CMPT 409/981: Optimization for Machine Learning

Lecture 13

Sharan Vaswani
October 31, 2022

Recap

Function class	L-smooth + convex	L-smooth $+\mu$-strongly convex
GD	$O(n / \epsilon)$	$O(n \kappa \log (1 / \epsilon))$
Nesterov Acceleration	$O(n / \sqrt{\epsilon})$	$O(n \sqrt{\kappa} \log (1 / \epsilon))$
SGD	$O\left(1 / \epsilon^{2}\right)$	$O(1 / \epsilon)$
SGD under exact interpolation	$O(1 / \epsilon)$	$O(\kappa \log (1 / \epsilon))$
Variance reduced methods (SVRG [JZ13], SARAH [NLST17])	$O((n+1 / \epsilon) \log (1 / \epsilon))$	$O((n+\kappa) \log (1 / \epsilon))$
Accelerated variance reduced methods (Katyusha [AZ17], Varag [LLZ19]),	$O((n+1 / \sqrt{\epsilon}) \log (1 / \epsilon))$	$O((n+\sqrt{\kappa}) \log (1 / \epsilon))$

Table 1: Number of gradient evaluations for obtaining an ϵ-sub-optimality when minimizing a finite-sum.

Today, we will look at minimizing non-smooth, but Lipschitz (strongly)-convex functions.

Lipschitz Functions

Recall that for Lipschitz functions, for all $x, y \in \mathcal{D}$, there exists a constant $G<\infty$,

$$
|f(y)-f(x)| \leq G\|x-y\| .
$$

This immediately implies that the gradients are bounded, i.e. for all $w \in \mathcal{D},\|\nabla f(w)\| \leq G$.
Example: Hinge loss: $f(w)=\max \{0,1-y\langle w, x\rangle\}$ is Lipschitz with $G=\|y x\|$
Compare this to smooth functions that satisfy $\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|$. Lipschitz functions are not necessarily smooth, and smooth functions are not necessarily Lipschitz.

Example: $f(w)=|w|$ is 1-Lipschitz, but not smooth (gradient changes from -1 to +1 at $w=0$). On the other hand, $f(w)=\frac{1}{2}\|w\|_{2}^{2}$ is 1 -smooth, but not Lipschitz (the gradient is equal to x and hence not bounded).

Subgradients

Subgradient: For a convex function f, the subgradient of f at $x \in \mathcal{D}$ is a vector g that satisfies the inequality for all y,

$$
f(y) \geq f(x)+\langle g, y-x\rangle
$$

This is similar to the first-order definition of convexity, with the subgradient instead of the gradient. Importantly, the subgradient is not unique.

Example: For $f(w)=|w|$ at $w=0$, vectors with slope in $[-1,1]$ and passing through the origin are subgradients.

Subdifferential: Set of subgradients of f at $w \in \mathcal{D}$ is referred to as the subdifferential and denoted by $\partial f(w)$. Formally, $\partial f(w)=\{g \mid \forall y \in \mathcal{D} ; f(y) \geq f(w)+\langle g, y-w\rangle\}$.

For $f: \mathcal{D} \rightarrow \mathbb{R}$, iff $\forall w \in \mathcal{D}, \partial f(w) \neq \emptyset, f$ is convex. If f is convex and differentiable at w, then $\nabla f(w) \in \partial f(w)\left(\right.$ see $\left[\mathrm{B}^{+} 15\right.$, Proposition 1.1] for a proof)

Subgradients

Example: For $f(w)=|w|$,

$$
\partial f(w)=\left\{\begin{array}{l}
\{1\} \text { for } w>0 \\
{[-1,1] \quad \text { for } w=0} \\
\{-1\} \quad \text { for } w<0
\end{array}\right.
$$

Q: Compute the subdifferential for the Hinge loss $f(w)=\max \{0,1-\langle z, w\rangle\}$ Ans:

$$
\partial f(w)=\left\{\begin{array}{l}
\{0\} \text { for } 1-\langle z, w\rangle<0 \\
\{-\alpha z \mid \alpha \in[0,1]\} \text { for } 1-\langle z, w\rangle=0 \\
\{-z\} \text { for } 1-\langle z, w\rangle>0
\end{array}\right.
$$

Subgradients

Analogous to the smooth case, for unconstrained minimization of convex, non-smooth functions, w^{*} is the minimizer of f iff $0 \in \partial f\left(w^{*}\right)$.
Using the subgradient definition at $x=w^{*}$, if $0 \in \partial f\left(w^{*}\right)$, then, for all y,

$$
f(y) \geq f\left(w^{*}\right)+\left\langle 0, y-w^{*}\right\rangle \Longrightarrow f(y) \geq f\left(w^{*}\right)
$$

and hence w^{*} is a minimizer of f.
Example: For $f(w)=|w|, 0 \in \partial f(0)$ and hence $w^{*}=0$.
Similarly, when minimizing convex, non-smooth functions over a constrained domain, if $w^{*}=\arg \min _{\mathcal{D}} f(w)$ iff $\exists g \in \partial f\left(w^{*}\right)$ such that $y \in \mathcal{D},\left\langle g, y-w^{*}\right\rangle \geq 0$

Subgradient Descent

Algorithmically, we can use the subgradient instead of the gradient in GD, and use the resulting algorithm to minimize convex, Lipschitz functions.

Projected Subgradient Descent: $w_{k+1}=\Pi_{\mathcal{D}}\left[w_{k}-\eta_{k} g_{k}\right]$, where $g_{k} \in \partial f\left(w_{k}\right)$.
Similar to GD, we can interpret subgradient descent as:

$$
w_{k+1}=\underset{w \in \mathcal{D}}{\arg \min }\left[\left\langle g_{k}, w\right\rangle+\frac{1}{2 \eta_{k}}\left\|w-w_{k}\right\|^{2}\right]
$$

Unlike for smooth, convex functions, we cannot relate the subgradient norm to the suboptimality in the function values. Example: For $f(w)=|w|$, for all $w>0$ (including $w=0^{+}$), $\|g\|=1$.
Consequently, in order to converge to the minimizer, we need to explicitly decrease the step-size resulting in slower convergence. E.g., for Lipschitz, convex functions, $\eta_{k}=O(1 / \sqrt{k})$ and subgradient descent will result in $\Theta\left(\frac{1}{\sqrt{T}}\right)$ convergence.

Minimizing convex, Lipschitz functions using Subgradient Descent

For simplicity, let us assume that $\mathcal{D}=\mathbb{R}^{d}$ and analyze the convergence of subgradient descent.
Claim: For G-Lipschitz, convex functions, for $\eta>0, T$ iterations of subgradient descent with $\eta_{k}=\eta / \sqrt{k}$ converges as follows, where $\bar{w}_{T}=\sum_{k=0}^{T-1} w_{k} / T$,

$$
f\left(\bar{w}_{T}\right)-f\left(w^{*}\right) \leq \frac{1}{\sqrt{T}}\left[\frac{\left\|w_{0}-w^{*}\right\|^{2}}{2 \eta}+\frac{G^{2} \eta[1+\log (T)]}{2}\right] .
$$

Proof: Similar to the previous proofs, using the update $w_{k+1}=w_{k}-\eta_{k} g_{k}$ where $g_{k} \in \partial f\left(w_{k}\right)$,

$$
\begin{aligned}
&\left\|w_{k+1}-w^{*}\right\|^{2}=\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left\langle g_{k}, w_{k}-w^{*}\right\rangle+\eta_{k}^{2}\left\|g_{k}\right\|^{2} \\
& \leq\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]+\eta_{k}^{2}\left\|g_{k}\right\|^{2} \\
&\left.\quad \text { (Definition of subgradient with } x=w_{k}, y=w^{*}\right) \\
& \leq\left\|w_{k}-w^{*}\right\|^{2}-2 \eta_{k}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]+\eta_{k}^{2} G^{2}
\end{aligned}
$$

$$
\text { (Since } f \text { is } G \text {-Lipschitz) }
$$

$$
\Longrightarrow \eta_{k}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right] \leq \frac{\left\|w_{k}-w^{*}\right\|^{2}-\left\|w_{k+1}-w^{*}\right\|^{2}}{2}+\frac{\eta_{k}^{2} G^{2}}{2}
$$

Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that $\eta_{k}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right] \leq \frac{\left\|w_{k}-w^{*}\right\|^{2}-\left\|w_{k+1}-w^{*}\right\|^{2}}{2}+\frac{\eta_{k}^{2} G^{2}}{2}$,

$$
\begin{aligned}
\Longrightarrow \eta_{\min } \sum_{k=0}^{T-1}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right] & \leq \sum_{k=0}^{T-1}\left[\frac{\left\|w_{k}-w^{*}\right\|^{2}-\left\|w_{k+1}-w^{*}\right\|^{2}}{2}\right]+\frac{G^{2}}{2} \sum_{k=0}^{T-1} \eta_{k}^{2} \\
& \leq \frac{\left\|w_{0}-w^{*}\right\|^{2}}{2}+\frac{G^{2}}{2} \sum_{k=0}^{T-1} \eta_{k}^{2}
\end{aligned}
$$

$$
\Longrightarrow \frac{\eta}{\sqrt{T}} \sum_{k=0}^{T-1}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right] \leq \frac{\left\|w_{0}-w^{*}\right\|^{2}}{2}+\frac{G^{2} \eta^{2}}{2} \sum_{k=0}^{T-1} \frac{1}{k}
$$

$$
\text { (Since } \left.\eta_{k}=\eta / \sqrt{k}\right)
$$

$$
\Longrightarrow \frac{\sum_{k=0}^{T-1}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right]}{T} \leq \frac{1}{\sqrt{T}}\left[\frac{\left\|w_{0}-w^{*}\right\|^{2}}{2 \eta}+\frac{G^{2} \eta[1+\log (T)]}{2}\right]
$$

$$
\Longrightarrow f\left(\bar{w}_{T}\right)-f\left(w^{*}\right) \leq \frac{1}{\sqrt{T}}\left[\frac{\left\|w_{0}-w^{*}\right\|^{2}}{2 \eta}+\frac{G^{2} \eta[1+\log (T)]}{2}\right]
$$

(Using Jensen's inequality on the LHS, and by definition of \bar{w}_{T}.)

Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that $f\left(\bar{w}_{T}\right)-f\left(w^{*}\right) \leq \frac{1}{\sqrt{T}}\left[\frac{\left\|w_{0}-w^{*}\right\|^{2}}{2 \eta}+\frac{G^{2} \eta[1+\log (T)]}{2}\right]$. The above proof works for any value of η and we can modify the proof to set the "best" value of η.

For this, let us use a constant step-size $\eta_{k}=\eta$. Following the same proof as before,

$$
\begin{aligned}
& \eta_{\min } \sum_{k=0}^{T-1}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right] \leq \frac{\left\|w_{0}-w^{*}\right\|^{2}}{2}+\frac{G^{2}}{2} \sum_{k=0}^{T-1} \eta_{k}^{2} \\
& \Longrightarrow \sum_{k=0}^{T-1}\left[f\left(w_{k}\right)-f\left(w^{*}\right)\right] \leq \frac{\left\|w_{0}-w^{*}\right\|^{2}}{2 \eta}+\frac{G^{2} T \eta}{2}
\end{aligned}
$$

$$
\left(\text { Since } \eta_{k}=\eta\right)
$$

Setting $\eta=\frac{\left\|w_{0}-w^{*}\right\|}{G \sqrt{T}}$, dividing by T and using Jensen's inequality on the LHS,

$$
f\left(\bar{w}_{T}\right)-f\left(w^{*}\right) \leq \frac{G\left\|w_{0}-w^{*}\right\|}{\sqrt{T}}
$$

For Lipschitz, convex functions, the above $O\left(1 / \epsilon^{2}\right)$ rate is optimal, but we require knowledge of $G,\left\|w_{0}-w^{*}\right\|, T$ to set the step-size.

Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that for smooth, convex functions, we could use Nesterov acceleration to obtain a faster $O(1 / \sqrt{\epsilon})$ rate. On the other hand, for Lipschitz, convex functions, subgradient descent is optimal. In order to get the $\frac{G\left\|w_{0}-w^{*}\right\|}{\sqrt{T}}$ rate, we needed knowledge of G and $\left\|w_{0}-w^{*}\right\|$ to set the step-size. There are various techniques to set the step-size in an adaptive manner.

- AdaGrad [DHS11] is adaptive to G, but still requires knowing a quantity related $\left\|w_{0}-w^{*}\right\|$ to select the "best" step-size. This influences the practical performance of AdaGrad.
- Polyak step-size [HK19] attains the desired rate without knowledge of G or $\left\|w_{0}-w^{*}\right\|$, but requires knowing f^{*}.
- Coin-Betting [OP16] does not require knowledge of $\left\|w_{0}-w^{*}\right\|$. It only requires an estimate of G and is robust to its misspecification in theory (but not quite in practice).

Minimizing convex, Lipschitz functions using Subgradient Descent

For Lipschitz, strongly-convex functions, subgradient descent attains an $\Theta\left(\frac{1}{\epsilon}\right)$ rate. For this, the step-size depends on μ and the proof is similar to the one in (Slide 6, Lecture 10).

Subgradient descent is also optimal for Lipschitz, strongly-convex functions.
For Lipschitz functions, the convergence rates for SGD are the same as GD (with similar proofs).

Function class	L-smooth + convex	L-smooth $+\mu$-strongly convex	G-Lipschitz + convex	G-Lipschitz $+\mu$-strongly convex
GD	$O(1 / \epsilon)$	$O(\kappa \log (1 / \epsilon))$	$\Theta\left(1 / \epsilon^{2}\right)$	$\Theta(1 / \epsilon)$
SGD	$\Theta\left(1 / \epsilon^{2}\right)$	$\Theta(1 / \epsilon)$	$\Theta\left(1 / \epsilon^{2}\right)$	$\Theta(1 / \epsilon)$

Table 2: Number of iterations required for obtaining an ϵ-sub-optimality.

References i

－Zeyuan Allen－Zhu，Katyusha：The first direct acceleration of stochastic gradient methods， The Journal of Machine Learning Research 18 （2017），no．1，8194－8244．

围 Sébastien Bubeck et al．，Convex optimization：Algorithms and complexity，Foundations and Trends $®$ in Machine Learning 8 （2015），no．3－4，231－357．
嗇 John Duchi，Elad Hazan，and Yoram Singer，Adaptive subgradient methods for online learning and stochastic optimization．，Journal of machine learning research 12 （2011），no． 7.

囯 Elad Hazan and Sham Kakade，Revisiting the polyak step size，arXiv preprint arXiv：1905．00313（2019）．

Re Rie Johnson and Tong Zhang，Accelerating stochastic gradient descent using predictive variance reduction，Advances in neural information processing systems 26 （2013）．

References ii

國 Guanghui Lan, Zhize Li, and Yi Zhou, A unified variance-reduced accelerated gradient method for convex optimization, Advances in Neural Information Processing Systems 32 (2019).

Rei Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč, Sarah: A novel method for machine learning problems using stochastic recursive gradient, International Conference on Machine Learning, PMLR, 2017, pp. 2613-2621.
Francesco Orabona and Dávid Pál, Coin betting and parameter-free online learning, Advances in Neural Information Processing Systems 29 (2016).

