
CMPT 409/981: Optimization for Machine Learning

Lecture 15

Sharan Vaswani

November 7, 2022



Recap

Online Optimization
1: Online Optimization (w0, Algorithm A, Convex set C)
2: for k = 1, . . . ,T do
3: Algorithm A chooses point (decision) wk ∈ C
4: Environment chooses and reveals the (potentially adversarial) loss function fk : C → R
5: Algorithm suffers a cost fk(wk)

6: end for

Regret: For any fixed decision u ∈ C, RT (u) :=
∑T

k=1[fk(wk)− fk(u)].

1



Recap

Online Gradient Descent (OGD): At iteration k , OGD chooses wk . After the loss function fk is
revealed, OGD uses the function to compute

wk+1 = ΠC [wk − ηk∇fk(wk)] where ΠC [x ] = argmin
y∈C

1
2
∥y − x∥2

.

If the convex set C has a diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary sequence
losses such that each fk is convex, differentiable and G -Lipschitz, OGD with ηk = D√

2G
√
k

and

w1 ∈ C, has regret RT (u) ≤
√

2DG
√
T .

Additionally, if each fk is µk strongly-convex, OGD with ηk = 1∑k
i=1 µi

has regret

RT (u) ≤ G2

2µ (1 + log(T )).

2



Recap

Follow the Leader (FTL): At iteration k , FTL chooses the point wk . After the loss function fk
is revealed, FTL uses it to compute

wk+1 = argmin
w∈C

k∑
i=1

fi (w) .

Running FTL on a quadratic lower-bound for the loss recovers OGD in the strongly-convex case.

For strongly-convex, G -Lipschitz losses, FTL has regret RT (u) ≤ G2

2µ (1 + log(T )) that matches
OGD, but does not require knowledge of µ (Proof today).

If the losses are not necessarily strongly-convex, then FTL can result in O(T ) regret.

3



Recap

Idea: Add an explicit regularization to fix FTL for a convex sequence of losses.

Follow the Regularized Leader (FTRL): At iteration k ≥ 0, FTRL chooses the point wk . After
the loss function fk is revealed, FTRL uses it to compute

wk+1 = argmin
w∈C

k∑
i=1

[
fi (w) +

σi

2
∥w − wi∥2

]
+

σ0

2
∥w∥2

,

where σi ≥ 0 is the regularization strength. If we set σi = 0 for all i , FTRL reduces to FTL.

Running FTRL on a linear lower-bound for the loss recovers OGD in the convex case.

FTRL has the following regret for a general sequence of convex losses,

RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
k=1

σk

2
∥u − wk∥2+

σ0

2
∥u∥2 where λk =

k−1∑
i=1

[µi ]+
k∑

i=0

[σi ] .

For convex, G -Lipschitz losses, FTRL has regret RT (u) ≤
√

2
√
D2 + ∥u∥2 G

√
T .

4



Follow the Leader - Strongly-Convex, Lipschitz functions

Claim: If the convex set C has diameter D, for an arbitrary sequence losses such that each fk is
µk strongly-convex (s.t. µ := minTk=1 µk > 0), G -Lipschitz and differentiable, then FTL with
w1 ∈ C satisfies the following regret bound for all u ∈ C,

RT (u) ≤
G 2

2µ
(1 + log(T ))

Proof: Using the general result for FTRL, for λk+1 =
∑k

i=1 µi +
∑k

i=0 σi . Since fk is µk

strongly-convex, we will set σi = 0 for all i . Hence, λk+1 =
∑k

i=1 µi ≥ µ k .

RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
i=1

σi

2
∥u − wi∥2 +

σ0

2
∥u∥2 ≤ G 2

2µ

T∑
k=1

[
1
k

]
(Since fk is G -Lipschitz)

=⇒ RT (u) ≤
G 2 (1 + log(T ))

2µ
Hence, FTL matches the regret for OGD for strongly-convex, Lipschitz functions, but does not

require knowledge of µ. 5



Questions?

5



Adaptive step-sizes

Recall the claim we proved in Lecture 14 (Slide 6): If the convex set C has diameter D, for an
arbitrary sequence of losses such that each fk is convex and differentiable, OGD with the update
wk+1 = ΠC[wk − ηk∇fk(wk)] such that ηk ≤ ηk−1 and w1 ∈ C has the following regret for u ∈ C,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2 =
D2

2η
+

η

2

T∑
k=1

∥∇fk(wk)∥2 (If ηk = η for all k)

In order to find the optimal η, differentiating the RHS w.r.t η and setting it to zero,

− D2

2η2 +
1
2

T∑
k=1

∥∇fk(wk)∥2 = 0 =⇒ η∗ =
D√∑T

k=1 ∥∇fk(wk)∥2

Since the second derivative equal to 2D2

η3 > 0, η∗ minimizes the RHS. Setting η = η∗,

RT (u) ≤ D

√√√√ T∑
k=1

∥∇fk(wk)∥2

6



Adaptive step-sizes

Choosing η = η∗ = D√∑T
k=1∥∇fk (wk )∥2 minimizes the upper-bound on the regret. However, this is

not practical since setting η requires knowing ∇fk(wk) for all k ∈ [T ].

To approximate η∗ to have a practical algorithm, we can set ηk as follows:

ηk =
D√∑k

s=1 ∥∇fs(ws)∥2

Hence, at iteration k , we only use the gradients upto that iteration.

Algorithmically, we only need to maintain the running sum of the squared gradient norms.

Moreover, this choice of step-size ensures that ηk ≤ ηk−1 (since we are accumulating gradient
norms in the denominator so the step-size cannot increase) and hence we can use our general
result for bounding the regret.

7



Scalar AdaGrad

Hence, we have the following update for any η > 0,

wk+1 = ΠC [wk − ηk∇fk(wk)] ; ηk =
η√∑k

s=1 ∥∇fs(ws)∥2

This is exactly the AdaGrad update without a per-coordinate scaling and is referred to as scalar
AdaGrad or AdaGrad Norm [WWB20].

For a sequence of convex, differentiable losses, using the general result,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2 =
D2

2η

√√√√ T∑
k=1

∥∇fk(wk)∥2 +
η

2

T∑
k=1

∥∇fk(wk)∥2√∑k
s=1 ∥∇fs(ws)∥2

In order to bound the regret for AdaGrad, we need to bound the last term.

8



Scalar AdaGrad

We prove the following general claim and will use it for as = ∥∇fs(ws)∥2.

Claim: For all T and as ≥ 0,
∑T

k=1
ak√∑k
s=1 as

≤ 2
√∑T

k=1 ak .

Proof: Let us prove by induction. Base case: For T = 1, LHS =
√
a1 < 2

√
a1 = RHS.

Inductive Hypothesis: If the statement is true for T − 1, we need to prove it for T .

T∑
k=1

ak√∑k
s=1 as

=
T−1∑
k=1

ak√∑k
s=1 as

+
aT√∑T
s=1 as

≤ 2

√√√√T−1∑
s=1

as +
aT√∑T
s=1 as

= 2
√
Z − x +

x√
Z

(x := aT , Z :=
∑T

s=1 as)

The derivative of the RHS w.r.t to x is − 1√
Z−x

+ 1√
Z
< 0 for all x ≥ 0 and hence the RHS is

maximized at x = 0. Setting x = 0 completes the induction proof.

=⇒
T∑

k=1

ak√∑k
s=1 as

≤ 2
√
Z = 2

√√√√ T∑
s=1

as

9



Scalar AdaGrad

Recall that RT (u) ≤ D2

2η

√∑T
k=1 ∥∇fk(wk)∥2 + η

2

∑T
k=1

∥∇fk (wk )∥2√∑k
s=1∥∇fs (ws )∥2 . Using the claim in the

previous slide with as := ∥∇fs(ws)∥2 ≥ 0,

RT (u) ≤
D2

2η

√√√√ T∑
k=1

∥∇fk(wk)∥2 + η

√√√√ T∑
k=1

∥∇fk(wk)∥2 =

(
D2

2η
+ η

) √√√√ T∑
k=1

∥∇fk(wk)∥2
.

The step-size that minimizes the above bound is equal to η∗ = D√
2
. With this choice,

RT (u) ≤
√

2D

√√√√ T∑
k=1

∥∇fk(wk)∥2

Comparing to the regret for the optimal (impractical) constant step-size on Slide 3,

RT (u) ≤
√

2 min
η

[
D2

2η
+

η

2

T∑
k=1

∥∇fk(wk)∥2

]
Hence, AdaGrad is only sub-optimal by

√
2 when compared to the best constant step-size!

10



Scalar AdaGrad - Convex, Lipschitz functions

Claim: If the convex set C has diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary
sequence losses such that each fk is convex, differentiable and G -Lipschitz, scalar AdaGrad with
ηk = η√∑k

s=1∥∇fs (ws )∥2 and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
(
D2

2η
+ η

)
G
√
T

Proof: Using the general result from the previous slide,

RT (u) ≤
(
D2

2η
+ η

) √√√√ T∑
k=1

∥∇fk(wk)∥2 ≤
(
D2

2η
+ η

) √
G 2T =

(
D2

2η
+ η

)
G
√
T

(Since each fk is G -Lipschitz)

With η = D√
2
, RT (u) ≤

√
2D G

√
T . Hence, for convex, Lipschitz functions, AdaGrad achieves

the same regret as OGD but is adaptive to G .

11



Scalar AdaGrad - Strongly-Convex, Lipschitz functions

Claim: If the convex set C has diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary
sequence losses such that each fk is µ strongly-convex, differentiable and G -Lipschitz, scalar
AdaGrad with ηk =

G2/µ

1+
∑k

s=1∥∇fs (ws )∥2 and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
G 2

2µ
[
1 + log(1 + G 2T )

]
Though AdaGrad can achieve logarithmic regret for strongly-convex, Lipschitz functions similar
to OGD and FTL, it requires knowledge of G and µ and is not adaptive to these quantities.
Proof: Need to prove this in Assignment 4!

12



Questions?

12



AdaGrad

Let us consider a more general and practical variant of AdaGrad that uses a per-coordinate
step-size. The corresponding update is:

vk+1 = wk − η A−1
k ∇fk(wk) ; wk+1 = Πk

C[vk+1] := argmin
w∈C

1
2
∥w − vk+1∥2

Ak
.

Ak =


√∑k

s=1 ∥∇fs(ws)∥2 Id (Scalar AdaGrad)

diag(Gk
1
2 ) (Diagonal AdaGrad)

Gk
1
2 (Full-Matrix AdaGrad)

where Gk ∈ Rd×d :=
∑k

s=1 [∇fs(ws)∇fs(ws)
T]. For the subsequent analysis, we will assume

that Ak is invertible (a small ϵId can be added to ensure invertibility)

13



AdaGrad

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each fk
is convex and differentiable, AdaGrad with the general update wk+1 = Πk

C[wk − ηA−1
k ∇fk(wk)]

and w1 ∈ C has the following regret for u ∈ C,

RT (u) ≤
(
D2

2η
+ η

)√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2

Proof: Starting from the update, vk+1 = wk − ηA−1
k ∇fk(wk),

vk+1 − u = wk − ηA−1
k ∇fk(wk)− u =⇒ Ak [vk+1 − u] = Ak [wk − u]− η∇fk(wk)

Multiplying the above equations,

[vk+1 − u]TAk [vk+1 − u] = [wk − u − ηA−1
k ∇fk(wk)]

T [Ak [wk − u]− η∇fk(wk)]

∥vk+1 − u∥2
Ak

= ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2[A−1
k ∇fk(wk)]

T[∇fk(wk)]

=⇒ ∥vk+1 − u∥2
Ak

= ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2 ∥∇fk(wk)∥2
A−1
k

14



AdaGrad

Recall that ∥vk+1 − u∥2
Ak

= ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2 ∥∇fk(wk)∥2
A−1
k

. Using the
update wk+1 = Πk

C[vk+1], u ∈ C with the non-expansiveness of projections,

∥wk+1 − u∥2
Ak

= ∥ΠC[vk+1]− ΠC[u]∥2
Ak

≤ ∥vk+1 − u∥2
Ak

=⇒ ∥wk+1 − u∥2
Ak

≤ ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2 ∥∇fk(wk)∥2
A−1
k

≤ ∥wk − u∥2
Ak

− 2η[fk(wk)− fk(u)] + η2 ∥∇fk(wk)∥2
A−1
k

(Convexity)

=⇒ fk(wk)− fk(u) ≤
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

2η
+

η

2
∥∇fk(wk)∥2

A−1
k

Summing from k = 1 to T ,

=⇒ RT (u) ≤
1
2η

T∑
k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
+

η

2

T∑
k=1

∥∇fk(wk)∥2
A−1
k

Let us now bound the first term in the above expression.

15



AdaGrad

T∑
k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
=

T∑
k=2

[(wk − u)T[Ak − Ak−1](wk − u)] + ∥w1 − u∥2
A1

− ∥wT+1 − u∥2
AT

≤
T∑

k=2

∥wk − u∥2
λmax[Ak − Ak−1] + ∥w1 − u∥2

A1
≤

T∑
k=2

D2 λmax[Ak − Ak−1] + ∥w1 − u∥2
A1

(Since Ak−1 ⪯ Ak , λmax[Ak − Ak−1] ≥ 0 and ∥wk − u∥2 ≤ D)

=⇒
T∑

k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
≤ D2

T∑
k=2

Tr[Ak − Ak−1] + ∥w1 − u∥2
A1

(For any PSD matrix B, λmax[B] ≤ Tr[B])

16



AdaGrad

Continuing the proof from the previous slide,
T∑

k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
≤ D2

T∑
k=2

Tr[Ak − Ak−1] + ∥w1 − u∥2
A1

= D2 Tr

[
T∑

k=2

[Ak − Ak−1]

]
+ ∥w1 − u∥2

A1
(Linearity of Trace)

= D2 Tr [AT − A1] + ∥w1 − u∥2
A1

≤ D2 Tr [AT − A1] + λmax[A1] ∥w1 − u∥2

T∑
k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
≤ D2 Tr[AT ]− D2 Tr[A1] + D2 Tr[A1] = D2 Tr[AT ]

Putting everything together,

RT (u) ≤
D2 Tr[AT ]

2η
+

η

2

T∑
k=1

∥∇fk(wk)∥2
A−1
k

Let us now bound the second term in the above expression.
17



AdaGrad

Claim:
∑T

k=1 ∥∇fk(wk)∥2
A−1
k

≤ 2Tr[AT ]

Proof: Let us prove by induction. For convenience, define ∇k := ∇fk(wk).
Base case: For k = 1, LHS = Tr[∇T

1A
−1
1 ∇1] = Tr[A−1

1 ∇1∇T
1 ] = Tr[A−1

1 A1A1] ≤ 2Tr[A1] =
RHS. Here, we used the cyclic property of trace i.e. Tr[ABC ] = Tr[BCA].

Inductive Hypothesis: If the statement is true for T − 1, we need to prove it for T .
T−1∑
k=1

∥∇k∥2
A−1
k

+ ∥∇T∥2
A−1
T

≤ 2Tr[AT−1] + ∥∇T∥2
A−1
T

= 2Tr[
(
A2
T −∇T∇T

T

)1/2
] + Tr[A−1

T ∇T∇T
T ]

For any X ⪰ Y ⪰ 0, we have [DHS11, Lemma 8], 2Tr[(X − Y )1/2] + Tr[X−1/2Y ] ≤ 2Tr[X 1/2].
Using this for X = A2

T , Y = ∇T∇T
T ,

∑T
k=1 ∥∇k∥2

A−1
k

≤ 2Tr[AT ], which completes the proof.

Putting everything together,

RT (u) ≤
(
D2

2η
+ η

)
Tr[AT ] .

18



AdaGrad

Recall that RT (u) ≤
(

D2

2η + η
)
Tr[AT ]. Bounding Tr[AT ]

Tr[AT ] = Tr[GT
1
2 ] =

d∑
j=1

√
λj [GT ] = d

∑d
j=1

√
λj [GT ]

d
≤ d

√∑d
j=1 λj [GT ]

d

(Jensen’s inequality for
√
x)

=
√
d

√√√√ d∑
j=1

λj [GT ] =
√
d
√
Tr[GT ] =

√
d

√√√√Tr

[
T∑

k=1

∇fk(wk)∇fk(wk)T

]

Tr[AT ] ≤
√
d

√√√√[
T∑

k=1

Tr∇fk(wk)∇fk(wk)T

]
=

√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2 (Linearity of Trace)

Putting everything together,

RT (u) ≤
(
D2

2η
+ η

)√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2

19



References i

John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online
learning and stochastic optimization., Journal of machine learning research 12 (2011), no. 7.

Rachel Ward, Xiaoxia Wu, and Leon Bottou, Adagrad stepsizes: Sharp convergence over
nonconvex landscapes, The Journal of Machine Learning Research 21 (2020), no. 1,
9047–9076.

20


