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Recap - AdaGrad

vk+1 = wk − η A−1
k ∇fk(wk) ; wk+1 = Πk

C[vk+1] := argmin
w∈C

1
2
∥w − vk+1∥2

Ak
.

For Gk ∈ Rd×d :=
∑k

s=1 [∇fs(ws)∇fs(ws)
T],

Ak =


√∑k

s=1 ∥∇fs(ws)∥2 Id (Scalar AdaGrad)

diag(Gk
1
2 ) (Diagonal AdaGrad)

Gk
1
2 (Full-Matrix AdaGrad)

For convex, G -Lipschitz losses, AdaGrad has regret RT (u) ≤
(

D2

2η + η
)
G
√
d
√
T .

For convex, L-smooth losses, AdaGrad has regret,

RT (u) ≤ 2dL
(

D2

2η + η
)2

+
√

2dL
(

D2

2η + η
)
ζ
√
T , where ζ2 := maxk [fk(u)− f ∗k ].
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Adaptive Gradient Methods

Update for a generic method: For k ≥ 1 with m0 := 0, β ≥ 0,

wk+1 = Πk
C[wk − ηk A

−1
k mk ]; mk = βmk−1 + (1 − β)∇fk(wk)

where, Πk
C[v ] := argmin

w∈C

1
2
∥w − v∥2

Ak
.

Instantiating the generic method:

SGD: Ak = Id , β = 0. Resulting update: wk+1 = wk − ηk∇fk(wk).
Stochastic Heavy-Ball Momentum: Ak = Id . For αk = ηk (1 − β) and γk = βηk

ηk−1
,

Resulting update: wk+1 = wk − αk∇fk(wk) + γk(wk − wk−1) (Prove in Assignment 4!)
AdaGrad: Ak = Gk

1
2 where G0 = 0 and Gk = Gk−1 +∇fk(wk)∇fk(wk)

T, β = 0, ηk = η.
Resulting update: wk+1 = wk − η A−1

k ∇fk(wk).
Adam: Ak = Gk

1
2 where G0 = 0 and Gk = β2Gk−1 + (1 − β2)∇fk(wk)∇fk(wk)

T, β = β1

for β1, β2 ∈ (0, 1). Resulting update: wk+1 = wk − ηk A
−1
k mk where

mk = β1mk−1 + (1 − β1)∇fk(wk).
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Adam

Recall the update: wk+1 = Πk
C[wk − ηk A

−1
k mk ] ; mk = βmk−1 + (1 − β)∇fk(wk).

For Adam, Gk = (1 − β2)
∑k

i=1 β
k−i
2 [∇fi (wi )∇fi (wi )

T] and mk = (1 − β1)
∑k

i=1 β
k−i
1 [∇fi (wi )].

Hence, the influence of the past gradients is decayed exponentially which ensures that Gk and
mk are both primarily influenced by the most recent gradient ∇fk(wk).

Consider scalar Adam for which Gk = (1 − β2)
∑k

i=1 β
k−i
2 ∥∇fi (wi )∥2. Unlike scalar AdaGrad

(for which Gk =
∑k

i=1 ∥∇fi (wi )∥2), for scalar Adam, Gk is not guaranteed to increase
monotonically (i.e. Gk+1 > Gk). Hence η̃k := η√

Gk
is not guaranteed to decrease.

Hence, to ensure convergence, Adam requires ηk = η̃kαk for some decreasing sequence αk .

However, the non-monotonic behaviour of Gk can result in non-convergence of Adam even with
an explicitly decreasing sequence of ηk .
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Non-convergence of Adam

We will construct an example on which Adam can result in linear regret in the online setting (and
is hence not guaranteed to converge to the minimizer in the stochastic setting) [RKK19].

Consider C = [−1, 1] and the following sequence of linear functions. For C ≥ 2,

fk(w) =

{
C w for k mod 3 = 1

−w otherwise

Run Adam with β1 = 0 (no momentum), β2 = 1
1+C2 and ηk = η√

k
such that η <

√
1 − β2.

These parameters were chosen to prove the Adam regret bound in the original paper [KB14].

Update: w1 = 1 and for k ≥ 1,

vk+1 := wk −
ηk√

β2 Gk−1 + (1 − β2) ∥∇fk(wk)∥2
∇fk(wk) and wk+1 = Π[−1,1][vk+1]
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Non-convergence of Adam

We will compare Adam to the “best” fixed decision (w∗) that minimizes the regret. To compute
w∗, consider the sequence of 3 functions from iteration 3k to 3k + 2 for k ≥ 0. In this case,

w∗ := argmin
[−1,1]

[f3k(w) + f3k+1(w) + f3k+2(w)] = argmin
[−1,1]

[(C − 2)w ] = −1 (Since C ≥ 2)

Claim: For Adam’s iterates, for k ≥ 0, for all i ≤ [3k + 1], wi > 0 and w3k+1 = 1.

Proof: Let us prove the statement by induction. Base case: For k = 0, w3k+1 = w1 = 1.

Inductive hypothesis: Assume that for i ≤ [3k + 1], wi > 0 and w3k+1 = 1. We need to prove
that (a) w3k+2 > 0, (b) w3k+3 > 0 and (c) w3k+4 = 1.

In order to show this, note that ∇fi (w) = C for i mod 3 = 1 and ∇fi (w) = −1 otherwise.
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Non-convergence of Adam

Consider the update at iteration (3k + 1). By the induction hypothesis, we know that w3k+1 = 1.

v3k+2 = w3k+1 −

 η3k+1√
β2 G3k + (1 − β2) ∥∇f3k+1(w3k+1)∥2

∇f3k+1(w3k+1)


= 1 −

[
Cη√

(3k + 1) (β2 G3k + (1 − β2)C 2)

]
(Using the value of η3k+1)

≥ 1 −

[
Cη√

(3k + 1) (1 − β2)C 2

]
= 1 −

[
η√

(3k + 1) (1 − β2)

]
(Since G3k ≥ 0)

=⇒ v3k+2 ≥ 1 − 1√
3k + 1

> 0 (Since η <
√

1 − β2 and k ≥ 1)

Since
[

Cη√
(3k+1) (β2 G3k+(1−β2)C2)

]
> 0, v3k+2 < 1. Since v3k+2 ∈ (0, 1), w3k+2 = v3k+2 < 1

which proves (a).
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Non-convergence of Adam

For the update at iteration (3k + 2), since ∇f3k+2(w) = −1 for all w ,

v3k+3 = w3k+2 +

[
η√

(3k + 2) (β2 G3k+1 + (1 − β2))

]
Since w3k+2 ∈ (0, 1) and η√

(3k+2) (β2 G3k+1+(1−β2))
> 0, v3k+3 > 0 and hence w3k+3 > 0 which

proves (b).

In order to prove (c), consider iteration 3k + 3. Since ∇f3k+3(w) = −1 for all w ,

v3k+4 = w3k+3 +

[
η√

(3k + 3) (β2 G3k+2 + (1 − β2))

]
From the above update, we can conclude that v3k+4 > w3k+3.

To prove (c), we will show that v3k+4 ≥ 1 and hence w3k+4 = Π[−1,1]v3k+4 = 1. For this, we
consider two cases – when v3k+3 ≥ 1 or when v3k+3 < 1.
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Non-convergence of Adam

Case 1: When v3k+3 ≥ 1 =⇒ w3k+3 = 1 =⇒ v3k+4 ≥ 1 =⇒ w3k+4 = 1.

Case 2: When v3k+3 ≤ 1 =⇒ w3k+3 = v3k+3 ≤ 1. Combining iterations (3k + 4) and (3k + 3),

v3k+4 = v3k+3 +

[
η√

(3k + 3) (β2 G3k+2 + (1 − β2))

]

= w3k+2 +

[
η√

(3k + 2) (β2 G3k+1 + (1 − β2))

]
+

[
η√

(3k + 3) (β2 G3k+2 + (1 − β2))

]

= 1 −

[
Cη√

(3k + 1) (β2 G3k + (1 − β2)C 2)

]
︸ ︷︷ ︸

:=T1

(Since v3k+2 = w3k+2 and w3k+1 = 1)

+

[
η√

(3k + 2) (β2 G3k+1 + (1 − β2))

]
+

[
η√

(3k + 3) (β2 G3k+2 + (1 − β2))

]
︸ ︷︷ ︸

:=T2

In order to show that v3k+4 ≥ 1, it is sufficient to show that T1 ≤ T2. 8



Non-convergence of Adam

Recall from Slide 6, T1 ≤
[

η√
(3k+1) (1−β2)

]
. Let us lower-bound T2.

T2 :=

[
η√

(3k + 2) (β2 G3k+1 + (1 − β2))

]
+

[
η√

(3k + 3) (β2 G3k+2 + (1 − β2))

]

≥

[
η√

(3k + 2) (β2 C 2 + (1 − β2))

]
+

[
η√

(3k + 3) (β2 C 2 + (1 − β2))

]
(Since Gk ≤ C 2 for all k)

=
η√

(β2 C 2 + (1 − β2))

[√
1

3k + 2
+

√
1

3k + 3

]

≥ η√
(β2 C 2 + (1 − β2))

[√
1

2(3k + 1)
+

√
1

2(3k + 1)

]
=

√
2η√

(β2 C 2 + (1 − β2))

[
1√

3k + 1

]

=⇒ T2 ≥

[
η√

(3k + 1) (1 − β2)

]
≥ T1 (Since β2 = 1

1+C2 =⇒ β2C
2+(1−β2)

2 = 1 − β2)
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Non-convergence of Adam

Since we have proved that T2 ≥ T1, v3k+4 = 1 − T1 + T2 ≥ 1 =⇒ w3k+4 = 1. This completes
the induction proof.

Hence, for the Adam iterates, for k ≥ 0, for all i ≤ [3k + 1], wi > 0 and w3k+1 = 1. Now that
we have bounds on the Adam iterates, let us compute its regret R[3k−→3k+2](w

∗) w.r.t w∗ = −1
for iterations 3k to 3k + 2.

R[3k−→3k+2](w
∗) = [f3k(w3k)− f3k(−1)] + [f3k+1(w3k+1)− f3k+1(−1)] + [f3k+2(w3k+2)− f3k+2(−1)]

= [−w3k + 1] + [C w3k+1 + C ] + [−w3k+2 + 1] ≥ 2C ≥ 4
(Since w3k and w3k+2 are in (0, 1), w3k+1 = 1 and C ≥ 2)

Hence for every three functions, Adam has a regret > 2C and hence RT (w
∗) = O(T ).

Both OGD and AdaGrad achieve sublinear regret when run on this example.
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Non-convergence of Adam

The example takes advantage of the non-monotonicity in the Adam step-sizes – resulting in
smaller updates for k = 1 mod 3 (when the gradient is positive and will push the iterates
towards −1) and larger updates for the other k (when the gradient is negative and will push the
iterates towards 1).

The example can be modified [RKK19] to consider:

Updates of the form wk+1 = wk − ηk√
Gk+ϵ

for ϵ > 0.
Constant ηk (rather than O(1/

√
k)).

Stochastic setting (rather than the more general online convex optimization setup).
Decreasing, non-zero β1 (the momentum parameter).

To bypass such examples where Adam fails to converge, AMSGrad [RKK19] modifies the
update to ensure monotonically decreasing step-sizes and prove convergence.
In the example, as C ≥ 2 increases, the regret increases, β2 = 1

1+C2 → 0. [ZCS+22] show
that using a “large” β2 and ensuring that β1 ≤

√
β2 (often the choice in practice) can

bypass the lower-bound resulting in convergence for Adam (without modifying the update).
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Questions?
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AMSGrad – fixing the convergence of Adam

Since the non-decreasing step-size for Adam is problematic, AMSGrad [RKK19] fixes this issue by
making a small modification (in red) to Adam. It has the following update – for β1, β2 ∈ (0, 1),

Gk = β2Gk−1 + (1 − β2) diag [∇fk(wk)∇fk(wk)
T] ; Ak = max{Gk

1
2 ,Ak−1}

wk+1 = Πk
C[wk − ηk A

−1
k mk ]; ; mk = β1mk−1 + (1 − β1)∇fk(wk)

Πk
C[vk+1] := argmin

w∈C

1
2
∥w − vk+1∥2

Ak
,

where C = max{A,B} for diagonal matrices A and B implies that for all i ∈ [d ],
Ci,i = max{Ai,i ,Bi,i}.

The AMSGrad update ensures that Ak ⪰ Ak−1 and hence the step-sizes ηk are non-increasing,
which guarantees convergence.
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