
CMPT 409/981: Optimization for Machine Learning

Lecture 16

Sharan Vaswani

November 10, 2022

Recap - Scalar AdaGrad

wk+1 = ΠC [wk − ηk∇fk(wk)] ; ηk =
η√∑k

s=1 ∥∇fs(ws)∥2

For any η > 0, Scalar AdaGrad achieves the following regret for a sequence of convex losses:

RT (u) ≤
(
D2

2η
+ η

) √√√√ T∑
k=1

∥∇fk(wk)∥2
.

For convex, G -Lipschitz losses, Scalar AdaGrad has regret RT (u) ≤
(

D2

2η + η
)
G
√
T .

1

Recap - AdaGrad

vk+1 = wk − η A−1
k ∇fk(wk) ; wk+1 = Πk

C[vk+1] := argmin
w∈C

1
2
∥w − vk+1∥2

Ak
.

Ak =


√∑k

s=1 ∥∇fs(ws)∥2 Id (Scalar AdaGrad)

diag(Gk
1
2) (Diagonal AdaGrad)

Gk
1
2 (Full-Matrix AdaGrad)

where Gk ∈ Rd×d :=
∑k

s=1 [∇fs(ws)∇fs(ws)
T].

For any η > 0, AdaGrad achieves the following regret for a sequence of convex losses:

RT (u) ≤
(
D2

2η
+ η

)√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2

2

AdaGrad - Convex, Lipschitz functions

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each fk
is convex, differentiable and G -Lipschitz, AdaGrad with the general update
wk+1 = Πk

C[wk − ηA−1
k ∇fk(wk)] with η = D√

2
and w1 ∈ C has the following regret for u ∈ C,

RT (u) ≤
√

2DG
√
d
√
T

Proof: Using the general result for AdaGrad and that each fk is G -Lipschitz,

RT (u) ≤
(
D2

2η
+ η

)√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2 ≤
(
D2

2η
+ η

)√
d G

√
T

RT (u) ≤
√

2DG
√
d
√
T (Setting η = D√

2
)

Unlike scalar AdaGrad, when using the diagonal or full-matrix variant, the regret depends on the
dimension d .

3

AdaGrad - Convex, Smooth functions

Recall that for convex functions, the regret for AdaGrad is bounded as:

RT (u) ≤
(
D2

2η
+ η

)√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2
.

In order to bound the regret for smooth functions, we define ζ2 such that fk(u)− f ∗k ≤ ζ2.
Hence, if the learner is competing against a fixed decision u that minimizes each fk , then ζ2 = 0.
ζ2 characterizes the analog of interpolation in the online setting.

Using L-smoothness of fk to bound the gradient norm term (for each k) in the regret expression,

∥∇fk(wk)∥2 ≤ 2L[fk(wk)− f ∗k] = 2L[fk(wk)− fk(u)] + 2L[fk(u)− f ∗k] ≤ 2L[fk(wk)− fk(u)] + 2L ζ2

=⇒
T∑

k=1

∥∇fk(wk)∥2 ≤ 2L
T∑

k=1

[fk(wk)− fk(u)] + 2L
T∑

k=1

ζ2 = 2L [RT (u) + ζ2 T]

RT (u) ≤
(
D2

2η
+ η

)√
d
√

2L [RT (u) + ζ2 T]

4

AdaGrad - Convex, Smooth functions

Recall that RT (u) ≤
(

D2

2η + η
)√

d
√

2L [RT (u) + ζ2 T]. Squaring this expression,

[RT (u)]
2 ≤ 2dL

(
D2

2η
+ η

)2

︸ ︷︷ ︸
:=α

[RT (u)︸ ︷︷ ︸
:=x

+ ζ2T︸︷︷︸
:=β

]

=⇒ x2 ≤ α(x + β) =⇒ x ≤ α+
√

α2 + 4αβ
2

≤ α+
√

αβ

=⇒ RT (u) ≤ 2dL
(
D2

2η
+ η

)2

+
√

2dL
(
D2

2η
+ η

)
ζ
√
T

Note that the above bound holds for all η > 0 and AdaGrad does not need to know ζ or L. The
regret depends on ζ2, the upper-bound on maxk∈[T][fk(u)− f ∗k]. Such bounds that depend on
the fixed decision that we are comparing against are called first-order regret bounds.

For example, when u = w∗ := argminw
∑T

k=1 fk(w) and ζ = 0, then AdaGrad only incurs a
constant regret that is independent of T . This observation has been used to explain the good
performance of IL algorithms when using over-parameterized (convex) models [YBC20, LVS22]. 5

Questions?

5

Scalar AdaGrad - Minimizing smooth, non-convex functions

We have seen that AdaGrad can results in O(
√
T) regret (and hence O(1/

√
T) convergence using

the online-to-batch conversion) for a sequence of convex, smooth losses. Two problems with the
practical applicability of these results:

The regret depends on the diameter of the constrained domain C, but for typical ML
applications the optimization is unconstrained. In order to use a similar analysis for
unconstrained domains, we need to make a (strong) assumption that the iterates remain
bounded i.e. ∥wk − w∗∥2 ≤ D for all iterations k .
Adaptive methods like AdaGrad are heavily used in the non-convex setting (e.g. for training
neural networks) but the bounds we proved heavily rely on convexity.

Similar to the standard SGD analysis, let us analyze AdaGrad Norm (the scalar variant) for
minimizing a finite-sum of smooth functions on Rd : minw∈Rd

1
n

∑n
i=1 fi (w). We will use the

proof in [FTC+22] and make the following standard assumptions:

Unbiasedness: Ei [∇fi (w)] = ∇f (w)

Bounded Variance: Ei ∥∇fi (w)−∇f (w)∥2 ≤ σ2
6

Scalar AdaGrad - Minimizing smooth, non-convex functions

Scalar AdaGrad: wk+1 = wk − ηkgk where gk := ∇fik(wk), and ηk = η
bk

where

b2
k = b2

k−1 + ∥gk∥2 = b2
0 +

∑k
s=1 ∥gs∥

2.

Claim: For minimizing a finite-sum of L-smooth functions lower-bounded by f ∗, T iterations of
the scalar AdaGrad update (for any η > 0) returns an iterate ŵ such that,

E [∥∇f (ŵ)∥] ≤

√
2
(

C
η

)
+
√

C
η

√
b0

√
T

+

√
C
η σ

4
√
T

,

where, C := 2[f (w1)− f ∗] +
[
4ησ + Lη2]E[1 + log

(
1 +

∑T
k=1 ∥gs∥

2

b2
0

)]
= O(log(T))

SGD with ηk = 1
L

1√
k+1

has the following guarantee in the same setting (Lecture 8, Slide 6):

E[∥∇f (ŵ)∥2] ≤ 2L [f (w0)− f ∗]√
T

+
σ2 (1 + log(T))√

T

Scalar AdaGrad can attain the noise-adaptive rate without dependence on the diameter,
knowledge of L or σ for smooth, non-convex functions! Moreover, this rate holds for all η. 7

Scalar AdaGrad - Minimizing smooth, non-convex functions

Proof: For the analysis, we define a proxy step-size η̃k := η√
b2
k−1+σ2+∥∇f (wk)∥2 . Since η̃k

depends on ∇f (wk) and bk−1, it does not depend on ik . By L-smoothness of f ,

f (wk+1) ≤ f (wk)− ηk⟨∇f (wk), gk⟩+
Lη2

k

2
∥gk∥2

= f (wk)− η̃k⟨∇f (wk), gk⟩+ (η̃k − ηk)⟨∇f (wk), gk⟩+
Lη2

2
∥gk∥2

b2
k−1 + ∥gk∥2

≤ f (wk)− η̃k⟨∇f (wk), gk⟩+ |η̃k − ηk | ∥∇f (wk)∥ ∥gk∥+
Lη2

2
∥gk∥2

b2
k−1 + ∥gk∥2

E[f (wk+1)] ≤ f (wk)− η̃k ∥∇f (wk)∥2 + η E
[∣∣∣∣ η̃k − ηk

η

∣∣∣∣ ∥∇f (wk)∥ ∥gk∥
]

︸ ︷︷ ︸
(∗)

+
Lη2

2
E

[
∥gk∥2

b2
k−1 + ∥gk∥2

]

=⇒ η̃k ∥∇f (wk)∥2 ≤ f (wk)− E[f (wk+1)] + η (∗) + Lη2

2
E

[
∥gk∥2

b2
k−1 + ∥gk∥2

]
8

Scalar AdaGrad - Minimizing smooth, non-convex functions

Recall that η̃k ∥∇f (wk)∥2 ≤ f (wk)− E[f (wk+1)] + η (∗) + Lη2

2 E
[

∥gk∥2

b2
k−1+∥gk∥2

]
where (*) =

E
[∣∣∣∣ η̃k−ηk

η

∣∣∣∣ ∥∇f (wk)∥ ∥gk∥
]
. In order to bound (*), we will first bound

∣∣∣∣ η̃k−ηk

η

∣∣∣∣. Let

a = b2
k−1 + ∥gk∥2 and b = b2

k−1 + σ2 + ∥∇f (wk)∥2, implying that ηk

η = 1√
a

and η̃k

η = 1√
b
.∣∣∣∣ η̃k − ηk

η

∣∣∣∣ = ∣∣∣∣ 1√
a
− 1√

b

∣∣∣∣ = ∣∣∣∣ b − a

(
√
a+

√
b)

√
ab

∣∣∣∣ = ∣∣∣∣σ2 + ∥∇f (wk)∥2 − ∥gk∥2

(
√
a+

√
b)

√
ab

∣∣∣∣
=

∣∣∣∣ (∥∇f (wk)∥+ ∥gk∥) (∥∇f (wk)∥ − ∥gk∥)
(
√
a+

√
b)

√
ab

+
σ2

(
√
a+

√
b)

√
ab

∣∣∣∣
Note that

√
a+

√
b > ∥∇f (wk)∥+ ∥gk∥ and

√
a+

√
b > σ. Using these coarse bounds,∣∣∣∣ η̃k − ηk

η

∣∣∣∣ ≤ ∣∣∣∣∥∇f (wk)∥ − ∥gk∥√
ab

+
σ√
ab

∣∣∣∣ ≤ ∣∣∣∣∥∇f (wk)∥ − ∥gk∥√
ab

∣∣∣∣+ σ√
ab

≤ ∥∇f (wk)− gk∥√
ab

+
σ√
ab

(|a+ b| ≤ |a|+ |b| and | ∥a∥ − ∥b∥ | ≤ ∥a− b∥)

9

Scalar AdaGrad - Minimizing smooth, non-convex functions

Using the previous inequality to bound (*), we obtain that

(∗) ≤ (∗∗) = E
[[

∥∇f (wk)−gk∥+σ√
b2
k−1+∥gk∥2

√
b2
k−1+σ2+∥∇f (wk)∥2

]
∥∇f (wk)∥ ∥gk∥

]
. Let us simplify the first

term in (**).

With X = ∥∇f (wk)− gk∥2, Y = ∥gk∥2

b2
k−1+∥gk∥2 , using Holders inequality: E[

√
XY] ≤

√
E[X]E[Y],

First term in (**) =
∥∇f (wk)∥√

b2
k−1 + σ2 + ∥∇f (wk)∥2

E

∥∇f (wk)− gk∥ ∥gk∥√
b2
k−1 + ∥gk∥2


≤ ∥∇f (wk)∥√

b2
k−1 + σ2 + ∥∇f (wk)∥2

√
E[∥∇f (wk)− gk∥2]

√√√√E

[
∥gk∥2

b2
k−1 + ∥gk∥2

]

First term in (**) ≤ ∥∇f (wk)∥ σ√
b2
k−1 + σ2 + ∥∇f (wk)∥2

√√√√E

[
∥gk∥2

b2
k−1 + ∥gk∥2

]
10

Scalar AdaGrad - Minimizing smooth, non-convex functions

Let us simplify the second term in (**).With X = ∥gk∥2

b2
k−1+∥gk∥2 and Y = 1, using Holder’s

inequality that E[
√
XY] ≤

√
E[X]E[Y]

Second term in (**) =
σ ∥∇f (wk)∥√

b2
k−1 + σ2 + ∥∇f (wk)∥2

E

 ∥gk∥√
b2
k−1 + ∥gk∥2


Second term in (**) ≤ σ ∥∇f (wk)∥√

b2
k−1 + σ2 + ∥∇f (wk)∥2

√√√√E

[
∥gk∥2

b2
k−1 + ∥gk∥2

]

Putting everything together,

(∗) ≤ (∗∗) ≤ 2σ ∥∇f (wk)∥√
b2
k−1 + σ2 + ∥∇f (wk)∥2

√√√√E

[
∥gk∥2

b2
k−1 + ∥gk∥2

]

11

Scalar AdaGrad - Minimizing smooth, non-convex functions

Recall that (∗) ≤ 2σ ∥∇f (wk)∥√
b2
k−1+σ2+∥∇f (wk)∥2

√
E
[

∥gk∥2

b2
k−1+∥gk∥2

]
.

With a = ∥∇f (wk)∥
[b2

k−1+σ2+∥∇f (wk)∥2]1/4 and b = 2σ

[b2
k−1+σ2+∥∇f (wk)∥2]1/4

√
E
[

∥gk∥2

b2
k−1+∥gk∥2

]
, using that

ab ≤ a2

2 + b2

2 ,

(∗) ≤ ∥∇f (wk)∥2

2
√
b2
k−1 + σ2 + ∥∇f (wk)∥2

+
2σ2√

b2
k−1 + σ2 + ∥∇f (wk)∥2

E

[
∥gk∥2

b2
k−1 + ∥gk∥2

]

(∗) ≤ η̃k
2η

∥∇f (wk)∥2 + 2σ E

[
∥gk∥2

b2
k−1 + ∥gk∥2

]
(By definition of η̃k and since b2

k−1 + σ2 + ∥∇f (wk)∥2 ≥ σ2)

12

Scalar AdaGrad - Minimizing smooth, non-convex functions

Putting back the value of (*) in
η̃k ∥∇f (wk)∥2 ≤ f (wk)− E[f (wk+1)] + η (∗) + Lη2

2 E
[

∥gk∥2

b2
k−1+∥gk∥2

]
,

η̃k ∥∇f (wk)∥2 ≤ 2 [f (wk)− E[f (wk+1)]] +
[
4ησ + Lη2]E[∥gk∥2

b2
k−1 + ∥gk∥2

]

Taking the expectation w.r.t the randomness in iterations k = 1 to T and summing,

E

[
T∑

k=1

η̃k ∥∇f (wk)∥2

]
≤ 2[f (w1)− f ∗] +

[
4ησ + Lη2]E[T∑

k=1

[
∥gk∥2

b2
k−1 + ∥gk∥2

]]

≤ 2[f (w1)− f ∗] +
[
4ησ + Lη2]E[T∑

k=1

[
∥gk∥2

b2
0 +

∑k
s=1 ∥gs∥

2

]]
︸ ︷︷ ︸

:=C

13

Scalar AdaGrad - Minimizing smooth, non-convex functions

Recall that E
[∑T

k=1 η̃k ∥∇f (wk)∥2
]
≤ C where

C = 2[f (w1)− f ∗] +
[
4ησ + Lη2

]
E
[∑T

k=1

[
∥gk∥2

b2
0+

∑k
s=1∥gs∥

2

]]
. In order to bound C , we will use

the following relation: for as ≥ 0, need to prove in Assignment 4 that

T∑
k=1

[
ak

1 +
∑k

s=1 as

]
≤ 1 + log

(
1 +

T∑
k=1

ak

)

=⇒
T∑

k=1

[
∥gk∥2

b2
0 +

∑k
s=1 ∥gs∥

2

]
=

T∑
k=1

[
∥gk∥2

/b2
0

1 +
∑k

s=1
∥gs∥2

/b2
0

]
≤ 1 + log

(
1 +

∑T
k=1 ∥gk∥

2

b2
0

)

=⇒ E

[
T∑

k=1

η̃k ∥∇f (wk)∥2

]
≤ 2[f (w1)− f ∗] +

[
4ησ + Lη2]E[1 + log

(
1 +

∑T
k=1 ∥gk∥

2

b2
0

)]
︸ ︷︷ ︸

O(log(T))

14

Scalar AdaGrad - Minimizing smooth, non-convex functions

Recall that E
[∑T

k=1 η̃k ∥∇f (wk)∥2
]
≤ C where C = O(log(T)). Now we need to simplify the

LHS. For this, define η̃T := η√
b2
T−1+σ2+

∑T
k=1∥∇f (wk)∥2

. Note that η̃T < η̃k for all k ∈ [T]. Hence,

E

[
T∑

k=1

η̃k ∥∇f (wk)∥2

]
≥ E

[
η̃T

T∑
k=1

∥∇f (wk)∥2

]

Note that E
[∑T

k=1 ∥∇f (wk)∥2
]
= E

[[
η̃T
∑T

k=1 ∥∇f (wk)∥2
]

1
η̃T

]
. Using Holder’s inequality

with X = η̃T

[∑T
k=1 ∥∇f (wk)∥2

]
and Y = 1

η̃T
, (E[

√
XY])2 ≤ E[X]E[Y]

E


√√√√ T∑

k=1

∥∇f (wk)∥2

2

≤ E

[
η̃T

T∑
k=1

∥∇f (wk)∥2

]
E
[

1
η̃T

]

=⇒ E

[
T∑

k=1

η̃k ∥∇f (wk)∥2

]
≥ E

[
η̃T

T∑
k=1

∥∇f (wk)∥2

]
≥

η

(
E
[√∑T

k=1 ∥∇f (wk)∥2
])2

E
[

η
η̃T

]
15

Scalar AdaGrad - Minimizing smooth, non-convex functions

Recall E
[∑T

k=1 η̃k ∥∇f (wk)∥2
]
≥

η
(
E
[√∑T

k=1∥∇f (wk)∥2
])2

E[η/η̃T]
. Now let us upper-bound E [η/η̃T].

E [η/η̃T] = E

√√√√b2
T−1 + σ2 +

T∑
k=1

∥∇f (wk)∥2 = E

√√√√√√b2
0 + σ2 +

[
T−1∑
k=1

∥gk∥2

]
︸ ︷︷ ︸

:=A

+

[
T∑

k=1

∥∇f (wk)∥2

]

A =
T−1∑
k=1

∥gk∥2 =
T−1∑
k=1

[
∥gk −∇f (wk)∥2 + ∥∇f (wk)∥2 + 2⟨∇f (wk), gk −∇f (wk)⟩

]

E [η/η̃T] ≤ E

√√√√b2
0 + σ2 +

T−1∑
k=1

[
∥gk −∇f (wk)∥2 + 2⟨∇f (wk), gk −∇f (wk)⟩

]
+ 2

T∑
k=1

∥∇f (wk)∥2

E [η/η̃T] ≤ E

√√√√b2
0 + σ2 +

T−1∑
k=1

[
∥gk −∇f (wk)∥2 + 2⟨∇f (wk), gk −∇f (wk)⟩

]
+ E

√√√√2
T∑

k=1

∥∇f (wk)∥2

(
√
a+ b ≤

√
a+

√
b)

16

Scalar AdaGrad - Minimizing smooth, non-convex functions

Recall E
[∑T

k=1 η̃k ∥∇f (wk)∥2
]
≥

η
(
E
[√∑T

k=1∥∇f (wk)∥2
])2

E[η/η̃T]
. Using Jensen’s inequality for

√
x ,

E
[
η

η̃T

]

≤

√√√√b2
0 + σ2 +

T−1∑
k=1

E
[
∥gk −∇f (wk)∥2 + 2E⟨∇f (wk), gk −∇f (wk)⟩

]
+ E

√√√√2
T∑

k=1

∥∇f (wk)∥2

=⇒ E
[
η

η̃T

]
≤
√

b2
0 + Tσ2 +

√
2E

√√√√ T∑
k=1

∥∇f (wk)∥2

Putting everything together,

E

[
T∑

k=1

η̃k ∥∇f (wk)∥2

]
≥

η

(
E
[√∑T

k=1 ∥∇f (wk)∥2
])2

√
b2

0 + Tσ2 +
√

2E
√∑T

k=1 ∥∇f (wk)∥2

17

Scalar AdaGrad - Minimizing smooth, non-convex functions

Recall that C ≥ E
[∑T

k=1 η̃k ∥∇f (wk)∥2
]
≥

η
(
E
[√∑T

k=1∥∇f (wk)∥2
])2

√
b2
0+Tσ2+

√
2E
√∑T

k=1∥∇f (wk)∥2 . Putting everything

together,

=⇒

E

√√√√[T∑
k=1

∥∇f (wk)∥2

]2

≤ C

η︸︷︷︸
:=α


√
b2

0 + T σ2︸ ︷︷ ︸
:=β

+
√

2E

√√√√[T∑
k=1

∥∇f (wk)∥2

]
︸ ︷︷ ︸

:=x


=⇒ x2 ≤ α (

√
2x + β) =⇒ x ≤

√
2α+

√
2α2 + 4αβ
2

≤
√

2α+
√
αβ

=⇒ E


√√√√ T∑

k=1

∥∇f (wk)∥2

 ≤
√

2
(
C

η

)
+

√
C

η
4
√

b2
0 + T σ2

18

Scalar AdaGrad - Minimizing smooth, non-convex functions

Recall that E
[√∑T

k=1 ∥∇f (wk)∥2
]
≤

√
2
(

C
η

)
+
√

C
η

4
√

b2
0 + T σ2

√
T E

√∑T
k=1 ∥∇f (wk)∥2

T

 ≤
√

2
(
C

η

)
+

√
C

η
4
√
b2

0 + T σ2

=⇒ E [∥∇f (ŵ)∥] ≤

√
2
(

C
η

)
√
T

+

√
C
η

4
√
b2

0 + T σ2

√
T

(ŵ := mink∈[T]∥∇f (wk)∥2)

=⇒ E [∥∇f (ŵ)∥] ≤

√
2
(

C
η

)
+
√

C
η

√
b0

√
T

+

√
C
η σ

4
√
T

(
√
a+ b ≤

√
a+

√
b)

Can use the above result and prove the rate in high-probability (rather than just expectation)
using Markov’s Theorem.

19

Questions?

19

References i

Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai,
and Rachel Ward, The power of adaptivity in sgd: Self-tuning step sizes with unbounded
gradients and affine variance, arXiv preprint arXiv:2202.05791 (2022).

Jonathan Wilder Lavington, Sharan Vaswani, and Mark Schmidt, Improved policy
optimization for online imitation learning, arXiv preprint arXiv:2208.00088 (2022).

Xinyan Yan, Byron Boots, and Ching-An Cheng, Explaining fast improvement in online
policy optimization, arXiv preprint arXiv:2007.02520 (2020).

20

