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Adam: w1 = ME[wi — 1k Altmy] s my = Bimgr + (1 — 51)fok(Wk)-_Ak =G,

G = (1= B2) X1y B8 [V A(w) VEi(wi) ] and mic = (1= 81) o1, B[V Ai(wi)].

Adam does not guarantee that A, = A,_1 for all k. There are simple counter-examples that
exploit this and can result in the non-convergence of Adam.



AMSGrad — fixing the convergence of Adam

AMSGrad [RKK19] fixes the non-convergence of Adam by making a small modification (in red)
to Adam. It has the following update — for 51, 8> € (0, 1),

Gk = B2Gk—1 + (1 — Bo) diag [V (wi) VEr(wi)T] 5 Ax = max{G*, Ac_1}
Wiekr = Ne[wie — me A mils 7 mie= Bumi—y + (1 — B1) Viiu(wic)
o1
M [Vit1] == arg min 5 llw— Viral[3,
wel
where, for diagonal matrices A and B, C = max{A, B} = Vi € [d], C;; = max{A;, Bi,i}.

The AMSGrad update ensures that A, = Ax_1 and is guaranteed to converge.



Convergence of AMSGrad

For a sequence of convex, G-Lipschitz functions,

o [RKK19] prove an O(D? Gd \/T) regret bound for AMSGrad. The proof requires
nk = O(1/vk) and Bf = O(exp(—k)) (decreasing step-size and momentum).
o [AMMC20] prove the same regret guarantee with a decreasing step-size, but constant ;.

Since AMSGrad is typically used with a constant step-size and momentum term, [VLK'20]
analyze the convergence of this variant for smooth, convex functions. For this analysis, we will
consider the stochastic optimization setting and make the following simplifying assumptions:

@ Bounded eigenvalues: The eigenvalues of Ay are bounded for all iterations, i.e. for all k,
there exists constants amin, amax > 0 such that aminly < Ax = amax/q. This condition can be
algorithmically ensured for the diagonal preconditioner.

o Near-interpolation: There exists a ( < co such that ¢ := E;[f;,(w*) — £*] is small.

e Bounded iterates: The domain is unconstrained i.e. C = R? but the iterates remain
bounded in a set of diameter D, i.e. for all k, |wy — w*||> < D2.



Minimizing convex, smooth functions using AMSGrad

Let us prove the convergence of AMSGrad when minimizing a finite-sum of convex, L-smooth
functions. As a warm-up, let us first analyze the case where 5; = 0.

Claim: For minimizing a finite-sum of convex, L-smooth functions, assuming that for all k € [T],
|lwi — W*||2 < D?, aminly < Ak = amaxlg, T iterations of the AMSGrad update with 1 = B
(1 = 0 returns an iterate w = Xi- wi/T such that,

< D? 2dL amax

E[f(wr) — f(w")] +¢* where (= Ei[fi(w*) - £].

S U
Proof: Define P, := %. Starting from the update, vx i1 = wy — P,:IVf;'k(Wk) and using the
same steps as the AdaGrad proof,
Vil — W' = wy — Pk_IVf,-k(Wk) —w' = Pylvkr1 — w'] = Pilwk — w¥] — Vi (wy)
= [Virr = W Pilviss — w'] = [wie = w* — PV (wi] ™ [Pilwi — w*] = Vi (wic)]
Ivirr — w*lI3, = llwi — w* ||, — 2(V fac(wi), wie — w*) + [Py 'V i (wie) T [V Fac(we)]

|2 |2 * 2
= Vi = wllp, = llwe = wllp, = 2(Vi(wic), wic = w™) + [|V i (wie) [ o -2



Minimizing convex, smooth functions using AMSGrad

Recall that ||vk41 — W*||i,k = ||wy — w*||i~,k — 2(Viu(wi), wx — w*) + ||Vf,-k(wk)|ﬁ,;1. Since

_ md _
C =R Wks1 = Viy1,

s — w2, = e — w3, — 2 ), wi — W) + [T ()l
o e = wr Il = llwees —w*llp, 1 2 .
fir(wi) — f(w™) < 5 + 5 HVﬁ'k(Wk)HPk—l (Convexity of f)
2 2
[wi — w*[[p, — [[Wiy1 — w*|[p,

= E[f(wx) — f(w*)] <E

1
+ SE [V f(wll3s

2

B ||V (wi)l3s < 2ZE [I9(wi) ] < 2B [fi(wi) — ] < 2B [ () — F(w")]+ 2228

— amin — amin Amin

+ ﬂ]E [f(wg) — F(w*)] + LL&

Amin Amin

= E[f(wx) — f(w")] <E

2

2 2
lwic — w* |5, — |Wis1 — w]



Minimizing convex, smooth functions using AMSGrad

Recall that E[f(Wk) _ f(W*)] S IE |:|Wkw*|Pk2|Wk+lw*|Pk:| + %E [f(Wk) . f(W*)] + LLCZ

Amin

Setting ) = % and rearranging,
¥ %112 %12
Elf(w) = f(w)] S E [[lwe = w3, = I — w3 ] +¢2

Taking expectation w.r.t the randomness in iterations k = 1 to T and summing,

T

)
> ElF(wi) — F(w)] < DE [llwe = w I, — Iwies — w3 ] + 2T
k=1 k=1

Dividing by T, using Jensen's inequality on the LHS and the definition of wr

STLE [[lwe = w23, — [wign — w* |2
E[f(wr) — f(w")] < = [ o 3

2
< T +¢




Minimizing convex, smooth functions using AMSGrad

T E[[wemw* |2 —||wirs—w™ |2
Recall that E[f(iwr) — F(w)] < =2/l b v 5] | 2.

]~

2 2
[||Wk — w2, — [[wis1 — W*||,,J

»
Il

1

.
> (Wi = w)T[Pe — Poal(wic — w)] + llwy — w* 3, — lwrga — w*|[3,
k

||
N

<

]~

.

lwic = w1 Amax[Pe = Peal + [[wa = wll, < D7 D Mo Prc = Paca] + [[wa — w [,
k=2

(Since Ax—1 = A, Py = Pi, Amax[Pk — Ps] > 0 and [|wie — w*||* < D)

Pl
||
N

T T
> [Iwie = wl3, = llwers = w3, ] < D D7 TP = Pl + [lwa — w3, < D?Tr[Pr]
le=T k=2

(By linearity of trace, and bounding ||w; — W”‘Hf31 < D? Tr[Py])



Minimizing convex, smooth functions using AMSGrad

Recall that E[f(wr) — f(w*)] < 2Pl 4 (2

D? D?2L Tr[A D? 2L d Amax[A D? 2L d amay
D> Tr[P7] < — Tr[A7] = r[AT] < A7l < 2
n Amin Amin
D? 2dL apmay
dmin T

dmin

= E[f(wr) — f(w")] < +¢2

When minimizing smooth, convex functions, AMSGrad with a constant step-size without
momentum will converge to a neighbourhood of the solution at an O(1/T) rate. Similar to SGD,
this neighbourhood depends on (, the extent to which interpolation is violated.

Next, we will consider the 81 # 0 case and prove a similar convergence result for constant
step-size AMSGrad.



Questions?



Minimizing convex, smooth functions using AMSGrad

Claim: For minimizing a finite-sum of convex, L-smooth functions, assuming that for all k € [T],
|wg — w*||2 < D?, aminly = Ak = amaxlg, T iterations of the AMSGrad update with

n= % oo 3) = 3 € (0,1) returns an iterate w = -1 /T such that,

2 N2
1+5> D7 2dl amax + ¢ where (% :=E[fi(w*) — 7]

Elf(r) - (o) < (125 220

Proof: Proceeding similar to the case for 81 = 0, define Py := % and 3 := [3;. Starting from

the update, vxy1 = wyx — P;lmk where my = fmy_1 + (1 — B) Vi (wy).

Vil — W' = wy — P;lmk —w' = Pyvks1 — w'] = Pr[wk — w*] — my

Vi1 — W Pelvis1 — w¥] = [wi — w* — P tmy]™ [Pifwi — w*] — my]

Ivirs = w5, = llwic — w* |5, = 2(mx, wic — w*) + [P mi] T [mi]

IWkrr = wl3, = llwic — w*|[3, = 2(1 = B) (wic — w*, Vu(wi)) = 28 (wi — w*, mi—1) + | mi|5 -

(Since C = RY, wy11 = Viki1)



Minimizing convex, smooth functions using AMSGrad

Iwir1 — w*[|5, = [lwic — w*[[5, —2(1—B) (wic—w*, Va(wie)) — 23 (wic— w*, mk—1>+\|mkllf>;1-
To simplify the (wx — w*, m_1) term, we will prove the following lemma: for any set of vectors
a,b,c.d, if a=b+c, then, 2(c,a—d) = |la—d|* +|a— b|]> — ||b—d|J*.
la—d|>=|b+c—dfP=|b—d|*+2(a—bb—d)+|la—b|* (a=b+c, c=b—a)
la—d|* = |b—d|*+2(a— b,b—a+a—d)+|a—b|* = ||b—d||* +2(c,a—d) — [a— b|?
— 2(c,a—d) = [la—d|*+]|la—b||* — | b—d||?
2P (wic — w), P2 (wie — wi1))
= 2<Pl}—/12(wk - W*),Pl/ (wg —w*) =P/ 1/2 (w1 —wh))

—c =a =d

— 2w — W, myq) = =2(wk — W, Py (Wi — wi)) =

2 2 2
< lwi — wi—allp,_, + lIwe —w™|lp,_, = Iwk—1 — w5,
(Lemma with a = ¢ = Pkl,/lz(wk —w*),b=0,d= Pkl,/lz(wk,l —w*))
= 2wk —w",my_1) < ||mk71H$Dk—j1 +lwi — w5, — [lwe—r — w13

(Since Po_y(wix — wx—1) = my—1 and P._, < Px) 10



Minimizing convex, smooth functions using AMSGrad

Putting everything together,

Iwiesr — w5, = llwe — w*|[5, —2(1 = B) (wi — w*, Vis(wi)) — 28 (wje — w*, my_1) + ||mkaa;1
< llwe = w*[[p, = 2(1 = B) (wk — w*, Vii(wi))
+ B [llmallps, + lwe = willp, = wes = willp, ]+ lmil 3o
< [lwi — w* |3, — 2(1 = B) [fu(wi) — fi(w™)] (By convexity)

2 2 2 2
+ 8 [Imialpo + llwe = willE, = Iwies = w3, | + Imil3os

= 2(1 = B) [fi(wk) — fac(w™)]

2 2 2 2
< [l = wollg, = lIwicsr = wlis ] +8 [Iwe = w*I3, = llwes = wl13,_,

Will telescope Will telescope

2 2
+ [Blmials, + Imill3s]

Will handle next 11



Minimizing convex, smooth functions using AMSGrad

Let us focus on bounding the 3 Hmk_1||i,;11 + Hmk||i,;1 term.

Bllmi-1llp-s, + llmil5-»
= Bllmi-1llps + (L +8) lmelps = 8llmelps (For some & > 0)
= Bllmi-allp-s + (1 +8) 1Bme—1 + (1 — B) V(w3 — & |7
< Bllmi-1llpa + (1 +9) [(1 +€) B2 lme-1llps + (L +Ye) (1 = BY [V hw(wi)llpa | — 8 llmullp
(By Young's inequality: for some € > 0, (a+ b)? = a® + 2ab + b? < a?(1 + €) + b*(1 + 1/e))
= [(ﬁ +(L+8)(L+€)B°) lIme-alps =0 ||mk||f>;1} + (1 +8)(L+Ye) (1= B [V ha(wi) 5
(Since P,_, < Py, P71 = PY)

k—1

We want 8+ (1 +0)(1+¢€) 2 = 6. Hence,é—%. Since 0 >0 = <

Vv 1+<—:

2 2
Bllme-slipos, + Imils <6 [lImialBos = Imelipos] + (1 + )+ Yo (1= B IV w3
12



Minimizing convex, smooth functions using AMSGrad

Putting everything together and taking expectation w.r.t randomness at iteration k,
2(1 = B) Eff (wx) — f(w?)]
<E[llwe = w'llp, = Iwisr = w*li; ] + BE [llwe = w¥ll3, = lIwis — w3,
OE [l — lmels] + (L 8)(1 + 16 (1~ B)° E |V fi(wi) 3

Bounding E ||Vf~k(wk)||§,4 using the smoothness of fy,
E[Vei(wil[ps < s [[IVfi(wilP] < 2B [fi(wi) - ] < 2B [F(w) — F(w?)]+ 222

— amin — amin Amin

- amn

2(1 = B) = (1 +8)(1 + Y/e) (1 = B)* 2L1/ams | E[f (wic) — F(w")]

=«

2 2 2 2
<E [llwe — w3, = lwesr = w¥ll3, | + BE [lwe = w* I, = I wiea = w'll3,_,
2Ln¢?

+ O [lme-alfhms, — Imil] + @+ 0)(1 + Yo (1 — B2 =L N



Minimizing convex, smooth functions using AMSGrad

Taking expectation w.r.t randomness from iterations k = 1 to T and summing,

g
o Y E[f(we) — F(w")]
k=1
T T
* 12 %12 * (12 %112
<EY [llwk — w13, = Iwisa = w'li3, | +BE D [llwe — w13, = lIwie — w3,
k=1 k=1
=T =T
L 22T
2 2
+IEY, [Iimalips, = Imillpoa] +(2 4+ 8)( + 30 (1= 82 =
=i}

=T3

As before, T; < DT:TI’[AT] < %. T, < % HWT = W*Hi_r < %, T3 < % ||m0H/240 =0.
T

= a) E[f(w)— f(w")]

k=1

2 2
< P800 1 (1 g ) a g - g 2T
n dmin 14



Minimizing convex, smooth functions using AMSGrad

Recall that a 3], ]E[f(wk) — f(w*)] < Do) 1 (1 4 6)(1 4 1/e) (1 - B)? 2T Here,

n

d= /1#&814(_?52, B< A anda= 2(1—B) = (L+8)(L+e) (1 — B)?2L1/ap,. For € > 0, setting
21
5:1%%<\/%+6 — 5_€+g5§ :12—%
=2(1-7) — (1 4 12_Bﬂ> (14 1/e) (1 = B)?2L1/ay, = 2(1 — B) — (1 + B) 2L1/ay,
For a > 0, we want that n < 1+ﬂ a{'” Setting n = 1+g i, oo =1— . With these settings,
T

— Y E[f(w) — f(w")] < D dam;;?(HB) N (1—/;)4 T
k=1 ]

Dividing by T, using Jensen's inequality on the LHS and using the definition of wr,

1+/3>2 D2 2dL amay

+ 2
Amin T C 15

BIf() - (w)] < (125



Minimizing convex, smooth functions using AMSGrad

When minimizing smooth, convex functions, AMSGrad with a constant step-size will converge to
a neighbourhood of the solution at an O(1/T) rate. Similar to SGD, this neighbourhood
depends on (, the extent to which interpolation is violated.

Unlike the guarantee for AdaGrad that holds for any 7 (Slide 5, Lecture 16), the above AMSGrad
guarantee above requires knowledge of L to set the step-size. Moreover, it results in an
O(Y/T + ¢?) bound as compared to the noise-adaptive O(1/7 + ¢*/v/T) bound for AdaGrad (using
online-batch conversion with the regret guarantee).

Since Stochastic Heavy Ball (SHB) is a special case of AMSGrad with A, = I, we can prove a
similar O(1/T + ¢?) rate of convergence (Prove in Assignment 4!).

16



Questions?
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