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Min-Max Optimization

Today we will focus on problems of the form

min
w∈W

max
v∈V

f (w , v) .

Application: Two player zero-sum matrix games of the form,

min
w∈∆A

max
v∈∆B

wTMv ,

where A is the set of strategies available to player 1. ∆A = {w ∈ [0, 1]|A||
∑

i wi = 1} is the
distribution over these available strategies and w ∈ ∆A is a possible mixed strategy.

The matrix M ∈ R|A|×|B| is the payoff matrix for player 1 i.e. if player 1 plays strategy i and
player 2 plays strategy j , then player 1 is penalized Mi,j whereas player 2 is penalized −Mi,j .
Both players are trying to minimize their respective penalties.

Since (penalty for player 1) = -(penalty for player 2), this is a zero-sum game. Classic example:
Rock-Paper-Scissors
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Min-Max Optimization

Application: Generative Adversarial Networks

min
θ

max
ϕ

[
Ex∼preal [logDϕ(x)] + Ez∼N(0,Id )[log (1 − Dϕ(Gθ(z)))]

]
,

where Gθ(z) is the generator parameterized by θ that attempts to generate realistic images from
random noise z . Dϕ(x) is the discriminator parameterized by ϕ that attempts to discriminate
between the real (from preal) and generated (from Gθ(z)) images.

Application: Distributionally Robust Optimization

min
θ

max
P∈P

Eζ∼P [ℓ(θ, ζ)] ,

where P := {P|d(P, P̂) ≤ ρ} is the family of distributions that are “close” (measured by ρ) to
the empirical distribution P̂ according to a distance metric d (Total variation, KL divergence).

We require that the model (parameterized by θ) is robust to distributions close to the empirical
distribution from which can obtain samples.
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Min-Max Optimization

Let us abstract out these problems and consider the following objective,

min
w∈W

max
v∈V

f (w , v)

where W ⊆ Rdw and V ⊆ Rdv are convex sets.

Claim: In general, maxv∈V minw∈W f (w , v) ≤ minw∈W maxv∈V f (w , v)

Proof: Define v∗ := argmaxv∈V minw∈W f (w , v) and w∗ := argminw∈W maxv∈V f (w , v).

max
v∈V

min
w∈W

f (w , v) = min
w∈W

f (w , v∗) ≤ f (w∗, v∗) ≤ max
v∈V

f (w∗, v) = min
w∈W

max
v∈V

f (w , v)

Game theoretic interpretation: RHS corresponds to w -player playing first and the v -player
reacting, while the LHS corresponds to the v -player playing first and the w -player reacting. Since
the v -player aims to maximize f , playing second might be beneficial since they can adapt to the
w -player’s strategy. Hence, the RHS ≥ LHS.
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Min-Max Optimization

Convex-Concave Games: f : W ×V → R is convex-concave iff f (·, v) is a convex function for
any v ∈ V, f (w , ·) is a concave function for any w ∈ W and W,V are convex sets.

Sion’s Minimax Theorem: If W and V are compact, convex sets, and f is a convex-concave
function, then maxv∈V minw∈W f (w , v) = minw∈W maxv∈V f (w , v).

Example: f (w , v) = minw∈∆A
maxv∈∆B

wTMy is convex-concave and the simplex ∆ is a convex
set. Hence it is a convex-concave game.

Recall that v∗ := argmaxv∈V minw∈W f (w , v) and w∗ := argminw∈W maxv∈V f (w , v) and

max
v∈V

min
w∈W

f (w , v) = min
w∈W

f (w , v∗) ≤ f (w∗, v∗) ≤ max
v∈V

f (w∗, v) = min
w∈W

max
v∈V

f (w , v)

If f convex-concave and W and V are convex sets, then,

max
v∈V

min
w∈W

f (w , v) = min
w∈W

f (w , v∗) = f (w∗, v∗) = max
v∈V

f (w∗, v) = min
w∈W

max
v∈V

f (w , v) .

Hence, (w∗, v∗) is a solution to the game iff for all w ∈ W, v ∈ V,

f (w∗, v) ≤ f (w∗, v∗) ≤ f (w , v∗) .
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Min-Max Optimization

Recall that for convex-concave games, (w∗, v∗) is a solution iff for all w ∈ W, v ∈ V,
f (w∗, v) ≤ f (w∗, v∗) ≤ f (w , v∗).

Game theoretic interpretation: From the perspective of a game between the w -player and the
v -player, since f (w∗, v∗) = minw∈W f (w , v∗), if the v -player is playing v∗, it is optimal for the
w -player to play w∗. Similarly, if the w -player is playing w∗, it is optimal for the v -player to play
v∗. Hence, (w∗, v∗) is the Nash equilibrium since neither player has an incentive to move away
from their strategy.

For convex-concave games, the Nash equilibrium is guaranteed to exist, but need not be unique.

Duality Gap: Way to characterize the sub-optimality of the point (ŵ , v̂):

Duality Gap((ŵ , v̂)) := max
v∈V

f (ŵ , v)− min
w∈W

f (w , v̂) .

If (ŵ , v̂) is a Nash equilibrium, then maxv∈V f (ŵ , v) = f (ŵ , v̂) = minw∈W f (w , v̂) and hence
the duality gap is 0. Point (ŵ , v̂) is an ϵ-Nash equilibrium, if the Duality Gap((ŵ , v̂)) ≤ ϵ.
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Questions?
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Gradient Descent Ascent

Gradient Descent Ascent: At iteration k , for a step-size η, (simultaneous) projected Gradient
Descent Ascent (GDA) has the following update:

wk+1 = ΠW [wk − ηk∇w f (wk , vk)] ; vk+1 = ΠV [vk + ηk∇v f (wk , vk)] ,

where ΠW and ΠV are Euclidean projections onto W and V respectively (possible to use
different step-sizes for the w and v variables).

G -Lipschitz functions: Define z =

[
w

v

]
. The function f : W ×V → R is G -Lipschitz iff,

|f (z1)− f (z2)| ≤ G ∥z1 − z2∥

Similar to convex minimization, this implies bounded gradients, i.e. for all w ∈ W, v ∈ V,

∥∇w f (w , v)∥ ≤ G ; ∥∇v f (w , v)∥ ≤ G

We will also assume that sets W and V have diameter D i.e. for all w1,w2 ∈ W,
∥w1 − w2∥2 ≤ D2. Similarly, for all v1, v2 ∈ V, ∥v1 − v2∥2 ≤ D2.
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Gradient Descent Ascent for Lipschitz, convex-concave games

Claim: For G -Lipschitz convex-concave games where W and V have diameter D, projected GDA
with ηk = D√

2G
√
k

results in the following bound for w̄T :=
∑T

k=1 wk/T and v̄T :=
∑T

k=1 vk/T

Duality Gap((w̄T , v̄T )) ≤
4DG√

T

Proof: For a fixed point w̃ ∈ W, using the projected gradient descent update for w ,

∥wk+1 − w̃∥2 = ∥ΠW [wk − η∇w f (wk , vk)]− ΠW [w̃ ]∥2 (Since w̃ ∈ W)

≤ ∥wk − η∇w f (wk , vk)− w̃∥2

(since projections are non-expansive)

= ∥wk − w̃∥2 − 2ηk⟨∇w f (wk , vk),wk − w̃⟩+ η2
k ∥∇w f (wk , vk)∥2

≤ ∥wk − w̃∥2 − 2ηk [f (wk , vk)− f (w̃ , vk)] + η2
kG

2

(Since f (·, vk) is convex and f is G -Lipschitz)

=⇒ [f (wk , vk)− f (w̃ , vk)] ≤
∥wk − w̃∥2 − ∥wk+1 − w̃∥2

2ηk
+

ηk
2
G 2 (1)
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Gradient Descent Ascent for Lipschitz, convex-concave games

Similarly, using the projected gradient ascent update w.r.t ṽ ∈ V,

∥vk+1 − ṽ∥2 ≤ ∥vk − ṽ∥2 + 2ηk⟨∇v f (wk , vk), vk − ṽ⟩+ η2
k ∥∇v f (wk , vk)∥2

≤ ∥vk − ṽ∥2 + 2ηk [f (wk , vk)− f (wk , ṽ)] + η2
kG

2

(Since f (wk , ·) is concave and f is G -Lipschitz)

=⇒ [f (wk , ṽ)− f (wk , vk)] ≤
∥vk − ṽ∥2 − ∥vk+1 − ṽ∥2

2ηk
+

ηk
2
G 2 (2)

Adding Eq. (1) and Eq. (2),

f (wk , ṽ)− f (w̃ , vk) ≤
∥wk − w∥2 − ∥wk+1 − w∥2

2ηk
+

∥vk − v∥2 − ∥vk+1 − v∥2

2ηk
+ ηkG

2

T∑
k=1

[f (wk , ṽ)− f (w̃ , vk)] ≤
T∑

k=1

[
∥wk − w̃∥2 − ∥wk+1 − w̃∥2

2ηk

]
+

T∑
k=1

[
∥vk − ṽ∥2 − ∥vk+1 − ṽ∥2

2ηk

]

+ G 2
T∑

k=1

ηk
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Gradient Descent Ascent for Lipschitz, convex-concave games

Simplifying the first term in the equation from the previous slide,
T∑

k=1

[
∥wk − w̃∥2 − ∥wk+1 − w̃∥2

2ηk

]
≤

T∑
k=2

∥wk − w̃∥2
[

1
ηk

− 1
ηk−1

]
+

∥w1 − w∗∥2

2η1

≤ D2

2ηT

Bounding the second term in a similar manner and putting everything together,

T∑
k=1

[f (wk , ṽ)− f (w̃ , vk)] ≤
D2

ηT
+ G 2

T∑
k=1

ηk =
D2

√
T

η
+ G 2η

T∑
k=1

1√
k

(ηk = η/
√
k)

≤ D2
√
T

η
+ 2G 2η

√
T (

∑T
k=1

1/
√
k ≤ 2

√
T )

=⇒ 1
T

[
T∑

k=1

[f (wk , ṽ)− f (w̃ , vk)]

]
≤ D2

√
T

η
+ 2G 2η

√
T =

4DG√
T

(η = D√
2G

)
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Gradient Descent Ascent for Lipschitz, convex-concave games

Recall that 1
T

[∑T
k=1[f (wk , ṽ)− f (w̃ , vk)]

]
≤ 4DG√

T
. Since f (·, ṽ) and −f (w̃ , ·) are convex,

using Jensen’s inequality and by definition of w̄T and v̄T ,

f (w̄T , ṽ)− f (w̃ , v̄T ) ≤
4DG√

T

Since the above statement is true for all ṽ ∈ V and w̃ ∈ W, taking the maximum over ṽ ∈ V
and the minimum over w̃ ∈ W,

max
v∈V

f (w̄T , v)− min
w∈W

f (w , v̄T ) ≤
4DG√

T
=⇒ Duality Gap((w̄T , v̄T )) ≤

4DG√
T

Recall that GD attains an O(1/
√
T) rate when minimizing convex, Lipschitz functions, and hence

GDA has a similar behaviour when solving convex-concave Lipschitz games.
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Questions?
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Gradient Descent Ascent for smooth, convex-concave games

Similar to convex minimization, f : W ×V → R is L-smooth iff

∥∇w f (w1, v1)−∇w f (w2, v2)∥ ≤ L ∥z1 − z2∥ ; ∥∇v f (w1, v1)−∇v f (w2, v2)∥ ≤ L ∥z1 − z2∥ ,

where z1 =

[
w1

v1

]
and z2 =

[
w2

v2

]
.

Example: f (w , v) = w v is 1-smooth since ∇w f (w , v) = v and
|v1 − v2| ≤ |v1 − v2|+ |w1 − w2|. A similar reasoning works for ∇v f (w , v). Moreover, since
f (·, v) is linear w.r.t w , it is convex. By symmetry, f (w , ·) is linear in v and hence concave.

If W = R and V = R, minw∈R maxv∈R wv is a smooth, convex-concave game whose unique
solution is at (0, 0) since f (0, 0) ≤ f (w , 0) for all w and f (0, 0) ≥ f (0, v) for all v .

Game theoretically, if the v -player deviates from 0 such that v = ϵ, the w -player can choose −∞
to make the objective small. Similarly, if the w -player deviates from 0 such w = ϵ, then the
v -player can choose +∞ to make the objective large. Hence, neither play has an incentive to
deviate from (0, 0) which corresponds to the Nash equilibrium.
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Gradient Descent Ascent for smooth, convex-concave games

Let us consider running GDA for minw∈R maxv∈R wv . The update can be given as:

wk+1 = wk − ηk∇w f (wk , vk) = wk − ηkvk ; vk+1 = vk + ηk∇v f (wk , vk) = vk + ηkwk

Calculating the distance from the solution (0, 0) after one iteration,

(wk+1 − 0)2 + (vk+1 − 0)2 = (wk − ηkvk)
2 + (vk + ηkwk)

2 = (1 + η2
k) (w

2
k + v2

k )

Hence, for any ηk , the last iterate of GDA will move away from the solution, diverging in the
unconstrained setting or hitting the boundary in the constrained setting.

Compare this to GD for smooth, convex minimization where the sub-optimality corresponding to
the last iterate decreases at an O(1/T ) rate (Lecture 4).
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Gradient Descent Ascent for smooth, convex-concave games

Consider a smooth, convex-concave game minw∈W maxv∈V f (w , v) where the convex sets W
and V have diameter D. In this case, the duality gap for the average iterate of GDA will
decrease at a slower O(1/

√
T) rate.

Claim: An L-smooth game minw∈W maxv∈V f (w , v) where W and V have diameter D is√
2DL+ ∥∇w f (w0, v0)∥-Lipschitz.

Proof: By the definition of L-smoothness, for any (w1, v2) and (w2, v2),

∥∇w f (w1, v1)−∇w f (w2, v2)∥ ≤ L ∥z1 − z2∥ ≤ L

√
∥w1 − w2∥2 + ∥v1 − v2∥2 ≤

√
2DL.

For any w , v , ∥∇w f (w , v)∥ = ∥∇w f (w , v)−∇w f (w0, v0) +∇w f (w0, v0)∥ ≤
∥∇w f (w , v)−∇w f (w0, v0)∥+ ∥∇w f (w0, v0)∥ ≤

√
2DL+ ∥∇w f (w0, v0)∥.

Claim: For L-smooth, convex-concave games, GDA with ηk = D

(2DL+
√

2∥∇w f (w0,v0)∥)
√
k

results in

the following bound for w̄T :=
∑T

k=1 wk/T and v̄T :=
∑T

k=1 vk/T

Duality Gap((w̄T , v̄T )) ≤
4D

[√
2DL+ ∥∇w f (w0, v0)∥

]
√
T

Proof: Using the result for convex-concave (
√

2DL+ ∥∇w f (w0, v0)∥)-Lipschitz games. 13



Questions?
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Strongly-convex strongly-concave games

Strongly-convex strongly-concave games: f : W×V → R is strongly-convex strongly-concave
iff f (·, v) is a strongly-convex function for any v ∈ V, f (w , ·) is a strongly-concave function for
any w ∈ W and the sets W,V are convex sets, i.e. for all w ,w1,w2 ∈ W and v , v1, v2 ∈ V,

f (w2, v) ≥ f (w1, v) + ⟨∇w f (w1, v),w2 − w1⟩+
µw

2
∥w1 − w2∥2

−f (w , v2) ≥ −f (w , v1) + ⟨−∇v f (w , v1), v2 − v1⟩+
µv

2
∥v1 − v2∥2

If W = Rd and V = Rd since w∗ := argminw f (w , v∗), ∇w f (w
∗, v∗) = 0. By the

strong-convexity of f (·, v) with v = v∗, w1 = w∗, w2 = w ,
f (w , v∗) > f (w∗, v∗) + ⟨∇w f (w

∗, v∗),w − w∗⟩. Hence, f (w∗, v∗) < f (w , v∗) for all w .

Similarly, v∗ := argmaxv f (w
∗, v), ∇v f (w

∗, v∗) = 0. By the strong-concavity of f (w , ·) with
w = w∗, −f (w∗, v) > −f (w∗, v∗). Hence, f (w∗, v∗) > f (w∗, v) for all v .

Hence, for unconstrained strongly-convex strongly-concave games, (w∗, v∗) is the unique Nash
equilibrium and ∇w f (w

∗, v∗) = ∇v f (w
∗, v∗) = 0.
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Gradient Descent Ascent for smooth, strongly-convex strongly-concave games

Let us define an operator F : Rdw+dv → Rdw+dv such that the GDA update for unconstrained
games can be written as:

zk+1 = zk − ηkF (zk) where z =

[
w

v

]
and F (z) =

[
∇w f (w , v)

−∇v f (w , v)

]

Recall that in the unconstrained setting, when W = Rdw and V = Rdv , F (z∗) = 0.

Claim: If f is L-smooth, then F is 2L-Lipschitz i.e. ∥F (z1)− F (z2)∥ ≤ 2L ∥z1 − z2∥.
Proof:

∥F (z1)− F (z2)∥ =

∥∥∥∥∥
[
∇w f (w1, v1)−∇w f (w2, v2)

∇v f (w2, v2)−∇v f (w1, v1)

]∥∥∥∥∥
≤ ∥∇w f (w1, v1)−∇w f (w2, v2)∥+ ∥∇v f (w1, v1)−∇v f (w2, v2)∥
≤ L ∥z1 − z2∥+ L ∥z1 − z2∥ (By definition of L-smoothness)

∥F (z1)− F (z2)∥ ≤ 2L ∥z1 − z2∥
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