CMPT 409/981: Optimization for Machine Learning

Lecture 2

Sharan Vaswani
September 12, 2022

Smooth functions: f is L-smooth if its gradient is Lipschitz continuous, and does not change
arbitrarily fast i.e. Vx,y, |[VFf(x) — VFf(y)|| < L |x —y|.

If f is L-smooth, then for all x,y € D, f(y) < f(x) + (VF(x),y —x) + 5 [ly — x|I.

Objective: Find an e-approximate stationary point w i.e. |[Vf(W)||* < e with access to a
first-order oracle that returns {f(w), Vf(w)} at any point w € D.

Minimizing the above upper-bound iteratively recovers gradient descent (GD) with n = 1/L.

Starting from an initialization equal to wy, at iteration k, GD computes the gradient V£ (wy) at
iterate wy (call to the first-order oracle).

o If |[VF(w)|]® < e, terminate and return W := w.

o Else, update the iterate as: wy1 = wix — TV F(wi).

Gradient Descent

Is GD guaranteed to terminate? If so, can we characterize the number of iterations?

Claim: For L-smooth functions lower-bounded by f*, gradient descent with n = % returns w
such that |[Vf(W)||> < € and requires T = %

Proof:
Using the L-smoothness of f with x = wy and y = w1 = wy — %Vf(wk) in the quadratic

iterations (oracle calls).

bound (also referred to as the descent lemma),

L 2

F(wiesn) < F(wi) + <Vf(wk),—%Vf(Wk)> +s Hiw(wk)

1
= f(wir2) < F(we) = o7 [VF(we)|”

By moving from wy to w1, we have decreased the value of f since f(wyi1) < f(wy).

Gradient Descent

Rearranging the inequality from the previous slide, for every iteration k,
1
5[IVF(wi)I* < F(wi) = F(wis1)

By running GD for T iterations, adding up k =0to T — 1,

T-1 T-1
i STIVAW)I? < Y [F(wie) — F(wierr)] = F(wo) — F(wr) < [F(wo) — £*]
k=0 k=0

(Since f is lower-bound by f*)

_ i |Zf(wk)||2 < 2Ll) = 1]

The LHS is the average of the gradient norms over the T iterates. Let

W= argmingcror 71} ||Vf(wk)||2. Since the minimum is smaller than the average,

< 2LIF(wo) — 7]

(W 2
IVF(@) 2

Gradient Descent

Since ||[VF(W)|? < M}’)*f] the rate of convergence is O(1/T).
If the RHS equal to M}’)*f] < ¢, this would guarantee that |[Vf(W)||*> < e and we would

achieve our objective.

Hence, we need to run the algorithm for T > %

iterations. This is also referred to as
an O (1) convergence rate.

Lower-Bound: When minimizing a smooth function (without additional assumptions), any
first-order algorithm requires Q (%) oracle calls to return a point w such that ||Vf(|2/)|\2 <e.

Hence, gradient descent is optimal for minimizing smooth functions!

Gradient Descent — Example

min,e[—10,10] f(x) := —x sin(x). Run GD with n =1/L~ 0.1 and xp = 4.

Gradient norm

8
—]
“1 /\\ / |
. T :
2
| |
| | ‘
o R =2
A0 \ | < <
|/ | 0
- |
| -2
-6 \ |
\/ -
10 5 0 5 10 10 5 0 5 10
3
2
]
T o1
]
£ 0
-1
-2
0 5 10 15 20 %5 0 5 10 15 20 5
Iterations.

(a) Gradient norm

Iterations

(b) Function value

Questions?

Gradient Descent

We have seen that we can reach a stationary point of a smooth function in O (%) iterations of
GD with step-size n = 7.

Problems with this approach:

@ Computing L in closed-form can be difficult as the functions get complicated.

@ Theoretically computed L is global (the “local” L might be much smaller) and often loose in
practice (typically we tend to overestimate L resulting in a smaller step-size).

Gradient Descent with Line-search

Instead of setting 7 according to L, we can “search” for a good step-size 7 in each iteration k.
Exact line-search: At iteration k, solve the following sub-problem:

Nk = argmin f(wx — nV 1 (wg)).
7

£ (we=neVeow))

fowp

Mk

After computing 7, do the usual GD update: wy 1 = wx — i VF(wy).

o Can adapt to the “local” L, resulting in larger step-sizes and better performance.
@ Can solve the sub-problem approximately by doing gradient descent w.r.t 1) (expensive).
e Can compute 7 analytically (only in special cases). 7

Gradient Descent with Line-search — Example

Recall linear regression: min,,cge f(w) := 3 || Xw — y|I? = LIwT(XTX)w — 2w XTy + yTy].

For the exact line-search, we need to min,, h(n) := f(wx — nVF(wy)).
Since f is a quadratic, we can directly use the second-order Taylor series expansion.
h(n) = f(wk — nVf(wi))

= f(wi) + (VF(wi), =0V (wi)) + %[—an(Wk)]Tsz(Wk)[—an(Wk)]

_ 2 T2 |V f(Wk)Hz
Vh(ng) = VEiw)|* +n[VE(w)]"VF(w)[VE(w)] =0 = nx = 2
(7x) [V F(wi)]] N[V (wi)] (wi) [V £ (wi)] n i f(Wk)HVZf(Wk)

For linear regression, V2f(wy) = XTX and Vf(wx) = XT(Xwk — y). With exact line-search,
the GD update for linear regression is:

O =P s
X7 O — ey Y

Wk41 = Wk —

