
CMPT 409/981: Optimization for Machine Learning

Lecture 14

Sharan Vaswani

November 3, 2022

Recap

Function class L-smooth L-smooth G -Lipschitz G -Lipschitz
+ convex + µ-strongly convex + convex + µ-strongly convex

GD O (1/ϵ) O (κ log (1/ϵ)) Θ (1/ϵ2) Θ (1/ϵ)

SGD Θ(1/ϵ2) Θ (1/ϵ) Θ (1/ϵ2) Θ (1/ϵ)

Table 1: Number of iterations required for obtaining an ϵ-sub-optimality.

Today, we will consider online convex optimization for Lipschitz functions.

1

Online Optimization

Online Optimization
1: Online Optimization (w0, Algorithm A, Convex set C)
2: for k = 1, . . . ,T do
3: Algorithm A chooses point (decision) wk ∈ C
4: Environment chooses and reveals the (potentially adversarial) loss function fk : C → R
5: Algorithm suffers a cost fk(wk)

6: end for

Application: Prediction from Expert Advice – Given n experts,
C = ∆n = {wi |wi ≥ 0 ;

∑n
i=1 wi = 1} and fk(wk) = ⟨ck ,wk⟩ where ck ∈ Rn is the loss vector.

Application: Imitation Learning – Given access to an expert that knows what action a ∈ [A] to
take in each state s ∈ [S], learn a policy π : [S] → [A] that imitates the expert, i.e. we want
that π(a|s) ≈ πexpert(a|s). Here, w = π and C = ∆A ×∆A . . .∆A (simplex for each state) and
fk is a measure of discrepancy between πk and πexpert.

2

Online Optimization

Recall that the sequence of losses {fk}Tk=1 is potentially adversarial and can also depend on wk .

Objective: Do well against the best fixed decision in hindsight, i.e. if we knew the entire
sequence of losses beforehand, we would choose w∗ := argminw∈C

∑T
k=1 fk(w).

Regret: For any fixed decision u ∈ C,

RT (u) :=
T∑

k=1

[fk(wk)− fk(u)]

When comparing against the best decision in hindsight,

RT :=
T∑

k=1

[fk(wk)]− min
w∈C

T∑
k=1

fk(w).

We want to design algorithms that achieve a sublinear regret (that grows as o(T)). A sublinear
regret implies that the performance of our sequence of decisions is approaching that of w∗.

3

Online Convex Optimization

Online Convex Optimization (OCO): When the losses fk are (strongly) convex loss functions.

Example 1: In prediction with expert advice, fk(w) = ⟨ck ,w⟩ is a linear function.

Example 2: In imitation learning, fk(π) = Es∼dπk [KL(π(·|s) ||πexpert(·|s)] where dπk is a
distribution over the states induced by running policy πk .

Example 3: In online control such as LQR (linear quadratic regulator) with unknown
costs/perturbations, fk is quadratic.

In Examples 2-3, the loss at iteration k + 1 depends on the learner’s decision at iteration k .

4

Online Convex Optimization

Online-to-Batch conversion: If the sequence of loss functions is i.i.d from some fixed
distribution, we can convert the regret guarantees into the traditional convergence guarantees for
the resulting algorithm.

Formally, if fk are convex and R(T) = O(
√
T), then taking the expectation w.r.t the

distribution generating the losses,

E
[
RT

T

]
= E

[∑T
k=1[fk(wk)]−

∑T
k=1 fk(w

∗)

T

]
≥

T∑
k=1

[f (w̄T)− f (w∗)] = O

(
1√
T

)
where f (w) := E[fk(w)] (since the losses are i.i.d) and w̄T :=

∑T
k=1 wk

T (since the losses are
convex, we used Jensen’s inequality).

If the distribution generating the losses is a uniform discrete distribution on n fixed data-points,
then f (w) = 1

n

∑n
i=1 fi (w) and we are back in the finite-sum minimization setting.

Hence, algorithms that attain R(T) = O(
√
T) can result in an O

(
1√
T

)
convergence (in terms

of the function values) for convex losses. 5

Questions?

5

Online Gradient Descent

The simplest algorithm that results in sublinear regret for OCO is Online Gradient Descent.

Online Gradient Descent (OGD): At iteration k , the algorithm chooses the point wk . After the
loss function fk is revealed, OGD suffers a cost fk(wk) and uses the function to compute

wk+1 = ΠC [wk − ηk∇fk(wk)]

where ΠC [x] = argminy∈C
1
2 ∥y − x∥2.

Claim: If the convex set C has a diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary
sequence losses such that each fk is convex and differentiable, OGD with a non-increasing
sequence of step-sizes i.e. ηk ≤ ηk−1 and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2

6

Online Gradient Descent - Convex functions

Proof: Using the update wk+1 = ΠC[wk − ηk∇fk(wk)]. Since u ∈ C,

∥wk+1 − u∥2 = ∥ΠC[wk − ηk∇fk(wk)]− u∥2 = ∥ΠC[wk − ηk∇fk(wk)]− ΠC[u]∥2

Since projections are non-expansive i.e. for all x , y , ∥ΠC[y]− ΠC[x]∥ ≤ ∥y − x∥,

≤ ∥wk − ηk∇fk(wk)− u∥2

= ∥wk − u∥2 − 2ηk⟨∇fk(wk),wk − u⟩+ η2
k ∥∇fk(wk)∥2

≤ ∥wk − u∥2 − 2ηk [fk(wk)− fk(u)] + η2
k ∥∇fk(wk)∥2

(Since fk is convex)

=⇒ 2ηk [fk(wk)− fk(u)] ≤ [∥wk − u∥2 − ∥wk+1 − u∥2] + η2
k ∥∇fk(wk)∥2

=⇒ RT (u) ≤
T∑

k=1

[
∥wk − u∥2 − ∥wk+1 − u∥2

2ηk

]
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2

7

Online Gradient Descent - Convex functions

Recall that RT (u) ≤
∑T

k=1

[
∥wk−u∥2−∥wk+1−u∥2

2ηk

]
+
∑T

k=1
ηk

2 ∥∇fk(wk)∥2.

T∑
k=1

[
∥wk − u∥2 − ∥wk+1 − u∥2

2ηk

]

=
T∑

k=2

∥wk − u∥2
(

1
2ηk

− 1
2ηk−1

)
︸ ︷︷ ︸

Non-negative since ηk ≤ ηk−1

+
∥w1 − u∥2

2η1
− ∥wT+1 − u∥2

2ηT

≤ D2
T∑

k=2

[
1

2ηk
− 1

2ηk−1

]
+

D2

2η1
= D2

[
1

2ηT
− 1

2η1

]
+

D2

2η1
=

D2

2ηT

(Since ∥x − y∥ ≤ D for all x , y ∈ C)

Putting everything together,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2

8

Online Gradient Descent - Convex, Lipschitz functions

Claim: If the convex set C has a diameter D i.e. for all x , y ∈ C, ∥x − y∥ ≤ D, for an arbitrary
sequence losses such that each fk is convex, differentiable and G -Lipschitz, OGD with ηk = η√

k

and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
D2

√
T

2η
+ G 2

√
T η

Proof: Since the step-size is decreasing, we can use the general result from the previous slide,

RT (u) ≤
D2

2ηT
+

T∑
k=1

ηk
2

∥∇fk(wk)∥2 ≤ D2

2ηT
+

G 2

2

T∑
k=1

ηk (Since fk is G -Lipschitz)

=⇒ RT (u) ≤
D2

√
T

2η
+

G 2η

2

T∑
k=1

1√
k
≤ D2

√
T

2η
+ G 2

√
T η (Since

∑T
k=1

1√
k
≤ 2

√
T)

In order to find the “best” η, set it such that D2
/2η = G 2η, implying that η = D/

√
2G and

RT (u) ≤
√

2DG
√
T . Hence, OGD with a decreasing step-size attains sublinear Θ(

√
T) regret

for convex, Lipschitz functions. 9

Online Gradient Descent - Strongly-convex, Lipschitz functions

Claim: If the convex set C has a diameter D, for an arbitrary sequence losses such that each fk
is µk strongly-convex (s.t. µ := mink∈[T] µk > 0), G -Lipschitz and differentiable, then OGD with
ηk = 1∑k

i=1 µi
and w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
G 2

2µ
(1 + log(T))

Proof: Similar to the convex proof, use the update wk+1 = ΠC[wk − ηk∇fk(wk)]. Since u ∈ C,

∥wk+1 − u∥2 = ∥ΠC[wk − ηk∇fk(wk)]− u∥2 = ∥ΠC[wk − ηk∇fk(wk)]− ΠC[u]∥2

≤ ∥wk − u∥2 − 2ηk⟨∇fk(wk),wk − u⟩+ η2
k ∥∇fk(wk)∥2

≤ ∥wk − u∥2 (1 − µkηk)− 2ηk [fk(wk)− fk(u)] + η2
k ∥∇fk(wk)∥2

(Since fk is µk strongly-convex)

=⇒ RT (u) ≤
T∑

k=1

[
∥wk − u∥2 (1 − µkηk)− ∥wk+1 − u∥2

2ηk

]
+

G 2

2

T∑
k=1

ηk

(Since fk is G -Lipschitz)
10

Online Gradient Descent - Strongly-convex, Lipschitz functions

Recall that RT (u) ≤
∑T

k=1

[
∥wk−u∥2(1−µkηk)−∥wk+1−u∥2

2ηk

]
+ G2

2

∑T
k=1 ηk .

T∑
k=1

[
∥wk − u∥2 (1 − µkηk)− ∥wk+1 − u∥2

2ηk

]

=
T∑

k=2

∥wk − u∥2
(

1
2ηk

− 1
2ηk−1

− µk

2

)
︸ ︷︷ ︸

=0

+ ∥w1 − u∥2
[

1
2η1

− µ1

2

]
︸ ︷︷ ︸

=0

−∥wT+1 − u∥2

2ηT
≤ 0

(Since ηk = 1∑k
i=1 µi

)

Putting everything together,
RT (u) ≤

G 2

2

T∑
k=1

1
µk

≤ G 2

2µ
(1 + log(T))

(Since µ := mink∈[T] µk and
∑T

k=1
1/k ≤ 1 + log(T))

There is an Ω(log(T)) lower-bound on the regret for strongly-convex, Lipschitz functions and
hence OGD is optimal in this setting!

11

Questions?

11

Follow the Leader

Another algorithm that achieves logarithmic regret for strongly-convex losses is Follow the Leader.

Follow the Leader (FTL): At iteration k , the algorithm chooses the point wk . After the loss
function fk is revealed, FTL suffers a cost fk(wk) and uses it to compute

wk+1 = argmin
w∈C

k∑
i=1

fi (w) .

Needs to solve a deterministic optimization sub-problem which can be expensive.
Needs to store all the previous loss functions and requires O(T) memory.
Does not require any step-size and is hyper-parameter free.
In applications such Imitation Learning (IL), interacting with the environment and getting
access to fk is expensive. FTL allows multiple policy updates (when solving the
sub-problem) and helps better reuse the collected data. FTL is the standard method to
solve online IL problems and the resulting algorithm is known as DAGGER [RGB11].
Compared to FTL, OGD requires an environment interaction for each policy update.

12

Follow the Leader and OGD

To connect FTL and OGD, consider the case when C = R.

wk+1 = argmin
w∈R

k∑
i=1

[fi (w)] =⇒
k∑

i=1

∇fi (wk+1) = 0

If we redefine fi (w) to be a lower-bound on the original µi strongly-convex function as
fi (w) := fi (wi) + ⟨∇fi (wi),w − wi ⟩+ µi

2 ∥w − wi∥2, then ∇fi (w) = ∇fi (wi) + µi [w − wi].
Computing the gradients at wk+1 and wk ,

k∑
i=1

∇fi (wi) + wk+1

[
k∑

i=1

µi

]
=

k∑
i=1

µiwi ;
k−1∑
i=1

∇fi (wi) + wk

[
k−1∑
i=1

µi

]
=

k−1∑
i=1

µiwi

∇fk(wk) + (wk+1 − wk)

[
k∑

i=1

µi

]
= 0 =⇒ wk+1 = wk − ηk∇fk(wk) ,

(Adding µkwk to the second equation, and subtracting the two equations)

where ηk := 1∑k
i=1 µi

. Hence, running FTL on the lower-bound for the loss (instead of the loss
itself) recovers OGD in the strongly-convex case! 13

Follow the Leader

Claim: If the convex set C has a diameter D, for an arbitrary sequence losses such that each fk
is µk strongly-convex (s.t. µ := mink∈[T] µk > 0), G -Lipschitz and differentiable, FTL with
w1 ∈ C has the following regret for all u ∈ C,

RT (u) ≤
G 2

2µ
(1 + log(T))

Hence, FTL achieves the same regret as OGD when the sequence of losses are strongly-convex
and Lipschitz (we will prove this later)

What about when the losses are convex but not strongly-convex?

Consider running FTL on the following problem. C = [−1, 1] and fk(w) = ⟨zk ,w⟩ where

z1 = −0.5; zk = 1 for k = 2, 4, . . .; zk = −1 for k = 3, 5, . . .

In round 1, FTL suffers cost −0.5w1 cost and will compute w2 = 1. It will suffer cost of 1 in
round 2 and compute w3 = −1. In round 3, it will thus suffer a cost of 1 and so on. Hence, FTL
will suffer O(T) regret if the losses are not strongly-convex.

14

Follow the Regularized Leader

A way to fix the performance of FTL for a convex sequence of losses is to add an explicit
regularization resulting in Follow the Regularized Leader.

Follow the Regularized Leader (FTRL): At iteration k ≥ 0, the algorithm chooses wk+1 as:

wk+1 = argmin
w∈C

k∑
i=1

[
fi (w) +

σi
2
∥w − wi∥2

]
+
σ0

2
∥w∥2

,

where σi > 0 is the regularization strength.

Since FTRL is equivalent to running FTL on a sequence of strongly-convex (because of the
additional regularization) losses, it can obtain sublinear regret even for convex fk .

If we set σi = 0 for all i , FTRL reduces to FTL.

15

Follow the Regularized Leader and OGD

To connect FTRL and OGD, consider the case when C = R and set σ0 = 0.

wk+1 = argmin
w∈R

k∑
i=1

[
fi (w) +

σi
2
∥w − wi∥2

]
=⇒

k∑
i=1

∇fi (wk+1) + wk+1

[
k∑

i=1

σi

]
=

k∑
i=1

σiwi

If we redefine fi (w) to be a lower-bound on the original convex function as
fi (w) := fi (wi) + ⟨∇fi (wi),w − wi ⟩, then, ∇fi (w) = ∇fi (wi).

Computing the gradients at wk+1 and wk ,
k∑

i=1

∇fi (wi) + wk+1

[
k∑

i=1

σi

]
=

k∑
i=1

σiwi ;
k−1∑
i=1

∇fi (wi) + wk

[
k−1∑
i=1

σi

]
=

k−1∑
i=1

σiwi

∇fk(wk) + (wk+1 − wk)

(
k∑

i=1

σi

)
= 0 =⇒ wk+1 = wk − ηk∇fk(wk) ,

(Adding σkwk to the second equation, and subtracting the two equations)

where ηk := 1/(
∑k

i=1 σi). Hence, running FTRL on a lower-bound for the loss (instead of the loss
itself) recovers OGD in the convex case! 16

Questions?

16

Follow the Regularized Leader

To analyze FTRL, define ψk(w) :=
∑k−1

i=1
σi

2 ∥w − wi∥2 + σ0
2 ∥w∥2. At iteration k − 1, FTRL

uses the knowledge of the losses upto k − 1 and computes the decision for iteration k as:

wk = argmin
w∈C

Fk(w) :=
k−1∑
i=1

fi (w) + ψk(w) .

Hence Fk is λk :=
∑k−1

i=1 µi +
∑k−1

i=0 σi strongly-convex. The regularizer ψk is known as a
proximal regularizer and satisfies the condition that,

wk = argmin [ψk+1(w)− ψk(w)] =⇒ ∇ψk+1(wk)−∇ψk(wk) = 0

In order to simplify the analysis, we will assume that wk lies in the interior of C. Hence
∇Fk(wk) = 0 for all k . This assumption is not necessary and can be handled by augmenting the
loss with an indicator function IC (see [Ora19, Sec 7.2]).

17

Follow the Regularized Leader

Claim: For an arbitrary sequence losses such that each fk is convex and differentiable, FTRL
with the update wk = argminw∈C Fk(w) =

∑k−1
i=1 fi (w) + ψk(w) such that

ψk(w) =
∑k−1

i=1
σi

2 ∥w − wi∥2 + σ0
2 ∥w∥2 and λk =

∑k−1
i=1 [µi] +

∑k
i=0[σi] satisfies the following

regret for all u ∈ C,

RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
k=1

σk
2

∥u − wk∥2 +
σ0

2
∥u∥2

Proof: For k ≥ 1,

Fk+1(wk)− Fk+1(wk+1) ≤ ⟨∇Fk+1(wk+1),wk − wk+1⟩+
1

2λk+1
∥∇Fk+1(wk)−∇Fk+1(wk+1)∥2

(By λk+1 strong-convexity of Fk+1)

≤ 1
2λk+1

∥∇Fk+1(wk)∥2 (Since ∇Fk+1(wk+1) = 0)

=⇒ Fk+1(wk)−Fk+1(wk+1) ≤
1

2λk+1

∥∥∥∥∥
k∑

i=1

∇fi (wk) +∇ψk+1(wk)

∥∥∥∥∥
2

(By def. of Fk+1)
18

Follow the Regularized Leader

Recall that Fk+1(wk)− Fk+1(wk+1) ≤ 1
2λk+1

∥∥∥∑k
i=1 ∇fi (wk) +∇ψk+1(wk)

∥∥∥2

=⇒ Fk+1(wk)− Fk+1(wk+1)

=
1

2λk+1

∥∥∥∥∥
[
k−1∑
i=1

∇fi (wk) +∇ψk(wk)

]
+∇fk(wk) + [∇ψk+1(wk)−∇ψk(wk)]

∥∥∥∥∥
2

=
1

2λk+1
∥∇fk(wk) + [∇ψk+1(wk)−∇ψk(wk)]∥2 (Since ∇Fk(wk) = 0)

=⇒ Fk+1(wk)−Fk+1(wk+1) ≤
1

2λk+1
∥∇fk(wk)∥2 (Since ∇ψk+1(wk)−∇ψk(wk) = 0)

Fk+1(wk)− Fk+1(wk+1) = [Fk+1(wk)− Fk(wk)] + [Fk(wk)− Fk+1(wk+1)]

= [fk(wk) + ψk+1(wk)− ψk(wk)] + [Fk(wk)− Fk+1(wk+1)]

Putting everything together,

=⇒ [fk(wk) + ψk+1(wk)− ψk(wk)] + [Fk(wk)− Fk+1(wk+1)] ≤
1

2λk+1
∥∇fk(wk)∥2

19

Follow the Regularized Leader

Recall that [fk(wk) + ψk+1(wk)− ψk(wk)] + [Fk(wk)− Fk+1(wk+1)] ≤ 1
2λk+1

∥∇fk(wk)∥2.

[fk(wk)− fk(u)] + [Fk(wk)− Fk+1(wk+1)] ≤
1

2λk+1
∥∇fk(wk)∥2 + [ψk(wk)− ψk+1(wk)]− fk(u)

RT (u) + F1(w1)︸︷︷︸
=

σ0
2 ∥w1∥2≥0

−FT+1(wT+1) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
k=1

[ψk(wk)− ψk+1(wk)]︸ ︷︷ ︸
=−σk

2 ∥wk−wk∥2=0

−
T∑

k=1

fk(u)

=⇒ RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+ [FT+1(wT+1)]−

[
T∑

k=1

fk(u) + ψT+1(u)

]
+ ψT+1(u)

≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+ [FT+1(wT+1)− FT+1(u)]︸ ︷︷ ︸

Non-Positive since wT+1 := arg min FT+1(w)

+ψT+1(u)

=⇒ RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
k=1

σk
2

∥u − wk∥2 +
σ0

2
∥u∥2

20

Follow the Regularized Leader - Convex, Lipschitz functions

Claim: If the convex set C has a diameter D and for an arbitrary sequence losses such that each

fk is convex, G -Lipschitz and differentiable, then FTRL with ηk := 1∑k
i=0 σi

=

√
D2+∥u∥2
√

2G
√
k

satisfies
the following regret bound for all u ∈ C,

RT (u) ≤
√

2
√
D2 + ∥u∥2 G

√
T

Proof: Using the general result from the previous slide, for λk+1 =
∑k

i=1 µi +
∑k

i=0 σi . Since
fk is not necessarily strongly-convex, λk+1 =

∑k
i=0 σi

RT (u) ≤
T∑

k=1

[
1

2λk+1
∥∇fk(wk)∥2

]
+

T∑
i=0

σi
2
∥u − wi∥2 +

σ0

2
∥u∥2

≤
T∑

k=1

[
1

2
∑k

i=0 σi
∥∇fk(wk)∥2

]
+

D2 + ∥u∥2

2

T∑
i=0

σi (Since ∥u − wi∥2 ≤ D)

RT (u) ≤
G 2

2

T∑
k=1

[
1∑k

i=0 σi

]
+

D2 + ∥u∥2

2

T∑
i=0

σi (Since fk is G -Lipschitz)

21

Follow the Regularized Leader - Convex, Lipschitz functions

Recall that RT (u) ≤ G2

2

∑T
k=1

[
1∑k

i=0 σi

]
+ D2+∥u∥2

2

∑T
i=0 σi . Denoting ηk := 1∑k

i=0 σi
,

RT (u) ≤
G 2

2

T∑
k=1

ηk +
(D2 + ∥u∥2)

2ηT
= G 2 η

√
T +

(D2 + ∥u∥2)
√
T

2η
(Since ηk = η√

k
)

Using η =

√
D2+∥u∥2
√

2G
,

RT (u) ≤
√

2
√
D2 + ∥u∥2 G

√
T

If 0 ∈ C, then ∥u∥2 ≤ D2, and this is exactly the regret bound we derived for OGD (upto a
√

2
factor)! Hence, though FTL incurs linear regret for convex, Lipschitz losses, FTRL can attain the
optimal Θ(

√
T) regret.

22

Questions?

22

References i

Francesco Orabona, A modern introduction to online learning, arXiv preprint
arXiv:1912.13213 (2019).

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell, A reduction of imitation learning and
structured prediction to no-regret online learning, Proceedings of the fourteenth
international conference on artificial intelligence and statistics, JMLR Workshop and
Conference Proceedings, 2011, pp. 627–635.

23

