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Recap

Online Optimization
1: Online Optimization (w0, Algorithm A, Convex set C)
2: for k = 1, . . . ,T do
3: Algorithm A chooses point (decision) wk ∈ C
4: Environment chooses and reveals the (potentially adversarial) loss function fk : C → R
5: Algorithm suffers a cost fk(wk)

6: end for

Regret: For any fixed decision u ∈ C, RT (u) :=
∑T

k=1[fk(wk)− fk(u)].
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Recap

Online Gradient Descent (OGD): At iteration k , OGD chooses wk . After the loss function fk is
revealed, OGD uses the function to compute

wk+1 = ΠC [wk − ηk∇fk(wk)] where ΠC [x ] = argmin
y∈C

1
2
∥y − x∥2

.

If the convex set C has a diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary sequence
losses such that each fk is convex, differentiable and G -Lipschitz, OGD with ηk = D√

2G
√
k

and

w1 ∈ C, has regret RT (u) ≤
√

2DG
√
T .

Additionally, if each fk is µk strongly-convex, OGD with ηk = 1∑k
i=1 µi

has regret

RT (u) ≤ G2

2µ (1 + log(T )).
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Recap

Follow the Leader (FTL): At iteration k , FTL chooses the point wk . After the loss function fk
is revealed, FTL uses it to compute

wk+1 = argmin
w∈C

k∑
i=1

fi (w) .

Running FTL on a quadratic lower-bound for the loss recovers OGD in the strongly-convex case.

For strongly-convex, G -Lipschitz losses, FTL has regret RT (u) ≤ G2

2µ (1 + log(T )) that matches
OGD, but does not require knowledge of µ (Proof today).

If the losses are not necessarily strongly-convex, then FTL can result in O(T ) regret.
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Recap

Idea: Add an explicit regularization to fix FTL for a convex sequence of losses.

Follow the Regularized Leader (FTRL): At iteration k ≥ 0, FTRL chooses the point wk . After
the loss function fk is revealed, FTRL uses it to compute

wk+1 = argmin
w∈C

k∑
i=1

[
fi (w) +

σi

2
∥w − wi∥2

]
+

σ0

2
∥w∥2

,

where σi ≥ 0 is the regularization strength. If we set σi = 0 for all i , FTRL reduces to FTL.

Running FTRL on a linear lower-bound for the loss recovers OGD in the convex case.

FTRL has the following regret for a general sequence of convex losses,

RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
k=1

σk

2
∥u − wk∥2+

σ0

2
∥u∥2 where λk =

k−1∑
i=1

[µi ]+
k∑

i=0

[σi ] .

For convex, G -Lipschitz losses, FTRL has regret RT (u) ≤
√

2
√
D2 + ∥u∥2 G

√
T .
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Follow the Leader - Strongly-Convex, Lipschitz functions

Claim: If the convex set C has diameter D, for an arbitrary sequence losses such that each fk is
µk strongly-convex (s.t. µ := minTk=1 µk > 0), G -Lipschitz and differentiable, then FTL with
w1 ∈ C satisfies the following regret bound for all u ∈ C,

RT (u) ≤
G 2

2µ
(1 + log(T ))

Proof: Using the general result for FTRL, for λk+1 =
∑k

i=1 µi +
∑k

i=0 σi . Since fk is µk

strongly-convex, we will set σi = 0 for all i . Hence, λk+1 =
∑k

i=1 µi ≥ µ k .

RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
i=1

σi

2
∥u − wi∥2 +

σ0

2
∥u∥2 ≤ G 2

2µ

T∑
k=1

[
1
k

]
(Since fk is G -Lipschitz)

=⇒ RT (u) ≤
G 2 (1 + log(T ))

2µ
Hence, FTL matches the regret for OGD for strongly-convex, Lipschitz functions, but does not

require knowledge of µ. 5



Questions?
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Adaptive step-sizes

Recall the claim we proved in Lecture 14 (Slide 6): If the convex set C has diameter D, for an
arbitrary sequence of losses such that each fk is convex and differentiable, OGD with the update
wk+1 = ΠC[wk − ηk∇fk(wk)] such that ηk ≤ ηk−1 and w1 ∈ C has the following regret for u ∈ C,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2 =
D2

2η
+

η

2

T∑
k=1

∥∇fk(wk)∥2 (If ηk = η for all k)

In order to find the optimal η, differentiating the RHS w.r.t η and setting it to zero,

− D2

2η2 +
1
2

T∑
k=1

∥∇fk(wk)∥2 = 0 =⇒ η∗ =
D√∑T

k=1 ∥∇fk(wk)∥2

Since the second derivative equal to 2D2

η3 > 0, η∗ minimizes the RHS. Setting η = η∗,

RT (u) ≤ D

√√√√ T∑
k=1

∥∇fk(wk)∥2

6



Adaptive step-sizes

Choosing η = η∗ = D√∑T
k=1∥∇fk (wk )∥2 minimizes the upper-bound on the regret. However, this is

not practical since setting η requires knowing ∇fk(wk) for all k ∈ [T ].

To approximate η∗ to have a practical algorithm, we can set ηk as follows:

ηk =
D√∑k

s=1 ∥∇fs(ws)∥2

Hence, at iteration k , we only use the gradients upto that iteration.

Algorithmically, we only need to maintain the running sum of the squared gradient norms.

Moreover, this choice of step-size ensures that ηk ≤ ηk−1 (since we are accumulating gradient
norms in the denominator so the step-size cannot increase) and hence we can use our general
result for bounding the regret.
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Scalar AdaGrad

Hence, we have the following update for any η > 0,

wk+1 = ΠC [wk − ηk∇fk(wk)] ; ηk =
η√∑k

s=1 ∥∇fs(ws)∥2

This is exactly the AdaGrad update without a per-coordinate scaling and is referred to as scalar
AdaGrad or AdaGrad Norm [WWB20].

For a sequence of convex, differentiable losses, using the general result,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2 =
D2

2η

√√√√ T∑
k=1

∥∇fk(wk)∥2 +
η

2

T∑
k=1

∥∇fk(wk)∥2√∑k
s=1 ∥∇fs(ws)∥2

In order to bound the regret for AdaGrad, we need to bound the last term.
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Scalar AdaGrad

We prove the following general claim and will use it for as = ∥∇fs(ws)∥2.

Claim: For all T and as ≥ 0,
∑T

k=1
ak√∑k
s=1 as

≤ 2
√∑T

k=1 ak .

Proof: Let us prove by induction. Base case: For T = 1, LHS =
√
a1 < 2

√
a1 = RHS.

Inductive Hypothesis: If the statement is true for T − 1, we need to prove it for T .

T∑
k=1

ak√∑k
s=1 as

=
T−1∑
k=1

ak√∑k
s=1 as

+
aT√∑T
s=1 as

≤ 2

√√√√T−1∑
s=1

as +
aT√∑T
s=1 as

= 2
√
Z − x +

x√
Z

(x := aT , Z :=
∑T

s=1 as)

The derivative of the RHS w.r.t to x is − 1√
Z−x

+ 1√
Z
< 0 for all x ≥ 0 and hence the RHS is

maximized at x = 0. Setting x = 0 completes the induction proof.

=⇒
T∑

k=1

ak√∑k
s=1 as

≤ 2
√
Z = 2

√√√√ T∑
s=1

as
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Scalar AdaGrad

Recall that RT (u) ≤ D2

2η

√∑T
k=1 ∥∇fk(wk)∥2 + η

2

∑T
k=1

∥∇fk (wk )∥2√∑k
s=1∥∇fs (ws )∥2 . Using the claim in the

previous slide with as := ∥∇fs(ws)∥2 ≥ 0,

RT (u) ≤
D2

2η

√√√√ T∑
k=1

∥∇fk(wk)∥2 + η

√√√√ T∑
k=1

∥∇fk(wk)∥2 =

(
D2

2η
+ η

) √√√√ T∑
k=1

∥∇fk(wk)∥2
.

The step-size that minimizes the above bound is equal to η∗ = D√
2
. With this choice,

RT (u) ≤
√

2D

√√√√ T∑
k=1

∥∇fk(wk)∥2

Comparing to the regret for the optimal (impractical) constant step-size on Slide 3,

RT (u) ≤
√

2 min
η

[
D2

2η
+

η

2

T∑
k=1

∥∇fk(wk)∥2

]
Hence, AdaGrad is only sub-optimal by

√
2 when compared to the best constant step-size!
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Scalar AdaGrad - Convex, Lipschitz functions

Claim: If the convex set C has diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary
sequence losses such that each fk is convex, differentiable and G -Lipschitz, scalar AdaGrad with
ηk = η√∑k

s=1∥∇fs (ws )∥2 and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
(
D2

2η
+ η

)
G
√
T

Proof: Using the general result from the previous slide,

RT (u) ≤
(
D2

2η
+ η

) √√√√ T∑
k=1

∥∇fk(wk)∥2 ≤
(
D2

2η
+ η

) √
G 2T =

(
D2

2η
+ η

)
G
√
T

(Since each fk is G -Lipschitz)

With η = D√
2
, RT (u) ≤

√
2D G

√
T . Hence, for convex, Lipschitz functions, AdaGrad achieves

the same regret as OGD but is adaptive to G .
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Scalar AdaGrad - Strongly-Convex, Lipschitz functions

Claim: If the convex set C has diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary
sequence losses such that each fk is µ strongly-convex, differentiable and G -Lipschitz, scalar
AdaGrad with ηk =

G2/µ

1+
∑k

s=1∥∇fs (ws )∥2 and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
G 2

2µ
[
1 + log(1 + G 2T )

]
Though AdaGrad can achieve logarithmic regret for strongly-convex, Lipschitz functions similar
to OGD and FTL, it requires knowledge of G and µ and is not adaptive to these quantities.
Proof: Need to prove this in Assignment 4!
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Questions?
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AdaGrad

Let us consider a more general and practical variant of AdaGrad that uses a per-coordinate
step-size. The corresponding update is:

vk+1 = wk − η A−1
k ∇fk(wk) ; wk+1 = Πk

C[vk+1] := argmin
w∈C

1
2
∥w − vk+1∥2

Ak
.

Ak =


√∑k

s=1 ∥∇fs(ws)∥2 Id (Scalar AdaGrad)

diag(Gk
1
2 ) (Diagonal AdaGrad)

Gk
1
2 (Full-Matrix AdaGrad)

where Gk ∈ Rd×d :=
∑k

s=1 [∇fs(ws)∇fs(ws)
T]. For the subsequent analysis, we will assume

that Ak is invertible (a small ϵId can be added to ensure invertibility)
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AdaGrad

Claim: If the convex set C has diameter D, for an arbitrary sequence of losses such that each fk
is convex and differentiable, AdaGrad with the general update wk+1 = Πk

C[wk − ηA−1
k ∇fk(wk)]

and w1 ∈ C has the following regret for u ∈ C,

RT (u) ≤
(
D2

2η
+ η

)√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2

Proof: Starting from the update, vk+1 = wk − ηA−1
k ∇fk(wk),

vk+1 − u = wk − ηA−1
k ∇fk(wk)− u =⇒ Ak [vk+1 − u] = Ak [wk − u]− η∇fk(wk)

Multiplying the above equations,

[vk+1 − u]TAk [vk+1 − u] = [wk − u − ηA−1
k ∇fk(wk)]

T [Ak [wk − u]− η∇fk(wk)]

∥vk+1 − u∥2
Ak

= ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2[A−1
k ∇fk(wk)]

T[∇fk(wk)]

=⇒ ∥vk+1 − u∥2
Ak

= ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2 ∥∇fk(wk)∥2
A−1
k
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AdaGrad

Recall that ∥vk+1 − u∥2
Ak

= ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2 ∥∇fk(wk)∥2
A−1
k

. Using the
update wk+1 = Πk

C[vk+1], u ∈ C with the non-expansiveness of projections,

∥wk+1 − u∥2
Ak

= ∥ΠC[vk+1]− ΠC[u]∥2
Ak

≤ ∥vk+1 − u∥2
Ak

=⇒ ∥wk+1 − u∥2
Ak

≤ ∥wk − u∥2
Ak

− 2η⟨∇fk(wk),wk − u⟩+ η2 ∥∇fk(wk)∥2
A−1
k

≤ ∥wk − u∥2
Ak

− 2η[fk(wk)− fk(u)] + η2 ∥∇fk(wk)∥2
A−1
k

(Convexity)

=⇒ fk(wk)− fk(u) ≤
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

2η
+

η

2
∥∇fk(wk)∥2

A−1
k

Summing from k = 1 to T ,

=⇒ RT (u) ≤
1
2η

T∑
k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
+

η

2

T∑
k=1

∥∇fk(wk)∥2
A−1
k

Let us now bound the first term in the above expression.
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AdaGrad

T∑
k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
=

T∑
k=2

[(wk − u)T[Ak − Ak−1](wk − u)] + ∥w1 − u∥2
A1

− ∥wT+1 − u∥2
AT

≤
T∑

k=2

∥wk − u∥2
λmax[Ak − Ak−1] + ∥w1 − u∥2

A1
≤

T∑
k=2

D2 λmax[Ak − Ak−1] + ∥w1 − u∥2
A1

(Since Ak−1 ⪯ Ak , λmax[Ak − Ak−1] ≥ 0 and ∥wk − u∥2 ≤ D)

=⇒
T∑

k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
≤ D2

T∑
k=2

Tr[Ak − Ak−1] + ∥w1 − u∥2
A1

(For any PSD matrix B, λmax[B] ≤ Tr[B])
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AdaGrad

Continuing the proof from the previous slide,
T∑

k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
≤ D2

T∑
k=2

Tr[Ak − Ak−1] + ∥w1 − u∥2
A1

= D2 Tr

[
T∑

k=2

[Ak − Ak−1]

]
+ ∥w1 − u∥2

A1
(Linearity of Trace)

= D2 Tr [AT − A1] + ∥w1 − u∥2
A1

≤ D2 Tr [AT − A1] + λmax[A1] ∥w1 − u∥2

T∑
k=1

[
∥wk − u∥2

Ak
− ∥wk+1 − u∥2

Ak

]
≤ D2 Tr[AT ]− D2 Tr[A1] + D2 Tr[A1] = D2 Tr[AT ]

Putting everything together,

RT (u) ≤
D2 Tr[AT ]

2η
+

η

2

T∑
k=1

∥∇fk(wk)∥2
A−1
k

Let us now bound the second term in the above expression.
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AdaGrad

Claim:
∑T

k=1 ∥∇fk(wk)∥2
A−1
k

≤ 2Tr[AT ]

Proof: Let us prove by induction. For convenience, define ∇k := ∇fk(wk).
Base case: For k = 1, LHS = Tr[∇T

1A
−1
1 ∇1] = Tr[A−1

1 ∇1∇T
1 ] = Tr[A−1

1 A1A1] ≤ 2Tr[A1] =
RHS. Here, we used the cyclic property of trace i.e. Tr[ABC ] = Tr[BCA].

Inductive Hypothesis: If the statement is true for T − 1, we need to prove it for T .
T−1∑
k=1

∥∇k∥2
A−1
k

+ ∥∇T∥2
A−1
T

≤ 2Tr[AT−1] + ∥∇T∥2
A−1
T

= 2Tr[
(
A2
T −∇T∇T

T

)1/2
] + Tr[A−1

T ∇T∇T
T ]

For any X ⪰ Y ⪰ 0, we have [DHS11, Lemma 8], 2Tr[(X − Y )1/2] + Tr[X−1/2Y ] ≤ 2Tr[X 1/2].
Using this for X = A2

T , Y = ∇T∇T
T ,

∑T
k=1 ∥∇k∥2

A−1
k

≤ 2Tr[AT ], which completes the proof.

Putting everything together,

RT (u) ≤
(
D2

2η
+ η

)
Tr[AT ] .
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AdaGrad

Recall that RT (u) ≤
(

D2

2η + η
)
Tr[AT ]. Bounding Tr[AT ]

Tr[AT ] = Tr[GT
1
2 ] =

d∑
j=1

√
λj [GT ] = d

∑d
j=1

√
λj [GT ]

d
≤ d

√∑d
j=1 λj [GT ]

d

(Jensen’s inequality for
√
x)

=
√
d

√√√√ d∑
j=1

λj [GT ] =
√
d
√
Tr[GT ] =

√
d

√√√√Tr

[
T∑

k=1

∇fk(wk)∇fk(wk)T

]

Tr[AT ] ≤
√
d

√√√√[
T∑

k=1

Tr∇fk(wk)∇fk(wk)T

]
=

√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2 (Linearity of Trace)

Putting everything together,

RT (u) ≤
(
D2

2η
+ η

)√
d

√√√√ T∑
k=1

∥∇fk(wk)∥2
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