1/2) Zevrje = 2 S L [l = 212 = ll2is — 217]

Summing from k =1to T,

—

)
~ I ~112
> (F(zenye)zisns =B S LY [z — 21 = llza = 21°| = L |2 — 2° < 2D°L

k=1 k=1
(Since both W and V have diameter D)

16



Extra-Gradient for smooth, convex-concave games

Recall that ZZ:1<F(Z/<+1/2)721(+1/2 — ) < 2D?L. Using Eq. (4) and dividing by T,

Sicalf (W12 ) = F(#, vien2)] _ 202L
T - T

Since f(+, V) and —f(w, -) are convex, using Jensen's inequality and by definition of w and vr,

2D%L
f(wr,7) — f(W, vr) < T

Since the above statement is true for all ¥ € V and w € W, taking the maximum over V € V

and the minimum over w € W,

_ . _ D2L . o 2D2L
max f(wr, v) — min f(w,vr) < —— = Duality Gap((wr, V7)) < —

Hence, compared to GDA that has an O (}/vT) convergence, the average iterate for EG has an
O (/1) convergence for the duality gap. The last iterate for EG has a slower © (1/v/T)

convergence for the duality gap [GPDO20]. .



Questions?



Extra-Gradient for smooth, strongly-convex strongly-concave games

Claim: For L-smooth, 1 strongly-convex strongly-concave games, T iterations of projected EG
with nx = g7 results in the following bound,
2
wo — w*
et

' [WT - W*] <—T>
< exp
vy — v* 8k

Proof: Recall that if f is strongly-convex, strongly-concave, F is u strongly-monotone i.e.
(F(z1) — F(z),z1 — 2z2) > pu ||z1 — 22H2 for all z1, z5. Also, recall that by using the definition of
the optimality of z*, we derived that (F(z*),z — z*) > 0. Using Eq. (5) with Z = z*,

2

1
n(F(z12)s21j2 = 2°) < 5 |12 = zsagal* (407 = 1) + 12— 2* I = 12602 = 2°IF]

Let us simplify the LHS,

(F(2k41/2)s 21172 — 27) = (F(2k41/2) — F(2%), 2k41/2 — Z2%) + (F(Z%), Zkg1/2 — Z7)
(F(zkt1/2) — F(Z"), Zk41/2 — 27) (Since (F(z"),z — z*) > 0)

v

= (F(zkt1/2), Zk112 — 2°) > 1 sz+1/2 -z H (By u strong-monotonicity of F) 18



Extra-Gradient for smooth, strongly-convex strongly-concave games

We have 71 || zit1/2 — 2 H <3 {sz - Zk+1/2H (422 = 1) + llze — 211 = ll2k41 — Z>'F||2]
Further lower-bounding the LHS

|z — Z>'F||2 = HZk — Zky1/2 T Zky1/2 — Z*Hz <2 sz - Zk+1/2H2 +2 H2k+1/2 - Z*H2

= 2|zis1s2 — 2°|° 2 Nz — 217 = 2|z — zesae”
Putting everything together,
ni [z = 241 = 2|2 = 21l < 2w = zisaal” (42202 = 1) + 2k = 21 = Nzisn = 2
= ||lzk41 — z*||2 <(1—pun)l|lzx — z*||2 + sz — zk+1/2Hz (4L27]2 -1+ 2,u77)

lzi = 2712 < (1= £2) = 212 + |2k = zicayel|® (330 = 1+ 2pm) (Setting n = )

<0 for n=gr

19



Extra-Gradient for smooth, strongly-convex strongly-concave games

Recall that ||zi1 — 2*[|° < (1 — &) ||z« — z*||*. Recursing from k =0to T —1,

2 wNT e -T o2
lor =21t < (1= ) Moo -2 < (51 ) o]

Hence, compared to GDA that has an O (k2 log(1/€)) convergence for strongly-convex
strongly-concave games, EG has an O (x log(1/€)) convergence.

20



Questions?



Wrapping Up - What we covered

Considered optimizing a taxonomy of functions: (i) non-smooth but G-Lipschitz vs
L-smooth, (ii) non-convex vs convex vs strongly-convex. Identified solution concepts (
(gradient norm and convergence to a stationary point, distance to the minimizer).

Studied and analyzed the convergence of (projected) gradient descent, Polyak momentum,
Nesterov acceleration and the Newton method.
Studied stochastic gradient descent and analyzed its convergence. Considered ideas to make

SGD more robust to the step-size and the concept of variance reduction (E.g. SVRG).

Considered the online convex optimization setting, and studied the notion of regret.
Analyzed the convergence of OGD, FTL and FTRL. Used the online setting to motivate
adaptive gradient methods (AdaGrad, Adam, AMSGrad) and analyzed their convergence.

Considered min-max optimization and identified solution concepts (duality gap and distance
to the Nash equilibrium) for convex-concave games. Analyzed the convergence of Gradient
Descent Ascent and the Extra-Gradient Method.

21



Wrapping Up - What we could not cover

@ Mirror Descent and its convergence (useful for optimization on the space of probabilities)
[Bubeck, Chapter 4]

@ Proximal Methods (useful for handling non-smooth regularization terms)
[https://www.cs.ubc.ca/ schmidtm/Courses/5XX-S20/S6. pdf]

@ (Block) Coordinate Descent (useful for functions that are separable in the coordinates)
[https://www.cs.ubc.ca/ schmidtm/Courses/5XX-S20/S8. pdf]

Other important topics in Optimization for ML

Constrained Optimization

Global Optimization

Multi-objective Optimization
@ Distributed Optimization

22


https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S6.pdf
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S8.pdf
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