CMPT 409/981: Optimization for Machine Learning

Lecture 15

Sharan Vaswani
November 7, 2022

Recap

```
Online Optimization
    1: Online Optimization ( \(w_{0}\), Algorithm \(\mathcal{A}\), Convex set \(\mathcal{C}\) )
    for \(k=1, \ldots, T\) do
        Algorithm \(\mathcal{A}\) chooses point (decision) \(w_{k} \in \mathcal{C}\)
        Environment chooses and reveals the (potentially adversarial) loss function \(f_{k}: \mathcal{C} \rightarrow \mathbb{R}\)
        Algorithm suffers a cost \(f_{k}\left(w_{k}\right)\)
    end for
```

Regret: For any fixed decision $u \in \mathcal{C}, R_{T}(u):=\sum_{k=1}^{T}\left[f_{k}\left(w_{k}\right)-f_{k}(u)\right]$.

Recap

Online Gradient Descent (OGD): At iteration k, OGD chooses w_{k}. After the loss function f_{k} is revealed, OGD uses the function to compute

$$
w_{k+1}=\Pi_{\mathcal{C}}\left[w_{k}-\eta_{k} \nabla f_{k}\left(w_{k}\right)\right] \text { where } \Pi_{C}[x]=\underset{y \in \mathcal{C}}{\arg \min } \frac{1}{2}\|y-x\|^{2} .
$$

If the convex set \mathcal{C} has a diameter D i.e. for all $x, y \in \mathcal{C},\|x-y\| \leq D$, for an arbitrary sequence losses such that each f_{k} is convex, differentiable and G-Lipschitz, OGD with $\eta_{k}=\frac{D}{\sqrt{2} G \sqrt{k}}$ and $w_{1} \in \mathcal{C}$, has regret $R_{T}(u) \leq \sqrt{2} D G \sqrt{T}$.
Additionally, if each f_{k} is μ_{k} strongly-convex, OGD with $\eta_{k}=\frac{1}{\sum_{i=1}^{k} \mu_{i}}$ has regret $R_{T}(u) \leq \frac{G^{2}}{2 \mu}(1+\log (T))$.

Recap

Follow the Leader (FTL): At iteration k, FTL chooses the point w_{k}. After the loss function f_{k} is revealed, FTL uses it to compute

$$
w_{k+1}=\underset{w \in \mathcal{C}}{\arg \min } \sum_{i=1}^{k} f_{i}(w)
$$

Running FTL on a quadratic lower-bound for the loss recovers OGD in the strongly-convex case. For strongly-convex, G-Lipschitz losses, FTL has regret $R_{T}(u) \leq \frac{G^{2}}{2 \mu}(1+\log (T))$ that matches OGD, but does not require knowledge of μ (Proof today).
If the losses are not necessarily strongly-convex, then FTL can result in $O(T)$ regret.

Recap

Idea: Add an explicit regularization to fix FTL for a convex sequence of losses.
Follow the Regularized Leader (FTRL): At iteration $k \geq 0$, FTRL chooses the point w_{k}. After the loss function f_{k} is revealed, FTRL uses it to compute

$$
w_{k+1}=\underset{w \in \mathcal{C}}{\arg \min } \sum_{i=1}^{k}\left[f_{i}(w)+\frac{\sigma_{i}}{2}\left\|w-w_{i}\right\|^{2}\right]+\frac{\sigma_{0}}{2}\|w\|^{2},
$$

where $\sigma_{i} \geq 0$ is the regularization strength. If we set $\sigma_{i}=0$ for all i, FTRL reduces to FTL.
Running FTRL on a linear lower-bound for the loss recovers OGD in the convex case.
FTRL has the following regret for a general sequence of convex losses,

$$
R_{T}(u) \leq \sum_{k=1}^{T}\left[\frac{1}{2 \lambda_{k+1}}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}\right]+\sum_{k=1}^{T} \frac{\sigma_{k}}{2}\left\|u-w_{k}\right\|^{2}+\frac{\sigma_{0}}{2}\|u\|^{2} \text { where } \lambda_{k}=\sum_{i=1}^{k-1}\left[\mu_{i}\right]+\sum_{i=0}^{k}\left[\sigma_{i}\right] .
$$

For convex, G-Lipschitz losses, FTRL has regret $R_{T}(u) \leq \sqrt{2} \sqrt{D^{2}+\|u\|^{2}} G \sqrt{T}$.

Follow the Leader - Strongly-Convex, Lipschitz functions

Claim: If the convex set \mathcal{C} has diameter D, for an arbitrary sequence losses such that each f_{k} is μ_{k} strongly-convex (s.t. $\mu:=\min _{k=1}^{T} \mu_{k}>0$), G-Lipschitz and differentiable, then FTL with $w_{1} \in \mathcal{C}$ satisfies the following regret bound for all $u \in \mathcal{C}$,

$$
R_{T}(u) \leq \frac{G^{2}}{2 \mu}(1+\log (T))
$$

Proof: Using the general result for FTRL, for $\lambda_{k+1}=\sum_{i=1}^{k} \mu_{i}+\sum_{i=0}^{k} \sigma_{i}$. Since f_{k} is μ_{k} strongly-convex, we will set $\sigma_{i}=0$ for all i. Hence, $\lambda_{k+1}=\sum_{i=1}^{k} \mu_{i} \geq \mu k$.

$$
R_{T}(u) \leq \sum_{k=1}^{T}\left[\frac{1}{2 \lambda_{k+1}}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}\right]+\sum_{i=1}^{T} \frac{\sigma_{i}}{2}\left\|u-w_{i}\right\|^{2}+\frac{\sigma_{0}}{2}\|u\|^{2} \leq \frac{G^{2}}{2 \mu} \sum_{k=1}^{T}\left[\frac{1}{k}\right]
$$

(Since f_{k} is G-Lipschitz)

$$
\Longrightarrow R_{T}(u) \leq \frac{G^{2}(1+\log (T))}{2 \mu}
$$

Hence, FTL matches the regret for OGD for strongly-convex, Lipschitz functions, but does not require knowledge of μ.

Questions?

Adaptive step-sizes

Recall the claim we proved in Lecture 14 (Slide 6): If the convex set \mathcal{C} has diameter D, for an arbitrary sequence of losses such that each f_{k} is convex and differentiable, OGD with the update $w_{k+1}=\Pi_{\mathcal{C}}\left[w_{k}-\eta_{k} \nabla f_{k}\left(w_{k}\right)\right]$ such that $\eta_{k} \leq \eta_{k-1}$ and $w_{1} \in \mathcal{C}$ has the following regret for $u \in \mathcal{C}$,

$$
R_{T}(u) \leq \frac{D^{2}}{2 \eta_{T}}+\sum_{k=1}^{T} \frac{\eta_{k}}{2}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}=\frac{D^{2}}{2 \eta}+\frac{\eta}{2} \sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2} \quad\left(\text { If } \eta_{k}=\eta \text { for all } k\right)
$$

In order to find the optimal η, differentiating the RHS w.r.t η and setting it to zero,

$$
-\frac{D^{2}}{2 \eta^{2}}+\frac{1}{2} \sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}=0 \Longrightarrow \eta^{*}=\frac{D}{\sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}}
$$

Since the second derivative equal to $\frac{2 D^{2}}{\eta^{3}}>0, \eta^{*}$ minimizes the RHS. Setting $\eta=\eta^{*}$,

$$
R_{T}(u) \leq D \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}
$$

Adaptive step-sizes

Choosing $\eta=\eta^{*}=\frac{D}{\sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}}$ minimizes the upper-bound on the regret. However, this is not practical since setting η requires knowing $\nabla f_{k}\left(w_{k}\right)$ for all $k \in[T]$.
To approximate η^{*} to have a practical algorithm, we can set η_{k} as follows:

$$
\eta_{k}=\frac{D}{\sqrt{\sum_{s=1}^{k}\left\|\nabla f_{s}\left(w_{s}\right)\right\|^{2}}}
$$

Hence, at iteration k, we only use the gradients upto that iteration.
Algorithmically, we only need to maintain the running sum of the squared gradient norms.
Moreover, this choice of step-size ensures that $\eta_{k} \leq \eta_{k-1}$ (since we are accumulating gradient norms in the denominator so the step-size cannot increase) and hence we can use our general result for bounding the regret.

Scalar AdaGrad

Hence, we have the following update for any $\eta>0$,

$$
w_{k+1}=\Pi_{C}\left[w_{k}-\eta_{k} \nabla f_{k}\left(w_{k}\right)\right] \quad ; \quad \eta_{k}=\frac{\eta}{\sqrt{\sum_{s=1}^{k}\left\|\nabla f_{s}\left(w_{s}\right)\right\|^{2}}}
$$

This is exactly the AdaGrad update without a per-coordinate scaling and is referred to as scalar AdaGrad or AdaGrad Norm [WWB20].
For a sequence of convex, differentiable losses, using the general result,

$$
R_{T}(u) \leq \frac{D^{2}}{2 \eta_{T}}+\sum_{k=1}^{T} \frac{\eta_{k}}{2}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}=\frac{D^{2}}{2 \eta} \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}+\frac{\eta}{2} \sum_{k=1}^{T} \frac{\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}{\sqrt{\sum_{s=1}^{k}\left\|\nabla f_{s}\left(w_{s}\right)\right\|^{2}}}
$$

In order to bound the regret for AdaGrad, we need to bound the last term.

Scalar AdaGrad

We prove the following general claim and will use it for $a_{s}=\left\|\nabla f_{s}\left(w_{s}\right)\right\|^{2}$.
Claim: For all T and $a_{s} \geq 0, \sum_{k=1}^{T} \frac{a_{k}}{\sqrt{\sum_{s=1}^{k} a_{s}}} \leq 2 \sqrt{\sum_{k=1}^{T} a_{k}}$.
Proof: Let us prove by induction. Base case: For $T=1$, LHS $=\sqrt{a_{1}}<2 \sqrt{a_{1}}=$ RHS .
Inductive Hypothesis: If the statement is true for $T-1$, we need to prove it for T.

$$
\begin{array}{r}
\sum_{k=1}^{T} \frac{a_{k}}{\sqrt{\sum_{s=1}^{k} a_{s}}}=\sum_{k=1}^{T-1} \frac{a_{k}}{\sqrt{\sum_{s=1}^{k} a_{s}}}+\frac{a_{T}}{\sqrt{\sum_{s=1}^{T} a_{s}}} \leq 2 \sqrt{\sum_{s=1}^{T-1} a_{s}}+\frac{a_{T}}{\sqrt{\sum_{s=1}^{T} a_{s}}}=2 \sqrt{Z-x}+\frac{x}{\sqrt{Z}} \\
\left(x:=a_{T}, Z:=\sum_{s=1}^{T} a_{s}\right)
\end{array}
$$

The derivative of the RHS w.r.t to x is $-\frac{1}{\sqrt{Z-x}}+\frac{1}{\sqrt{Z}}<0$ for all $x \geq 0$ and hence the RHS is maximized at $x=0$. Setting $x=0$ completes the induction proof.

$$
\Longrightarrow \sum_{k=1}^{T} \frac{a_{k}}{\sqrt{\sum_{s=1}^{k} a_{s}}} \leq 2 \sqrt{Z}=2 \sqrt{\sum_{s=1}^{T} a_{s}}
$$

Scalar AdaGrad

Recall that $R_{T}(u) \leq \frac{D^{2}}{2 \eta} \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}+\frac{\eta}{2} \sum_{k=1}^{T} \frac{\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}{\sqrt{\sum_{s=1}^{k}\left\|\nabla f_{s}\left(w_{s}\right)\right\|^{2}}}$. Using the claim in the previous slide with $a_{s}:=\left\|\nabla f_{s}\left(w_{s}\right)\right\|^{2} \geq 0$,

$$
R_{T}(u) \leq \frac{D^{2}}{2 \eta} \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}+\eta \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}=\left(\frac{D^{2}}{2 \eta}+\eta\right) \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}} .
$$

The step-size that minimizes the above bound is equal to $\eta^{*}=\frac{D}{\sqrt{2}}$. With this choice,

$$
R_{T}(u) \leq \sqrt{2} D \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}
$$

Comparing to the regret for the optimal (impractical) constant step-size on Slide 3,

$$
R_{T}(u) \leq \sqrt{2} \min _{\eta}\left[\frac{D^{2}}{2 \eta}+\frac{\eta}{2} \sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}\right]
$$

Hence, AdaGrad is only sub-optimal by $\sqrt{2}$ when compared to the best constant step-size!

Scalar AdaGrad - Convex, Lipschitz functions

Claim: If the convex set \mathcal{C} has diameter D i.e. for all $x, y \in \mathcal{C},\|x-y\| \leq D$, for an arbitrary sequence losses such that each f_{k} is convex, differentiable and G-Lipschitz, scalar AdaGrad with $\eta_{k}=\frac{\eta}{\sqrt{\sum_{s=1}^{k}\left\|\nabla f_{s}\left(w_{s}\right)\right\|^{2}}}$ and $w_{1} \in \mathcal{C}$ has the following regret for all $u \in \mathcal{C}$,

$$
R_{T}(u) \leq\left(\frac{D^{2}}{2 \eta}+\eta\right) G \sqrt{T}
$$

Proof: Using the general result from the previous slide,

$$
R_{T}(u) \leq\left(\frac{D^{2}}{2 \eta}+\eta\right) \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}} \leq\left(\frac{D^{2}}{2 \eta}+\eta\right) \sqrt{G^{2} T}=\left(\frac{D^{2}}{2 \eta}+\eta\right) G \sqrt{T}
$$

(Since each f_{k} is G-Lipschitz)
With $\eta=\frac{D}{\sqrt{2}}, R_{T}(u) \leq \sqrt{2} D G \sqrt{T}$. Hence, for convex, Lipschitz functions, AdaGrad achieves the same regret as OGD but is adaptive to G.

Scalar AdaGrad - Strongly-Convex, Lipschitz functions

Claim: If the convex set \mathcal{C} has diameter D i.e. for all $x, y \in \mathcal{C},\|x-y\| \leq D$, for an arbitrary sequence losses such that each f_{k} is μ strongly-convex, differentiable and G-Lipschitz, scalar AdaGrad with $\eta_{k}=\frac{G^{2} / \mu}{1+\sum_{s=1}^{k}\left\|\nabla f_{s}\left(w_{s}\right)\right\|^{2}}$ and $w_{1} \in \mathcal{C}$ has the following regret for all $u \in \mathcal{C}$,

$$
R_{T}(u) \leq \frac{G^{2}}{2 \mu}\left[1+\log \left(1+G^{2} T\right)\right]
$$

Though AdaGrad can achieve logarithmic regret for strongly-convex, Lipschitz functions similar to OGD and FTL, it requires knowledge of G and μ and is not adaptive to these quantities.
Proof: Need to prove this in Assignment 4!

Questions?

AdaGrad

Let us consider a more general and practical variant of AdaGrad that uses a per-coordinate step-size. The corresponding update is:

$$
\begin{gathered}
v_{k+1}=w_{k}-\eta A_{k}^{-1} \nabla f_{k}\left(w_{k}\right) \quad ; \quad w_{k+1}=\Pi_{\mathcal{C}}^{k}\left[v_{k+1}\right]:=\underset{w \in \mathcal{C}}{\arg \min } \frac{1}{2}\left\|w-v_{k+1}\right\|_{A_{k}}^{2} . \\
A_{k}= \begin{cases}\sqrt{\sum_{s=1}^{k}\left\|\nabla f_{s}\left(w_{s}\right)\right\|^{2}} I_{d} \quad \text { (Scalar AdaGrad) } \\
\operatorname{diag}\left(G_{k}^{\frac{1}{2}}\right) \quad \text { (Diagonal AdaGrad) } \\
G_{k}^{\frac{1}{2}} \quad \text { (Full-Matrix AdaGrad) }\end{cases}
\end{gathered}
$$

where $G_{k} \in \mathbb{R}^{d \times d}:=\sum_{s=1}^{k}\left[\nabla f_{s}\left(w_{s}\right) \nabla f_{s}\left(w_{s}\right)^{\top}\right]$. For the subsequent analysis, we will assume that A_{k} is invertible (a small ϵl_{d} can be added to ensure invertibility)

AdaGrad

Claim: If the convex set \mathcal{C} has diameter D, for an arbitrary sequence of losses such that each f_{k} is convex and differentiable, AdaGrad with the general update $w_{k+1}=\Pi_{\mathcal{C}}^{k}\left[w_{k}-\eta A_{k}^{-1} \nabla f_{k}\left(w_{k}\right)\right]$ and $w_{1} \in \mathcal{C}$ has the following regret for $u \in \mathcal{C}$,

$$
R_{T}(u) \leq\left(\frac{D^{2}}{2 \eta}+\eta\right) \sqrt{d} \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}
$$

Proof: Starting from the update, $v_{k+1}=w_{k}-\eta A_{k}^{-1} \nabla f_{k}\left(w_{k}\right)$,

$$
v_{k+1}-u=w_{k}-\eta A_{k}^{-1} \nabla f_{k}\left(w_{k}\right)-u \Longrightarrow A_{k}\left[v_{k+1}-u\right]=A_{k}\left[w_{k}-u\right]-\eta \nabla f_{k}\left(w_{k}\right)
$$

Multiplying the above equations,

$$
\begin{aligned}
& {\left[v_{k+1}-u\right]^{\top} A_{k}\left[v_{k+1}-u\right]=\left[w_{k}-u-\eta A_{k}^{-1} \nabla f_{k}\left(w_{k}\right)\right]^{\top}\left[A_{k}\left[w_{k}-u\right]-\eta \nabla f_{k}\left(w_{k}\right)\right]} \\
& \left\|v_{k+1}-u\right\|_{A_{k}}^{2}=\left\|w_{k}-u\right\|_{A_{k}}^{2}-2 \eta\left\langle\nabla f_{k}\left(w_{k}\right), w_{k}-u\right\rangle+\eta^{2}\left[A_{k}^{-1} \nabla f_{k}\left(w_{k}\right)\right]^{\top}\left[\nabla f_{k}\left(w_{k}\right)\right] \\
& \quad \Longrightarrow\left\|v_{k+1}-u\right\|_{A_{k}}^{2}=\left\|w_{k}-u\right\|_{A_{k}}^{2}-2 \eta\left\langle\nabla f_{k}\left(w_{k}\right), w_{k}-u\right\rangle+\eta^{2}\left\|\nabla f_{k}\left(w_{k}\right)\right\|_{A_{k}^{-1}}^{2}
\end{aligned}
$$

AdaGrad

Recall that $\left\|v_{k+1}-u\right\|_{A_{k}}^{2}=\left\|w_{k}-u\right\|_{A_{k}}^{2}-2 \eta\left\langle\nabla f_{k}\left(w_{k}\right), w_{k}-u\right\rangle+\eta^{2}\left\|\nabla f_{k}\left(w_{k}\right)\right\|_{A_{k}^{-1}}^{2}$. Using the update $w_{k+1}=\Pi_{\mathcal{C}}^{k}\left[v_{k+1}\right], u \in \mathcal{C}$ with the non-expansiveness of projections,

$$
\begin{aligned}
\left\|w_{k+1}-u\right\|_{A_{k}}^{2} & =\left\|\Pi_{C}\left[v_{k+1}\right]-\Pi_{\mathcal{C}}[u]\right\|_{A_{k}}^{2} \leq\left\|v_{k+1}-u\right\|_{A_{k}}^{2} \\
\Longrightarrow\left\|w_{k+1}-u\right\|_{A_{k}}^{2} & \leq\left\|w_{k}-u\right\|_{A_{k}}^{2}-2 \eta\left\langle\nabla f_{k}\left(w_{k}\right), w_{k}-u\right\rangle+\eta^{2}\left\|\nabla f_{k}\left(w_{k}\right)\right\|_{A_{k}^{-1}}^{2} \\
& \leq\left\|w_{k}-u\right\|_{A_{k}}^{2}-2 \eta\left[f_{k}\left(w_{k}\right)-f_{k}(u)\right]+\eta^{2}\left\|\nabla f_{k}\left(w_{k}\right)\right\|_{A_{k}^{-1}}^{2} \quad \text { (Convexity) } \\
\Longrightarrow f_{k}\left(w_{k}\right)-f_{k}(u) & \leq \frac{\left\|w_{k}-u\right\|_{A_{k}}^{2}-\left\|w_{k+1}-u\right\|_{A_{k}}^{2}}{2 \eta}+\frac{\eta}{2}\left\|\nabla f_{k}\left(w_{k}\right)\right\|_{A_{k}^{-1}}^{2}
\end{aligned}
$$

Summing from $k=1$ to T,

$$
\Longrightarrow R_{T}(u) \leq \frac{1}{2 \eta} \sum_{k=1}^{T}\left[\left\|w_{k}-u\right\|_{A_{k}}^{2}-\left\|w_{k+1}-u\right\|_{A_{k}}^{2}\right]+\frac{\eta}{2} \sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|_{A_{k}^{-1}}^{2}
$$

Let us now bound the first term in the above expression.

AdaGrad

$$
\begin{aligned}
& \sum_{k=1}^{T}\left[\left\|w_{k}-u\right\|_{A_{k}}^{2}-\left\|w_{k+1}-u\right\|_{A_{k}}^{2}\right] \\
& =\sum_{k=2}^{T}\left[\left(w_{k}-u\right)^{T}\left[A_{k}-A_{k-1}\right]\left(w_{k}-u\right)\right]+\left\|w_{1}-u\right\|_{A_{1}}^{2}-\left\|w_{T+1}-u\right\|_{A_{T}}^{2} \\
& \leq \sum_{k=2}^{T}\left\|w_{k}-u\right\|^{2} \lambda_{\max }\left[A_{k}-A_{k-1}\right]+\left\|w_{1}-u\right\|_{A_{1}}^{2} \leq \sum_{k=2}^{T} D^{2} \lambda_{\max }\left[A_{k}-A_{k-1}\right]+\left\|w_{1}-u\right\|_{A_{1}}^{2} \\
& \left.\quad \text { (Since } A_{k-1} \preceq A_{k}, \lambda_{\max }\left[A_{k}-A_{k-1}\right] \geq 0 \text { and }\left\|w_{k}-u\right\|^{2} \leq D\right) \\
& \Longrightarrow \sum_{k=1}^{T}\left[\left\|w_{k}-u\right\|_{A_{k}}^{2}-\left\|w_{k+1}-u\right\|_{A_{k}}^{2}\right] \leq D^{2} \sum_{k=2}^{T} \operatorname{Tr}\left[A_{k}-A_{k-1}\right]+\left\|w_{1}-u\right\|_{A_{1}}^{2} \\
& \left.\quad \text { (For any PSD matrix } B, \lambda_{\max }[B] \leq \operatorname{Tr}[B]\right)
\end{aligned}
$$

AdaGrad

Continuing the proof from the previous slide,

$$
\begin{aligned}
& \sum_{k=1}^{T}\left[\left\|w_{k}-u\right\|_{A_{k}}^{2}-\left\|w_{k+1}-u\right\|_{A_{k}}^{2}\right] \leq D^{2} \sum_{k=2}^{T} \operatorname{Tr}\left[A_{k}-A_{k-1}\right]+\left\|w_{1}-u\right\|_{A_{1}}^{2} \\
& =D^{2} \operatorname{Tr}\left[\sum_{k=2}^{T}\left[A_{k}-A_{k-1}\right]\right]+\left\|w_{1}-u\right\|_{A_{1}}^{2} \quad \quad \quad \text { Linearity of } \operatorname{Tra} \\
& =D^{2} \operatorname{Tr}\left[A_{T}-A_{1}\right]+\left\|w_{1}-u\right\|_{A_{1}}^{2} \leq D^{2} \operatorname{Tr}\left[A_{T}-A_{1}\right]+\lambda_{\max }\left[A_{1}\right]\left\|w_{1}-u\right\|^{2} \\
& \sum_{k=1}^{T}\left[\left\|w_{k}-u\right\|_{A_{k}}^{2}-\left\|w_{k+1}-u\right\|_{A_{k}}^{2}\right] \leq D^{2} \operatorname{Tr}\left[A_{T}\right]-D^{2} \operatorname{Tr}\left[A_{1}\right]+D^{2} \operatorname{Tr}\left[A_{1}\right]=D^{2} \operatorname{Tr}\left[A_{T}\right]
\end{aligned}
$$

Putting everything together,

$$
R_{T}(u) \leq \frac{D^{2} \operatorname{Tr}\left[A_{T}\right]}{2 \eta}+\frac{\eta}{2} \sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|_{A_{k}^{-1}}^{2}
$$

Let us now bound the second term in the above expression.

AdaGrad

Claim: $\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|_{A_{k}^{-1}}^{2} \leq 2 \operatorname{Tr}\left[A_{T}\right]$
Proof: Let us prove by induction. For convenience, define $\nabla_{k}:=\nabla f_{k}\left(w_{k}\right)$.
Base case: For $k=1, \mathrm{LHS}=\operatorname{Tr}\left[\nabla_{1}^{\mathrm{T}} A_{1}^{-1} \nabla_{1}\right]=\operatorname{Tr}\left[A_{1}^{-1} \nabla_{1} \nabla_{1}^{\mathrm{T}}\right]=\operatorname{Tr}\left[A_{1}^{-1} A_{1} A_{1}\right] \leq 2 \operatorname{Tr}\left[A_{1}\right]=$ RHS. Here, we used the cyclic property of trace i.e. $\operatorname{Tr}[A B C]=\operatorname{Tr}[B C A]$.
Inductive Hypothesis: If the statement is true for $T-1$, we need to prove it for T.

$$
\sum_{k=1}^{T-1}\left\|\nabla_{k}\right\|_{A_{k}^{-1}}^{2}+\left\|\nabla_{T}\right\|_{A_{T}^{-1}}^{2} \leq 2 \operatorname{Tr}\left[A_{T-1}\right]+\left\|\nabla_{T}\right\|_{A_{T}^{-1}}^{2}=2 \operatorname{Tr}\left[\left(A_{T}^{2}-\nabla_{T} \nabla_{T}^{\top}\right)^{1 / 2}\right]+\operatorname{Tr}\left[A_{T}^{-1} \nabla_{T} \nabla_{T}^{\top}\right]
$$

For any $X \succeq Y \succeq 0$, we have [DHS11, Lemma 8], $2 \operatorname{Tr}\left[(X-Y)^{1 / 2}\right]+\operatorname{Tr}\left[X^{-1 / 2} Y\right] \leq 2 \operatorname{Tr}\left[X^{1 / 2}\right]$. Using this for $X=A_{T}^{2}, Y=\nabla_{T} \nabla_{T}^{T}, \sum_{k=1}^{T}\left\|\nabla_{k}\right\|_{A_{k}^{-1}}^{2} \leq 2 \operatorname{Tr}\left[A_{T}\right]$, which completes the proof.

Putting everything together,

$$
R_{T}(u) \leq\left(\frac{D^{2}}{2 \eta}+\eta\right) \operatorname{Tr}\left[A_{T}\right] .
$$

AdaGrad

Recall that $R_{T}(u) \leq\left(\frac{D^{2}}{2 \eta}+\eta\right) \operatorname{Tr}\left[A_{T}\right]$. Bounding $\operatorname{Tr}\left[A_{T}\right]$

$$
\begin{aligned}
& \operatorname{Tr}\left[A_{T}\right]=\operatorname{Tr}\left[G_{T} \frac{1}{2}\right]=\sum_{j=1}^{d} \sqrt{\lambda_{j}\left[G_{T}\right]}=d \frac{\sum_{j=1}^{d} \sqrt{\lambda_{j}\left[G_{T}\right]}}{d} \leq d \sqrt{\frac{\sum_{j=1}^{d} \lambda_{j}\left[G_{T}\right]}{d}} \\
&=\sqrt{d} \sqrt{\sum_{j=1}^{d} \lambda_{j}\left[G_{T}\right]}=\sqrt{d} \sqrt{\operatorname{Tr}\left[G_{T}\right]} \\
& \text { (Jensen's inequality for } \sqrt{x} \text {) } \\
& \sqrt{d} \sqrt{\operatorname{Tr}\left[\sum_{k=1}^{T} \nabla f_{k}\left(w_{k}\right) \nabla f_{k}\left(w_{k}\right)^{\top}\right]} \\
& \operatorname{Tr}\left[A_{T}\right] \leq \sqrt{d} \sqrt{\left[\sum_{k=1}^{T} \operatorname{Tr} \nabla f_{k}\left(w_{k}\right) \nabla f_{k}\left(w_{k}\right)^{\top}\right]}=\sqrt{d} \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}} \quad \text { (Linearity of Trace) }
\end{aligned}
$$

Putting everything together,

$$
R_{T}(u) \leq\left(\frac{D^{2}}{2 \eta}+\eta\right) \sqrt{d} \sqrt{\sum_{k=1}^{T}\left\|\nabla f_{k}\left(w_{k}\right)\right\|^{2}}
$$

References i

(1. John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online learning and stochastic optimization., Journal of machine learning research 12 (2011), no. 7.
Rachel Ward, Xiaoxia Wu, and Leon Bottou, Adagrad stepsizes: Sharp convergence over nonconvex landscapes, The Journal of Machine Learning Research 21 (2020), no. 1, 9047-9076.

