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Recap

Function class L-smooth L-smooth
+ convex + µ-strongly convex

GD O (n/ϵ) O (n κ log (1/ϵ))

Nesterov Acceleration O (n/
√
ϵ) O (n

√
κ log (1/ϵ))

SGD O (1/ϵ2) O (1/ϵ)

SGD under exact interpolation O (1/ϵ) O (κ log (1/ϵ))

Variance reduced methods
(SVRG [JZ13], SARAH [NLST17]) O ((n + 1/ϵ) log(1/ϵ)) O ((n + κ) log (1/ϵ))

Accelerated variance reduced methods
(Katyusha [AZ17], Varag [LLZ19]), O ((n + 1/

√
ϵ) log(1/ϵ)) O ((n +

√
κ) log (1/ϵ))

Table 1: Number of gradient evaluations for obtaining an ϵ-sub-optimality when minimizing a finite-sum.

Today, we will look at minimizing non-smooth, but Lipschitz (strongly)-convex functions.
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Lipschitz Functions

Recall that for Lipschitz functions, for all x , y ∈ D, there exists a constant G < ∞,

|f (y)− f (x)| ≤ G ∥x − y∥ .

This immediately implies that the gradients are bounded, i.e. for all w ∈ D, ∥∇f (w)∥ ≤ G .

Example: Hinge loss: f (w) = max {0, 1 − y⟨w , x⟩} is Lipschitz with G = ∥y x∥

Compare this to smooth functions that satisfy ∥∇f (x)−∇f (y)∥ ≤ L ∥x − y∥. Lipschitz
functions are not necessarily smooth, and smooth functions are not necessarily Lipschitz.

Example: f (w) = |w | is 1-Lipschitz, but not smooth (gradient changes from −1 to +1 at
w = 0). On the other hand, f (w) = 1

2 ∥w∥2
2 is 1-smooth, but not Lipschitz (the gradient is

equal to x and hence not bounded).
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Subgradients

Subgradient: For a convex function f , the subgradient of f at x ∈ D is a vector g that satisfies
the inequality for all y ,

f (y) ≥ f (x) + ⟨g , y − x⟩

This is similar to the first-order definition of convexity, with the subgradient instead of the
gradient. Importantly, the subgradient is not unique.

Example: For f (w) = |w | at w = 0, vectors with slope in [−1, 1] and passing through the origin
are subgradients.

Subdifferential: Set of subgradients of f at w ∈ D is referred to as the subdifferential and
denoted by ∂f (w). Formally, ∂f (w) = {g | ∀y ∈ D; f (y) ≥ f (w) + ⟨g , y − w⟩}.

For f : D → R, iff ∀w ∈ D, ∂f (w) ̸= ∅, f is convex. If f is convex and differentiable at w , then
∇f (w) ∈ ∂f (w) (see [B+15, Proposition 1.1] for a proof)
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Subgradients

Example: For f (w) = |w |,

∂f (w) =


{1} for w > 0

[−1, 1] for w = 0

{−1} for w < 0

Q: Compute the subdifferential for the Hinge loss f (w) = max {0, 1 − ⟨z ,w⟩}

Ans:

∂f (w) =


{0} for 1 − ⟨z ,w⟩ < 0

{−αz |α ∈ [0, 1]} for 1 − ⟨z ,w⟩ = 0

{−z} for 1 − ⟨z ,w⟩ > 0
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Subgradients

Analogous to the smooth case, for unconstrained minimization of convex, non-smooth functions,
w∗ is the minimizer of f iff 0 ∈ ∂f (w∗).

Using the subgradient definition at x = w∗, if 0 ∈ ∂f (w∗), then, for all y ,

f (y) ≥ f (w∗) + ⟨0, y − w∗⟩ =⇒ f (y) ≥ f (w∗) ,

and hence w∗ is a minimizer of f .

Example: For f (w) = |w |, 0 ∈ ∂f (0) and hence w∗ = 0.

Similarly, when minimizing convex, non-smooth functions over a constrained domain, if
w∗ = argminD f (w) iff ∃g ∈ ∂f (w∗) such that y ∈ D, ⟨g , y − w∗⟩ ≥ 0
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Subgradient Descent

Algorithmically, we can use the subgradient instead of the gradient in GD, and use the resulting
algorithm to minimize convex, Lipschitz functions.

Projected Subgradient Descent: wk+1 = ΠD [wk − ηkgk ], where gk ∈ ∂f (wk).

Similar to GD, we can interpret subgradient descent as:

wk+1 = argmin
w∈D

[
⟨gk ,w⟩+ 1

2ηk
∥w − wk∥2

]

Unlike for smooth, convex functions, we cannot relate the subgradient norm to the suboptimality
in the function values. Example: For f (w) = |w |, for all w > 0 (including w = 0+), ∥g∥ = 1.

Consequently, in order to converge to the minimizer, we need to explicitly decrease the step-size
resulting in slower convergence. E.g., for Lipschitz, convex functions, ηk = O(1/

√
k) and

subgradient descent will result in Θ
(

1√
T

)
convergence.
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Minimizing convex, Lipschitz functions using Subgradient Descent

For simplicity, let us assume that D = Rd and analyze the convergence of subgradient descent.

Claim: For G -Lipschitz, convex functions, for η > 0, T iterations of subgradient descent with
ηk = η/

√
k converges as follows, where w̄T =

∑T−1
k=0 wk/T ,

f (w̄T )− f (w∗) ≤ 1√
T

[
∥w0 − w∗∥2

2η
+

G 2η [1 + log(T )]

2

]
.

Proof: Similar to the previous proofs, using the update wk+1 = wk − ηkgk where gk ∈ ∂f (wk),

∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2ηk⟨gk ,wk − w∗⟩+ η2
k ∥gk∥

2

≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + η2
k ∥gk∥

2

(Definition of subgradient with x = wk , y = w∗)

≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + η2
k G

2

(Since f is G -Lipschitz)

=⇒ ηk [f (wk)− f (w∗)] ≤ ∥wk − w∗∥2 − ∥wk+1 − w∗∥2

2
+

η2
k G

2

2
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Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that ηk [f (wk)− f (w∗)] ≤ ∥wk−w∗∥2−∥wk+1−w∗∥2

2 +
η2
k G2

2 ,

=⇒ ηmin

T−1∑
k=0

[f (wk)− f (w∗)] ≤
T−1∑
k=0

[
∥wk − w∗∥2 − ∥wk+1 − w∗∥2

2

]
+

G 2

2

T−1∑
k=0

η2
k

≤ ∥w0 − w∗∥2

2
+

G 2

2

T−1∑
k=0

η2
k

=⇒ η√
T

T−1∑
k=0

[f (wk)− f (w∗)] ≤ ∥w0 − w∗∥2

2
+

G 2η2

2

T−1∑
k=0

1
k

(Since ηk = η/
√
k)

=⇒
∑T−1

k=0 [f (wk)− f (w∗)]

T
≤ 1√

T

[
∥w0 − w∗∥2

2η
+

G 2η [1 + log(T )]

2

]

=⇒ f (w̄T )− f (w∗) ≤ 1√
T

[
∥w0 − w∗∥2

2η
+

G 2η [1 + log(T )]

2

]
(Using Jensen’s inequality on the LHS, and by definition of w̄T .)
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Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that f (w̄T )− f (w∗) ≤ 1√
T

[
∥w0−w∗∥2

2η + G2η [1+log(T )]
2

]
. The above proof works for any

value of η and we can modify the proof to set the “best” value of η.

For this, let us use a constant step-size ηk = η. Following the same proof as before,

ηmin

T−1∑
k=0

[f (wk)− f (w∗)] ≤ ∥w0 − w∗∥2

2
+

G 2

2

T−1∑
k=0

η2
k

=⇒
T−1∑
k=0

[f (wk)− f (w∗)] ≤ ∥w0 − w∗∥2

2η
+

G 2Tη

2
(Since ηk = η)

Setting η = ∥w0−w∗∥
G
√
T

, dividing by T and using Jensen’s inequality on the LHS,

f (w̄T )− f (w∗) ≤ G ∥w0 − w∗∥√
T

For Lipschitz, convex functions, the above O(1/ϵ2) rate is optimal, but we require knowledge of
G , ∥w0 − w∗∥ ,T to set the step-size. 9



Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that for smooth, convex functions, we could use Nesterov acceleration to obtain a faster
O(1/

√
ϵ) rate. On the other hand, for Lipschitz, convex functions, subgradient descent is optimal.

In order to get the G∥w0−w∗∥√
T

rate, we needed knowledge of G and ∥w0 − w∗∥ to set the
step-size. There are various techniques to set the step-size in an adaptive manner.

AdaGrad [DHS11] is adaptive to G , but still requires knowing a quantity related ∥w0 − w∗∥
to select the “best” step-size. This influences the practical performance of AdaGrad.

Polyak step-size [HK19] attains the desired rate without knowledge of G or ∥w0 − w∗∥, but
requires knowing f ∗.

Coin-Betting [OP16] does not require knowledge of ∥w0 − w∗∥. It only requires an estimate
of G and is robust to its misspecification in theory (but not quite in practice).
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Minimizing convex, Lipschitz functions using Subgradient Descent

For Lipschitz, strongly-convex functions, subgradient descent attains an Θ
( 1
ϵ

)
rate. For this, the

step-size depends on µ and the proof is similar to the one in (Slide 6, Lecture 10).

Subgradient descent is also optimal for Lipschitz, strongly-convex functions.

For Lipschitz functions, the convergence rates for SGD are the same as GD (with similar proofs).

Function class L-smooth L-smooth G -Lipschitz G -Lipschitz
+ convex + µ-strongly convex + convex + µ-strongly convex

GD O (1/ϵ) O (κ log (1/ϵ)) Θ (1/ϵ2) Θ (1/ϵ)

SGD Θ(1/ϵ2) Θ (1/ϵ) Θ (1/ϵ2) Θ (1/ϵ)

Table 2: Number of iterations required for obtaining an ϵ-sub-optimality.
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