CMPT 409/981: Optimization for Machine Learning Lecture 17

Sharan Vaswani November 14, 2022

$$v_{k+1} = w_k - \eta A_k^{-1} \nabla f_k(w_k)$$
; $w_{k+1} = \prod_{\mathcal{C}}^k [v_{k+1}] := \operatorname*{arg\,min}_{w \in \mathcal{C}} \frac{1}{2} \|w - v_{k+1}\|_{A_k}^2$.

For $G_k \in \mathbb{R}^{d \times d} := \sum_{s=1}^k \left[\nabla f_s(w_s) \nabla f_s(w_s)^\intercal \right]$,

$$A_{k} = \begin{cases} \sqrt{\sum_{s=1}^{k} \|\nabla f_{s}(w_{s})\|^{2}} I_{d} & (\text{Scalar AdaGrad}) \\ \text{diag}(G_{k}^{\frac{1}{2}}) & (\text{Diagonal AdaGrad}) \\ G_{k}^{\frac{1}{2}} & (\text{Full-Matrix AdaGrad}) \end{cases}$$

1

For convex, *G*-Lipschitz losses, AdaGrad has regret $R_T(u) \leq \left(\frac{D^2}{2\eta} + \eta\right) G \sqrt{d} \sqrt{T}$. For convex, *L*-smooth losses, AdaGrad has regret, $R_T(u) \leq 2dL \left(\frac{D^2}{2\eta} + \eta\right)^2 + \sqrt{2dL} \left(\frac{D^2}{2\eta} + \eta\right) \zeta \sqrt{T}$, where $\zeta^2 := \max_k [f_k(u) - f_k^*]$.

Adaptive Gradient Methods

Update for a generic method: For $k \ge 1$ with $m_0 := 0$, $\beta \ge 0$,

$$w_{k+1} = \Pi_{\mathcal{C}}^{k} [w_{k} - \eta_{k} A_{k}^{-1} m_{k}]; \qquad m_{k} = \beta m_{k-1} + (1 - \beta) \nabla f_{k}(w_{k})$$

where, $\Pi_{\mathcal{C}}^{k} [v] := \operatorname*{arg\,min}_{w \in \mathcal{C}} \frac{1}{2} \|w - v\|_{\mathcal{A}_{k}}^{2}$.

Instantiating the generic method:

- **SGD**: $A_k = I_d$, $\beta = 0$. Resulting update: $w_{k+1} = w_k \eta_k \nabla f_k(w_k)$.
- Stochastic Heavy-Ball Momentum: $A_k = I_d$. For $\alpha_k = \eta_k (1 \beta)$ and $\gamma_k = \frac{\beta \eta_k}{\eta_{k-1}}$, Resulting update: $w_{k+1} = w_k - \alpha_k \nabla f_k(w_k) + \gamma_k(w_k - w_{k-1})$ (Prove in Assignment 4!)
- AdaGrad: $A_k = G_k^{\frac{1}{2}}$ where $G_0 = 0$ and $G_k = G_{k-1} + \nabla f_k(w_k) \nabla f_k(w_k)^{\mathsf{T}}$, $\beta = 0$, $\eta_k = \eta$. Resulting update: $w_{k+1} = w_k - \eta A_k^{-1} \nabla f_k(w_k)$.
- Adam: $A_k = G_k^{\frac{1}{2}}$ where $G_0 = 0$ and $G_k = \beta_2 G_{k-1} + (1 \beta_2) \nabla f_k(w_k) \nabla f_k(w_k)^{\mathsf{T}}$, $\beta = \beta_1$ for $\beta_1, \beta_2 \in (0, 1)$. Resulting update: $w_{k+1} = w_k \eta_k A_k^{-1} m_k$ where $m_k = \beta_1 m_{k-1} + (1 \beta_1) \nabla f_k(w_k)$.

Adam

Recall the update: $w_{k+1} = \prod_{c}^{k} [w_{k} - \eta_{k} A_{k}^{-1} m_{k}]$; $m_{k} = \beta m_{k-1} + (1 - \beta) \nabla f_{k}(w_{k})$. For Adam, $G_{k} = (1 - \beta_{2}) \sum_{i=1}^{k} \beta_{2}^{k-i} [\nabla f_{i}(w_{i}) \nabla f_{i}(w_{i})^{\mathsf{T}}]$ and $m_{k} = (1 - \beta_{1}) \sum_{i=1}^{k} \beta_{1}^{k-i} [\nabla f_{i}(w_{i})]$. Hence, the influence of the past gradients is decayed exponentially which ensures that G_{k} and m_{k} are both primarily influenced by the most recent gradient $\nabla f_{k}(w_{k})$.

Consider scalar Adam for which $G_k = (1 - \beta_2) \sum_{i=1}^k \beta_2^{k-i} \|\nabla f_i(w_i)\|^2$. Unlike scalar AdaGrad (for which $G_k = \sum_{i=1}^k \|\nabla f_i(w_i)\|^2$), for scalar Adam, G_k is not guaranteed to increase monotonically (i.e. $G_{k+1} > G_k$). Hence $\tilde{\eta_k} := \frac{\eta}{\sqrt{G_k}}$ is not guaranteed to decrease.

Hence, to ensure convergence, Adam requires $\eta_k = \tilde{\eta_k} \alpha_k$ for some decreasing sequence α_k .

However, the non-monotonic behaviour of G_k can result in non-convergence of Adam even with an explicitly decreasing sequence of η_k .

We will construct an example on which Adam can result in linear regret in the online setting (and is hence not guaranteed to converge to the minimizer in the stochastic setting) [RKK19].

Consider $\mathcal{C} = [-1, 1]$ and the following sequence of linear functions. For $C \ge 2$,

$$f_k(w) = egin{cases} C & w & ext{for } k \mod 3 = 1 \ -w & ext{otherwise} \end{cases}$$

Run Adam with $\beta_1 = 0$ (no momentum), $\beta_2 = \frac{1}{1+C^2}$ and $\eta_k = \frac{\eta}{\sqrt{k}}$ such that $\eta < \sqrt{1-\beta_2}$. These parameters were chosen to prove the Adam regret bound in the original paper [KB14].

Update: $w_1 = 1$ and for $k \ge 1$,

$$m{v}_{k+1} := m{w}_k - rac{\eta_k}{\sqrt{eta_2 \ m{G}_{k-1} + (1-eta_2) \left\|
abla f_k(m{w}_k)
ight\|^2}} \,
abla f_k(m{w}_k) ext{ and } m{w}_{k+1} = \Pi_{[-1,1]}[m{v}_{k+1}]$$

We will compare Adam to the "best" fixed decision (w^*) that minimizes the regret. To compute w^* , consider the sequence of 3 functions from iteration 3k to 3k + 2 for $k \ge 0$. In this case,

$$w^* := \arg\min_{[-1,1]} \left[f_{3k}(w) + f_{3k+1}(w) + f_{3k+2}(w) \right] = \arg\min_{[-1,1]} \left[(C-2)w \right] = -1 \quad \text{(Since } C \ge 2\text{)}$$

Claim: For Adam's iterates, for $k \ge 0$, for all $i \le [3k + 1]$, $w_i > 0$ and $w_{3k+1} = 1$.

Proof: Let us prove the statement by induction. **Base case**: For k = 0, $w_{3k+1} = w_1 = 1$.

Inductive hypothesis: Assume that for $i \leq [3k+1]$, $w_i > 0$ and $w_{3k+1} = 1$. We need to prove that (a) $w_{3k+2} > 0$, (b) $w_{3k+3} > 0$ and (c) $w_{3k+4} = 1$.

In order to show this, note that $\nabla f_i(w) = C$ for i mod 3 = 1 and $\nabla f_i(w) = -1$ otherwise.

Consider the update at iteration (3k + 1). By the induction hypothesis, we know that $w_{3k+1} = 1$.

$$\begin{aligned} v_{3k+2} &= w_{3k+1} - \left[\frac{\eta_{3k+1}}{\sqrt{\beta_2 \ G_{3k} + (1-\beta_2) \left\| \nabla f_{3k+1}(w_{3k+1}) \right\|^2}} \ \nabla f_{3k+1}(w_{3k+1}) \right] \\ &= 1 - \left[\frac{C\eta}{\sqrt{(3k+1) (\beta_2 \ G_{3k} + (1-\beta_2) C^2)}} \right] \qquad (Using the value of \ \eta_{3k+1}) \\ &\geq 1 - \left[\frac{C\eta}{\sqrt{(3k+1) (1-\beta_2) C^2}} \right] = 1 - \left[\frac{\eta}{\sqrt{(3k+1) (1-\beta_2)}} \right] \qquad (Since \ G_{3k} \ge 0) \\ &\implies v_{3k+2} \ge 1 - \frac{1}{\sqrt{3k+1}} > 0 \qquad (Since \ \eta < \sqrt{1-\beta_2} \ and \ k \ge 1) \\ &\text{Since } \left[\frac{C\eta}{\sqrt{(3k+1) (\beta_2 \ G_{3k} + (1-\beta_2) C^2)}} \right] > 0, \ v_{3k+2} < 1. \ \text{Since } v_{3k+2} \in (0,1), \ w_{3k+2} = v_{3k+2} < 1 \\ &\text{which proves (a).} \end{aligned}$$

For the update at iteration (3k + 2), since $\nabla f_{3k+2}(w) = -1$ for all w,

$$v_{3k+3} = w_{3k+2} + \left[\frac{\eta}{\sqrt{(3k+2)(\beta_2 G_{3k+1} + (1-\beta_2))}}\right]$$

Since $w_{3k+2} \in (0,1)$ and $\frac{\eta}{\sqrt{(3k+2)(\beta_2 G_{3k+1}+(1-\beta_2))}} > 0$, $v_{3k+3} > 0$ and hence $w_{3k+3} > 0$ which proves (b).

In order to prove (c), consider iteration 3k + 3. Since $\nabla f_{3k+3}(w) = -1$ for all w,

$$v_{3k+4} = w_{3k+3} + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 G_{3k+2} + (1-\beta_2))}}\right]$$

From the above update, we can conclude that $v_{3k+4} > w_{3k+3}$.

To prove (c), we will show that $v_{3k+4} \ge 1$ and hence $w_{3k+4} = \prod_{[-1,1]} v_{3k+4} = 1$. For this, we consider two cases – when $v_{3k+3} \ge 1$ or when $v_{3k+3} < 1$.

Case 1: When
$$v_{3k+3} \ge 1 \implies w_{3k+3} = 1 \implies v_{3k+4} \ge 1 \implies w_{3k+4} = 1$$
.

Case 2: When $v_{3k+3} \leq 1 \implies w_{3k+3} = v_{3k+3} \leq 1$. Combining iterations (3k+4) and (3k+3),

$$\begin{split} \nu_{3k+4} &= \nu_{3k+3} + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 \, G_{3k+2} + (1-\beta_2))}} \right] \\ &= w_{3k+2} + \left[\frac{\eta}{\sqrt{(3k+2)(\beta_2 \, G_{3k+1} + (1-\beta_2))}} \right] + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 \, G_{3k+2} + (1-\beta_2))}} \right] \\ &= 1 - \left[\frac{C\eta}{\sqrt{(3k+1)(\beta_2 \, G_{3k} + (1-\beta_2)C^2)}} \right] \qquad (\text{Since } \nu_{3k+2} = w_{3k+2} \text{ and } w_{3k+1} = 1) \\ &= \tau_1 \\ &+ \left[\frac{\eta}{\sqrt{(3k+2)(\beta_2 \, G_{3k+1} + (1-\beta_2))}} \right] + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 \, G_{3k+2} + (1-\beta_2))}} \right] \\ &= \tau_2 \end{split}$$

In order to show that $v_{3k+4} \ge 1$, it is sufficient to show that $T_1 \le T_2$.

Recall from Slide 6,
$$T_1 \leq \left[\frac{\eta}{\sqrt{(3k+1)(1-\beta_2)}}\right]$$
. Let us lower-bound T_2 .
 $T_2 := \left[\frac{\eta}{\sqrt{(3k+2)(\beta_2 G_{3k+1} + (1-\beta_2))}}\right] + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 G_{3k+2} + (1-\beta_2))}}\right]$
 $\geq \left[\frac{\eta}{\sqrt{(3k+2)(\beta_2 C^2 + (1-\beta_2))}}\right] + \left[\frac{\eta}{\sqrt{(3k+3)(\beta_2 C^2 + (1-\beta_2))}}\right]$
(Since $G_k \leq C^2$ for all k)
 $= \frac{\eta}{\sqrt{(\beta_2 C^2 + (1-\beta_2))}} \left[\sqrt{\frac{1}{3k+2}} + \sqrt{\frac{1}{3k+3}}\right]$
 $\geq \frac{\eta}{\sqrt{(\beta_2 C^2 + (1-\beta_2))}} \left[\sqrt{\frac{1}{2(3k+1)}} + \sqrt{\frac{1}{2(3k+1)}}\right] = \frac{\sqrt{2\eta}}{\sqrt{(\beta_2 C^2 + (1-\beta_2))}} \left[\frac{1}{\sqrt{3k+1}}\right]$
 $\implies T_2 \geq \left[\frac{\eta}{\sqrt{(3k+1)(1-\beta_2)}}\right] \geq T_1$ (Since $\beta_2 = \frac{1}{1+C^2} \implies \frac{\beta_2 C^2 + (1-\beta_2)}{2} = 1-\beta_2$)

Since we have proved that $T_2 \ge T_1$, $v_{3k+4} = 1 - T_1 + T_2 \ge 1 \implies w_{3k+4} = 1$. This completes the induction proof.

Hence, for the Adam iterates, for $k \ge 0$, for all $i \le [3k+1]$, $w_i > 0$ and $w_{3k+1} = 1$. Now that we have bounds on the Adam iterates, let us compute its regret $R_{[3k \rightarrow 3k+2]}(w^*)$ w.r.t $w^* = -1$ for iterations 3k to 3k + 2.

$$R_{[3k \to 3k+2]}(w^*) = [f_{3k}(w_{3k}) - f_{3k}(-1)] + [f_{3k+1}(w_{3k+1}) - f_{3k+1}(-1)] + [f_{3k+2}(w_{3k+2}) - f_{3k+2}(-1)]$$

= $[-w_{3k} + 1] + [C w_{3k+1} + C] + [-w_{3k+2} + 1] \ge 2C \ge 4$
(Since w_{3k} and w_{3k+2} are in (0,1), $w_{3k+1} = 1$ and $C \ge 2$)

Hence for every three functions, Adam has a regret > 2C and hence $R_T(w^*) = O(T)$. Both OGD and AdaGrad achieve sublinear regret when run on this example.

The example takes advantage of the non-monotonicity in the Adam step-sizes – resulting in smaller updates for $k = 1 \mod 3$ (when the gradient is positive and will push the iterates towards -1) and larger updates for the other k (when the gradient is negative and will push the iterates towards 1).

The example can be modified [RKK19] to consider:

- Updates of the form $w_{k+1} = w_k \frac{\eta_k}{\sqrt{G_k + \epsilon}}$ for $\epsilon > 0$.
- Constant η_k (rather than $O(1/\sqrt{k})$).
- Stochastic setting (rather than the more general online convex optimization setup).
- Decreasing, non-zero β_1 (the momentum parameter).
- To bypass such examples where Adam fails to converge, AMSGrad [RKK19] modifies the update to ensure monotonically decreasing step-sizes and prove convergence.
- In the example, as $C \ge 2$ increases, the regret increases, $\beta_2 = \frac{1}{1+C^2} \to 0$. [ZCS⁺22] show that using a "large" β_2 and ensuring that $\beta_1 \le \sqrt{\beta_2}$ (often the choice in practice) can bypass the lower-bound resulting in convergence for Adam (without modifying the update).

Questions?

Since the non-decreasing step-size for Adam is problematic, AMSGrad [RKK19] fixes this issue by making a small modification (in red) to Adam. It has the following update – for $\beta_1, \beta_2 \in (0, 1)$,

$$G_{k} = \beta_{2}G_{k-1} + (1 - \beta_{2})\operatorname{diag}\left[\nabla f_{k}(w_{k})\nabla f_{k}(w_{k})^{\mathsf{T}}\right] \quad ; \quad A_{k} = \max\{G_{k}^{\frac{1}{2}}, A_{k-1}\}$$
$$w_{k+1} = \Pi_{\mathcal{C}}^{k}[w_{k} - \eta_{k}A_{k}^{-1}m_{k}]; \quad ; \quad m_{k} = \beta_{1}m_{k-1} + (1 - \beta_{1})\nabla f_{k}(w_{k})$$
$$\Pi_{\mathcal{C}}^{k}[v_{k+1}] := \arg\min_{w \in \mathcal{C}} \frac{1}{2} \|w - v_{k+1}\|_{A_{k}}^{2} ,$$

where $C = \max\{A, B\}$ for diagonal matrices A and B implies that for all $i \in [d]$, $C_{i,i} = \max\{A_{i,i}, B_{i,i}\}.$

The AMSGrad update ensures that $A_k \succeq A_{k-1}$ and hence the step-sizes η_k are non-increasing, which guarantees convergence.

- Diederik P Kingma and Jimmy Ba, *Adam: A method for stochastic optimization*, arXiv preprint arXiv:1412.6980 (2014).
- Sashank J Reddi, Satyen Kale, and Sanjiv Kumar, *On the convergence of adam and beyond*, arXiv preprint arXiv:1904.09237 (2019).
- Sushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo, *Adam can converge without any modification on update rules*, arXiv preprint arXiv:2208.09632 (2022).