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Recap

Smooth functions: f is L-smooth if its gradient is Lipschitz continuous, and does not change
arbitrarily fast i.e. ∀x , y , ∥∇f (x)−∇f (y)∥ ≤ L ∥x − y∥.

If f is L-smooth, then for all x , y ∈ D, f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L
2 ∥y − x∥2.

Objective: Find an ϵ-approximate stationary point ŵ i.e. ∥∇f (ŵ)∥2 ≤ ϵ with access to a
first-order oracle that returns {f (w),∇f (w)} at any point w ∈ D.

Minimizing the above upper-bound iteratively recovers gradient descent (GD) with η = 1/L.

Starting from an initialization equal to w0, at iteration k , GD computes the gradient ∇f (wk) at
iterate wk (call to the first-order oracle).

If ∥∇f (wk)∥2 ≤ ϵ, terminate and return ŵ := wk .

Else, update the iterate as: wk+1 = wk − 1
L∇f (wk).
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Gradient Descent

Is GD guaranteed to terminate? If so, can we characterize the number of iterations?

Claim: For L-smooth functions lower-bounded by f ∗, gradient descent with η = 1
L returns ŵ

such that ∥∇f (ŵ)∥2 ≤ ϵ and requires T = 2L [f (w0)−f ∗]
ϵ iterations (oracle calls).

Proof:
Using the L-smoothness of f with x = wk and y = wk+1 = wk − 1

L∇f (wk) in the quadratic
bound (also referred to as the descent lemma),

f (wk+1) ≤ f (wk) + ⟨∇f (wk),−
1
L
∇f (wk)⟩+

L

2

∥∥∥∥1
L
∇f (wk)

∥∥∥∥2

=⇒ f (wk+1) ≤ f (wk)−
1
2L

∥∇f (wk)∥2

By moving from wk to wk+1, we have decreased the value of f since f (wk+1) ≤ f (wk).
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Gradient Descent

Rearranging the inequality from the previous slide, for every iteration k ,
1
2L

∥∇f (wk)∥2 ≤ f (wk)− f (wk+1)

By running GD for T iterations, adding up k = 0 to T − 1,

1
2L

T−1∑
k=0

∥∇f (wk)∥2 ≤
T−1∑
k=0

[f (wk)− f (wk+1)] = f (w0)− f (wT ) ≤ [f (w0)− f ∗]

(Since f is lower-bound by f ∗)

=⇒
∑T−1

k=0 ∥∇f (wk)∥2

T
≤ 2L [f (w0)− f ∗]

T

The LHS is the average of the gradient norms over the T iterates. Let
ŵ := argmink∈{0,1,...,T−1} ∥∇f (wk)∥2. Since the minimum is smaller than the average,

∥∇f (ŵ)∥2 ≤ 2L [f (w0)− f ∗]

T
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Gradient Descent

Since ∥∇f (ŵ)∥2 ≤ 2L [f (w0)−f ∗]
T , the rate of convergence is O(1/T ).

If the RHS equal to 2L [f (w0)−f ∗]
T ≤ ϵ, this would guarantee that ∥∇f (ŵ)∥2 ≤ ϵ and we would

achieve our objective.

Hence, we need to run the algorithm for T ≥ 2L [f (w0)−f ∗]
ϵ iterations. This is also referred to as

an O
( 1
ϵ

)
convergence rate.

Lower-Bound: When minimizing a smooth function (without additional assumptions), any
first-order algorithm requires Ω

( 1
ϵ

)
oracle calls to return a point ŵ such that ∥∇f (ŵ)∥2 ≤ ϵ.

Hence, gradient descent is optimal for minimizing smooth functions!
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Gradient Descent – Example

minx∈[−10,10] f (x) := −x sin(x). Run GD with η = 1/L ≈ 0.1 and x0 = 4.
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Questions?
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Gradient Descent

We have seen that we can reach a stationary point of a smooth function in O
( 1
ϵ

)
iterations of

GD with step-size η = 1
L .

Problems with this approach:

Computing L in closed-form can be difficult as the functions get complicated.

Theoretically computed L is global (the “local” L might be much smaller) and often loose in
practice (typically we tend to overestimate L resulting in a smaller step-size).
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Gradient Descent with Line-search

Instead of setting η according to L, we can “search” for a good step-size ηk in each iteration k .

Exact line-search: At iteration k , solve the following sub-problem:

ηk = argmin
η

f (wk − η∇f (wk)).

After computing ηk , do the usual GD update: wk+1 = wk − ηk∇f (wk).

Can adapt to the “local” L, resulting in larger step-sizes and better performance.
Can solve the sub-problem approximately by doing gradient descent w.r.t η (expensive).
Can compute ηk analytically (only in special cases). 7



Gradient Descent with Line-search – Example

Recall linear regression: minw∈Rd f (w) := 1
2 ∥Xw − y∥2 = 1

2 [w
T(XTX )w − 2wTXTy + yTy ].

For the exact line-search, we need to minη h(η) := f (wk − η∇f (wk)).

Since f is a quadratic, we can directly use the second-order Taylor series expansion.

h(η) = f (wk − η∇f (wk))

= f (wk) + ⟨∇f (wk),−η∇f (wk)⟩+
1
2
[−η∇f (wk)]

T∇2f (wk)[−η∇f (wk)]

∇h(ηk) = −∥∇f (wk)∥2 + η[∇f (wk)]
T∇2f (wk)[∇f (wk)] = 0 =⇒ ηk =

∥∇f (wk)∥2

∥∇f (wk)∥2
∇2f (wk )

For linear regression, ∇2f (wk) = XTX and ∇f (wk) = XT(Xwk − y). With exact line-search,
the GD update for linear regression is:

wk+1 = wk −
∥XT(Xwk − y)∥2

∥XT(Xwk − y)∥2
XTX

[XT(Xwk − y)]
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