CMPT 409/981: Optimization for Machine Learning

Lecture 2

Sharan Vaswani
September 12, 2022

Recap

Smooth functions: f is L-smooth if its gradient is Lipschitz continuous, and does not change arbitrarily fast i.e. $\forall x, y,\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|$.
If f is L-smooth, then for all $x, y \in \mathcal{D}, f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}$.
Objective: Find an ϵ-approximate stationary point \hat{w} i.e. $\|\nabla f(\hat{w})\|^{2} \leq \epsilon$ with access to a first-order oracle that returns $\{f(w), \nabla f(w)\}$ at any point $w \in \mathcal{D}$.
Minimizing the above upper-bound iteratively recovers gradient descent (GD) with $\eta=1 / L$.
Starting from an initialization equal to w_{0}, at iteration k, GD computes the gradient $\nabla f\left(w_{k}\right)$ at iterate w_{k} (call to the first-order oracle).

- If $\left\|\nabla f\left(w_{k}\right)\right\|^{2} \leq \epsilon$, terminate and return $\hat{w}:=w_{k}$.
- Else, update the iterate as: $w_{k+1}=w_{k}-\frac{1}{L} \nabla f\left(w_{k}\right)$.

Gradient Descent

Is GD guaranteed to terminate? If so, can we characterize the number of iterations?
Claim: For L-smooth functions lower-bounded by f^{*}, gradient descent with $\eta=\frac{1}{L}$ returns \hat{w} such that $\|\nabla f(\hat{w})\|^{2} \leq \epsilon$ and requires $T=\frac{2 L\left[f\left(w_{0}\right)-f^{*}\right]}{\epsilon}$ iterations (oracle calls).

Proof:

Using the L-smoothness of f with $x=w_{k}$ and $y=w_{k+1}=w_{k}-\frac{1}{L} \nabla f\left(w_{k}\right)$ in the quadratic bound (also referred to as the descent lemma),

$$
\begin{aligned}
f\left(w_{k+1}\right) & \leq f\left(w_{k}\right)+\left\langle\nabla f\left(w_{k}\right),-\frac{1}{L} \nabla f\left(w_{k}\right)\right\rangle+\frac{L}{2}\left\|\frac{1}{L} \nabla f\left(w_{k}\right)\right\|^{2} \\
\Longrightarrow f\left(w_{k+1}\right) & \leq f\left(w_{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(w_{k}\right)\right\|^{2}
\end{aligned}
$$

By moving from w_{k} to w_{k+1}, we have decreased the value of f since $f\left(w_{k+1}\right) \leq f\left(w_{k}\right)$.

Gradient Descent

Rearranging the inequality from the previous slide, for every iteration k,

$$
\frac{1}{2 L}\left\|\nabla f\left(w_{k}\right)\right\|^{2} \leq f\left(w_{k}\right)-f\left(w_{k+1}\right)
$$

By running GD for T iterations, adding up $k=0$ to $T-1$,

$$
\frac{1}{2 L} \sum_{k=0}^{T-1}\left\|\nabla f\left(w_{k}\right)\right\|^{2} \leq \sum_{k=0}^{T-1}\left[f\left(w_{k}\right)-f\left(w_{k+1}\right)\right]=f\left(w_{0}\right)-f\left(w_{T}\right) \leq\left[f\left(w_{0}\right)-f^{*}\right]
$$

(Since f is lower-bound by f^{*})

$$
\Longrightarrow \frac{\sum_{k=0}^{T-1}\left\|\nabla f\left(w_{k}\right)\right\|^{2}}{T} \leq \frac{2 L\left[f\left(w_{0}\right)-f^{*}\right]}{T}
$$

The LHS is the average of the gradient norms over the T iterates. Let $\hat{w}:=\arg \min _{k \in\{0,1, \ldots, T-1\}}\left\|\nabla f\left(w_{k}\right)\right\|^{2}$. Since the minimum is smaller than the average,

$$
\|\nabla f(\hat{w})\|^{2} \leq \frac{2 L\left[f\left(w_{0}\right)-f^{*}\right]}{T}
$$

Gradient Descent

Since $\|\nabla f(\hat{w})\|^{2} \leq \frac{2 L\left[f\left(w_{0}\right)-f^{*}\right]}{T}$, the rate of convergence is $O(1 / T)$.
If the RHS equal to $\frac{2 L\left[f\left(w_{0}\right)-f^{*}\right]}{T} \leq \epsilon$, this would guarantee that $\|\nabla f(\hat{w})\|^{2} \leq \epsilon$ and we would achieve our objective.
Hence, we need to run the algorithm for $T \geq \frac{2 L\left[f\left(w_{0}\right)-f^{*}\right]}{\epsilon}$ iterations. This is also referred to as an $O\left(\frac{1}{\epsilon}\right)$ convergence rate.

Lower-Bound: When minimizing a smooth function (without additional assumptions), any first-order algorithm requires $\Omega\left(\frac{1}{\epsilon}\right)$ oracle calls to return a point \hat{w} such that $\|\nabla f(\hat{w})\|^{2} \leq \epsilon$.

Hence, gradient descent is optimal for minimizing smooth functions!

Gradient Descent - Example

$\min _{x \in[-10,10]} f(x):=-x \sin (x)$. Run GD with $\eta=1 / L \approx 0.1$ and $x_{0}=4$.

Questions?

Gradient Descent

We have seen that we can reach a stationary point of a smooth function in $O\left(\frac{1}{\epsilon}\right)$ iterations of GD with step-size $\eta=\frac{1}{L}$.

Problems with this approach:

- Computing L in closed-form can be difficult as the functions get complicated.
- Theoretically computed L is global (the "local" L might be much smaller) and often loose in practice (typically we tend to overestimate L resulting in a smaller step-size).

Gradient Descent with Line-search

Instead of setting η according to L, we can "search" for a good step-size η_{k} in each iteration k.
Exact line-search: At iteration k, solve the following sub-problem:

$$
\eta_{k}=\underset{\eta}{\arg \min } f\left(w_{k}-\eta \nabla f\left(w_{k}\right)\right) .
$$

After computing η_{k}, do the usual GD update: $w_{k+1}=w_{k}-\eta_{k} \nabla f\left(w_{k}\right)$.

- Can adapt to the "local" L, resulting in larger step-sizes and better performance.
- Can solve the sub-problem approximately by doing gradient descent w.r.t η (expensive).
- Can compute η_{k} analytically (only in special cases).

Gradient Descent with Line-search - Example

Recall linear regression: $\min _{w \in \mathbb{R}^{d}} f(w):=\frac{1}{2}\|X w-y\|^{2}=\frac{1}{2}\left[w^{\top}\left(X^{\top} X\right) w-2 w^{\top} X^{\top} y+y^{\top} y\right]$.
For the exact line-search, we need to $\min _{\eta} h(\eta):=f\left(w_{k}-\eta \nabla f\left(w_{k}\right)\right)$.
Since f is a quadratic, we can directly use the second-order Taylor series expansion.

$$
\begin{aligned}
h(\eta) & =f\left(w_{k}-\eta \nabla f\left(w_{k}\right)\right) \\
& =f\left(w_{k}\right)+\left\langle\nabla f\left(w_{k}\right),-\eta \nabla f\left(w_{k}\right)\right\rangle+\frac{1}{2}\left[-\eta \nabla f\left(w_{k}\right)\right]^{\top} \nabla^{2} f\left(w_{k}\right)\left[-\eta \nabla f\left(w_{k}\right)\right] \\
\nabla h\left(\eta_{k}\right) & =-\left\|\nabla f\left(w_{k}\right)\right\|^{2}+\eta\left[\nabla f\left(w_{k}\right)\right]^{\top} \nabla^{2} f\left(w_{k}\right)\left[\nabla f\left(w_{k}\right)\right]=0 \Longrightarrow \eta_{k}=\frac{\left\|\nabla f\left(w_{k}\right)\right\|^{2}}{\left\|\nabla f\left(w_{k}\right)\right\|_{\nabla^{2} f\left(w_{k}\right)}^{2}}
\end{aligned}
$$

For linear regression, $\nabla^{2} f\left(w_{k}\right)=X^{\top} X$ and $\nabla f\left(w_{k}\right)=X^{\top}\left(X w_{k}-y\right)$. With exact line-search, the GD update for linear regression is:

$$
w_{k+1}=w_{k}-\frac{\left\|X^{\top}\left(X w_{k}-y\right)\right\|^{2}}{\left\|X^{\top}\left(X w_{k}-y\right)\right\|_{X^{\top} X}^{2}}\left[X^{\top}\left(X w_{k}-y\right)\right]
$$

