CMPT 409/981: Optimization for Machine Learning Lecture 13

Sharan Vaswani

October 31, 2022

Function class	<i>L</i> -smooth	<i>L</i> -smooth
	+ convex	+ μ -strongly convex
GD	$O\left(n/\epsilon\right)$	$O\left(n \kappa \log\left(1/\epsilon\right)\right)$
Nesterov Acceleration	$O\left(n / \sqrt{\epsilon} ight)$	$O\left(n\sqrt{\kappa}\log\left(1/\epsilon ight) ight)$
SGD	$O\left(1/\epsilon^2 ight)$	$O\left(^{1\!/\epsilon} ight)$
SGD under exact interpolation	$O\left(^{1\!/\epsilon} ight)$	$O\left(\kappa \log\left(1/\epsilon ight) ight)$
Variance reduced methods		
(SVRG [JZ13], SARAH [NLST17])	$O\left((n+1/\epsilon)\log(1/\epsilon) ight)$	$O\left((n+\kappa)\log\left(1/\epsilon ight) ight)$
Accelerated variance reduced methods		
(Katyusha [AZ17], Varag [LLZ19]),	$O\left(\left(n+1/\sqrt{\epsilon} ight)\log(1/\epsilon) ight)$	$O\left(\left(n+\sqrt{\kappa} ight)\log\left(1/\epsilon ight) ight)$

Table 1: Number of gradient evaluations for obtaining an ϵ -sub-optimality when minimizing a finite-sum.

Today, we will look at minimizing non-smooth, but Lipschitz (strongly)-convex functions.

Recall that for Lipschitz functions, for all $x, y \in D$, there exists a constant $G < \infty$,

$$|f(y) - f(x)| \le G ||x - y||$$
.

This immediately implies that the gradients are bounded, i.e. for all $w \in D$, $\|\nabla f(w)\| \leq G$. **Example**: Hinge loss: $f(w) = \max\{0, 1 - y\langle w, x \rangle\}$ is Lipschitz with $G = \|yx\|$

Compare this to smooth functions that satisfy $\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|$. Lipschitz functions are not necessarily smooth, and smooth functions are not necessarily Lipschitz.

Example: f(w) = |w| is 1-Lipschitz, but not smooth (gradient changes from -1 to +1 at w = 0). On the other hand, $f(w) = \frac{1}{2} ||w||_2^2$ is 1-smooth, but not Lipschitz (the gradient is equal to x and hence not bounded).

Subgradient: For a convex function f, the subgradient of f at $x \in D$ is a vector g that satisfies the inequality for all y,

```
f(y) \geq f(x) + \langle g, y - x \rangle
```

This is similar to the first-order definition of convexity, with the subgradient instead of the gradient. Importantly, the subgradient is not unique.

Example: For f(w) = |w| at w = 0, vectors with slope in [-1, 1] and passing through the origin are subgradients.

Subdifferential: Set of subgradients of f at $w \in D$ is referred to as the subdifferential and denoted by $\partial f(w)$. Formally, $\partial f(w) = \{g | \forall y \in D; f(y) \ge f(w) + \langle g, y - w \rangle \}$.

For $f : \mathcal{D} \to \mathbb{R}$, iff $\forall w \in \mathcal{D}$, $\partial f(w) \neq \emptyset$, f is convex. If f is convex and differentiable at w, then $\nabla f(w) \in \partial f(w)$ (see [B⁺15, Proposition 1.1] for a proof)

Example: For f(w) = |w|,

$$\partial f(w) = egin{cases} \{1\} & ext{for } w > 0 \ [-1,1] & ext{for } w = 0 \ \{-1\} & ext{for } w < 0 \end{cases}$$

Q: Compute the subdifferential for the Hinge loss $f(w) = \max \{0, 1 - \langle z, w \rangle \}$ Ans:

$$\partial f(w) = egin{cases} \{0\} & ext{for } 1-\langle z,w
angle < 0 \ \{-lpha z | lpha \in [0,1]\} & ext{for } 1-\langle z,w
angle = 0 \ \{-z\} & ext{for } 1-\langle z,w
angle > 0 \end{cases}$$

Analogous to the smooth case, for unconstrained minimization of convex, non-smooth functions, w^* is the minimizer of f iff $0 \in \partial f(w^*)$.

Using the subgradient definition at $x = w^*$, if $0 \in \partial f(w^*)$, then, for all y,

$$f(y) \geq f(w^*) + \langle 0, y - w^* \rangle \implies f(y) \geq f(w^*),$$

and hence w^* is a minimizer of f.

Example: For f(w) = |w|, $0 \in \partial f(0)$ and hence $w^* = 0$.

Similarly, when minimizing convex, non-smooth functions over a constrained domain, if $w^* = \arg \min_{\mathcal{D}} f(w)$ iff $\exists g \in \partial f(w^*)$ such that $y \in \mathcal{D}$, $\langle g, y - w^* \rangle \ge 0$

Algorithmically, we can use the subgradient instead of the gradient in GD, and use the resulting algorithm to minimize convex, Lipschitz functions.

Projected Subgradient Descent: $w_{k+1} = \prod_{\mathcal{D}} [w_k - \eta_k g_k]$, where $g_k \in \partial f(w_k)$.

Similar to GD, we can interpret subgradient descent as:

$$w_{k+1} = \operatorname*{arg\,min}_{w \in \mathcal{D}} \left[\langle g_k, w
angle + rac{1}{2\eta_k} \left\| w - w_k
ight\|^2
ight]$$

Unlike for smooth, convex functions, we cannot relate the subgradient norm to the suboptimality in the function values. Example: For f(w) = |w|, for all w > 0 (including $w = 0^+$), ||g|| = 1.

Consequently, in order to converge to the minimizer, we need to explicitly decrease the step-size resulting in slower convergence. E.g., for Lipschitz, convex functions, $\eta_k = O(1/\sqrt{k})$ and subgradient descent will result in $\Theta\left(\frac{1}{\sqrt{T}}\right)$ convergence.

Minimizing convex, Lipschitz functions using Subgradient Descent

For simplicity, let us assume that $\mathcal{D} = \mathbb{R}^d$ and analyze the convergence of subgradient descent.

Claim: For *G*-Lipschitz, convex functions, for $\eta > 0$, *T* iterations of subgradient descent with $\eta_k = \eta/\sqrt{k}$ converges as follows, where $\bar{w}_T = \sum_{k=0}^{T-1} w_k/\tau$,

$$f(\bar{w}_{T}) - f(w^{*}) \leq \frac{1}{\sqrt{T}} \left[\frac{\|w_{0} - w^{*}\|^{2}}{2\eta} + \frac{G^{2}\eta \left[1 + \log(T)\right]}{2} \right]$$

Proof: Similar to the previous proofs, using the update $w_{k+1} = w_k - \eta_k g_k$ where $g_k \in \partial f(w_k)$,

$$\leq \|w_k - w^*\|^2 - 2\eta_k [f(w_k) - f(w^*)] + \eta_k^2 G^2$$
(Since f is G-Lipschitz)

$$\implies \eta_k[f(w_k) - f(w^*)] \le \frac{\|w_k - w^*\|^2 - \|w_{k+1} - w^*\|^2}{2} + \frac{\eta_k^2 G^2}{2}$$

Minimizing convex, Lipschitz functions using Subgradient Descent

F

Recall that
$$\eta_k[f(w_k) - f(w^*)] \leq \frac{\|w_k - w^*\|^2 - \|w_{k+1} - w^*\|^2}{2} + \frac{\eta_k^2 G^2}{2},$$

 $\implies \eta_{\min} \sum_{k=0}^{T-1} [f(w_k) - f(w^*)] \leq \sum_{k=0}^{T-1} \left[\frac{\|w_k - w^*\|^2 - \|w_{k+1} - w^*\|^2}{2} \right] + \frac{G^2}{2} \sum_{k=0}^{T-1} \eta_k^2$
 $\leq \frac{\|w_0 - w^*\|^2}{2} + \frac{G^2}{2} \sum_{k=0}^{T-1} \eta_k^2$
 $\implies \frac{\eta}{\sqrt{T}} \sum_{k=0}^{T-1} [f(w_k) - f(w^*)] \leq \frac{\|w_0 - w^*\|^2}{2} + \frac{G^2 \eta^2}{2} \sum_{k=0}^{T-1} \frac{1}{k} \qquad (\text{Since } \eta_k = \eta/\sqrt{k})$
 $\implies \frac{\sum_{k=0}^{T-1} [f(w_k) - f(w^*)]}{T} \leq \frac{1}{\sqrt{T}} \left[\frac{\|w_0 - w^*\|^2}{2\eta} + \frac{G^2 \eta [1 + \log(T)]}{2} \right]$
 $\implies f(\bar{w}_T) - f(w^*) \leq \frac{1}{\sqrt{T}} \left[\frac{\|w_0 - w^*\|^2}{2\eta} + \frac{G^2 \eta [1 + \log(T)]}{2} \right]$
(Using lensen's inequality on the LHS, and by definition of \bar{w}_T .)

Minimizing convex, Lipschitz functions using Subgradient Descent

Recall that $f(\bar{w}_T) - f(w^*) \leq \frac{1}{\sqrt{T}} \left[\frac{\|w_0 - w^*\|^2}{2\eta} + \frac{G^2 \eta [1 + \log(T)]}{2} \right]$. The above proof works for any value of η and we can modify the proof to set the "best" value of η .

For this, let us use a constant step-size $\eta_k = \eta$. Following the same proof as before,

$$\eta_{\min} \sum_{k=0}^{T-1} [f(w_k) - f(w^*)] \le \frac{\|w_0 - w^*\|^2}{2} + \frac{G^2}{2} \sum_{k=0}^{T-1} \eta_k^2$$
$$\implies \sum_{k=0}^{T-1} [f(w_k) - f(w^*)] \le \frac{\|w_0 - w^*\|^2}{2\eta} + \frac{G^2 T \eta}{2}$$
(Since $\eta_k = \eta$)

Setting $\eta = \frac{\|w_0 - w^*\|}{G\sqrt{T}}$, dividing by T and using Jensen's inequality on the LHS,

$$f(\bar{w}_{\mathcal{T}}) - f(w^*) \leq \frac{G \|w_0 - w^*\|}{\sqrt{T}}$$

For Lipschitz, convex functions, the above $O(1/\epsilon^2)$ rate is optimal, but we require knowledge of G, $||w_0 - w^*||$, T to set the step-size.

Recall that for smooth, convex functions, we could use Nesterov acceleration to obtain a faster $O(1/\sqrt{\epsilon})$ rate. On the other hand, for Lipschitz, convex functions, subgradient descent is optimal. In order to get the $\frac{G||w_0 - w^*||}{\sqrt{\tau}}$ rate, we needed knowledge of G and $||w_0 - w^*||$ to set the step-size. There are various techniques to set the step-size in an adaptive manner.

- AdaGrad [DHS11] is adaptive to G, but still requires knowing a quantity related ||w₀ w^{*}|| to select the "best" step-size. This influences the practical performance of AdaGrad.
- Polyak step-size [HK19] attains the desired rate without knowledge of G or $||w_0 w^*||$, but requires knowing f^* .
- Coin-Betting [OP16] does not require knowledge of $||w_0 w^*||$. It only requires an estimate of G and is robust to its misspecification in theory (but not quite in practice).

For Lipschitz, strongly-convex functions, subgradient descent attains an $\Theta\left(\frac{1}{\epsilon}\right)$ rate. For this, the step-size depends on μ and the proof is similar to the one in (Slide 6, Lecture 10).

Subgradient descent is also optimal for Lipschitz, strongly-convex functions.

For Lipschitz functions, the convergence rates for SGD are the same as GD (with similar proofs).

Function class	<i>L</i> -smooth	<i>L</i> -smooth	G-Lipschitz	G-Lipschitz
	+ convex	+ μ -strongly convex	+ convex	+ μ -strongly convex
GD	$O\left(1/\epsilon ight)$	$O\left(\kappa \log\left(1/\epsilon ight) ight)$	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon ight)$
SGD	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon ight)$	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon ight)$

Table 2: Number of iterations required for obtaining an ϵ -sub-optimality.

References i

- Zeyuan Allen-Zhu, *Katyusha: The first direct acceleration of stochastic gradient methods*, The Journal of Machine Learning Research **18** (2017), no. 1, 8194–8244.
- Sébastien Bubeck et al., *Convex optimization: Algorithms and complexity*, Foundations and Trends® in Machine Learning **8** (2015), no. 3-4, 231–357.
- John Duchi, Elad Hazan, and Yoram Singer, *Adaptive subgradient methods for online learning and stochastic optimization.*, Journal of machine learning research **12** (2011), no. 7.
- Elad Hazan and Sham Kakade, *Revisiting the polyak step size*, arXiv preprint arXiv:1905.00313 (2019).
- Rie Johnson and Tong Zhang, *Accelerating stochastic gradient descent using predictive variance reduction*, Advances in neural information processing systems **26** (2013).

- Guanghui Lan, Zhize Li, and Yi Zhou, *A unified variance-reduced accelerated gradient method for convex optimization*, Advances in Neural Information Processing Systems **32** (2019).
- Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč, *Sarah: A novel method for machine learning problems using stochastic recursive gradient*, International Conference on Machine Learning, PMLR, 2017, pp. 2613–2621.
- Francesco Orabona and Dávid Pál, *Coin betting and parameter-free online learning*, Advances in Neural Information Processing Systems **29** (2016).