
CMPT 409/981: Optimization for Machine Learning

Lecture 12

Sharan Vaswani

October 27, 2022

Recap

When minimizing smooth, strongly-convex functions under interpolation, SGD with η = 1
L can

converge to the minimizer at an O(exp(−T/κ)) rate. Hence, SGD matches the rate of
deterministic GD, but compared to GD, each iteration is cheap.

For smooth, non-convex functions, we require a stronger condition: Ei ∥∇fi (w)∥2 ≤ ρ ∥∇f (w)∥2

under which constant step-size SGD can attain the deterministic GD rate.

To simplify the proofs, we considered that f (w) = 1
n

∑n
i=1 fi (w), but neither the algorithm nor

the theoretical results depend on this finite-sum structure. We can extend all SGD results to
handle a general stochastic oracle that returns ∇f (w , ζ) s.t. Eζ [∇f (w , ζ)] = ∇f (w).

1

Stochastic Line-Search

Algorithmically, convergence under interpolation requires knowledge of L. We will use a
stochastic line-search (SLS) procedure [VML+19] to estimate L. SLS is similar to the
deterministic variant in Lecture 3, but uses only stochastic function/gradient evaluations.

Algorithm SGD with Stochastic Line-search
1: function SGD with Stochastic Line-search (f , w0, ηmax, c ∈ (0, 1), β ∈ (0, 1))
2: for k = 0, . . . ,T − 1 do
3: η̃k ← ηmax

4: while fik(wk − η̃k∇fik(wk)) > fik(wk)− c · η̃k ∥∇fik(wk)∥2 do
5: η̃k ← η̃kβ

6: end while
7: ηk ← η̃k
8: wk+1 = wk − ηk∇fik(wk)

9: end for
10: return wT

2

Stochastic Line-Search

SLS searches for a good step-size in the wrong direction.

Since all fi have zero gradient at w∗ and the noise
decreases as we get closer to the solution (because of
interpolation), SGD with SLS converges to the minimizer.

Claim: If each fi is L-smooth, then the (exact) backtracking procedure for SLS terminates and
returns ηk ∈

[
min

{
2 (1−c)

L , ηmax

}
, ηmax

]
.

Proof: Similar to the deterministic case (Lecture 3), but requires that each fi is L-smooth.

3

Minimizing smooth, strongly-convex functions using SGD + SLS
under interpolation

Claim: When minimizing f (w) = 1
n

∑n
i=1 fi (w) such that (i) f is µ-strongly convex, (ii) each fi

is convex and L-smooth, (iii) interpolation is exactly satisfied i.e. ∥∇fi (w∗)∥ = 0, T iterations of
SGD with SLS (with c = 1/2) returns iterate wT such that,

E[∥wT − w∗∥2] ≤ exp

(
−µT min

{
1
L
, ηmax

})
∥w0 − w∗∥2

Proof: Similar to the previous proof, we get that,

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2E [ηk⟨∇fik(wk),wk − w∗⟩] + E
[
η2
k ∥∇fik(wk)∥2

]
(1)

Since ηk depends on ik , we can not push the expectation in. ηk is set by SLS, it satisfies the
stochastic Armijo condition. Simplifying the third term and denoting f ∗ik := min fik(w),

E
[
η2
k ∥∇fik(wk)∥2

]
≤ E

[
ηk

fik(wk)− fik(wk+1)

c

]
≤ E

[
ηk

fik(wk)− f ∗ik
c

]
(2)

4

Minimizing smooth, strongly-convex functions using SGD + SLS
under interpolation

Using Eq. (1) + Eq. (2),

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2E [ηk⟨∇fik(wk),wk − w∗⟩] + E
[
ηk

fik(wk)− f ∗ik
c

]
(3)

E
[
ηk

fik(wk)− f ∗ik
c

]
= E [2ηk (fik(wk)− fik(w

∗) + fik(w
∗)− f ∗ik)] (Setting c = 1/2)

= E [2ηk (fik(wk)− fik(w
∗))] + E

2ηk (fik(w
∗)− f ∗ik))︸ ︷︷ ︸

Positive


≤ E [2ηk (fik(wk)− fik(w

∗))] + 2ηmax E [fik(w
∗)− f ∗ik] (Since ηk ≤ ηmax)

Since fik is convex and ∇fik(w∗) = 0, fik(w∗) = f ∗ik .

E
[
ηk

fik(wk)− f ∗ik
c

]
≤ E [2ηk (fik(wk)− fik(w

∗))] (4)

5

Minimizing smooth, strongly-convex functions using SGD + SLS
under interpolation

Using Eq. (3) + Eq. (4),

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2E [ηk⟨∇fik(wk),wk − w∗⟩] + E [2ηk (fik(wk)− fik(w
∗))]

= ∥wk − w∗∥2 + 2E [ηk(fik(wk)− fik(w
∗) + ⟨∇fik(wk),w

∗ − wk⟩)]

Since fik is convex, fik(wk)− fik(w
∗) + ⟨∇fik(wk),w

∗ − wk⟩ ≤ 0

≤ ∥wk − w∗∥2 + 2ηmin E [fik(wk)− fik(w
∗) + ⟨∇fik(wk),w

∗ − wk⟩]
(Lower-bounding ηk . ηmin := min

{ 1
L , ηmax

}
)

= ∥wk − w∗∥2 + 2ηmin E [f (wk)− f (w∗) + ⟨∇f (wk),w
∗ − wk⟩]
(Unbiasedness)

≤ ∥wk − w∗∥2 + 2ηmin

[
−µ
2
∥wk − w∗∥2

]
(f is µ-strongly convex)

=⇒ E[∥wk+1 − w∗∥2] ≤ (1− µ ηmin) ∥wk − w∗∥2

6

Minimizing smooth, strongly-convex functions using SGD + SLS
under interpolation

Recall that E[∥wk+1 − w∗∥2] ≤ (1− µ ηmin) ∥wk − w∗∥2. Taking expectation w.r.t the
randomness from iterations k = 0 to T − 1 and recursing,

E[∥wT − w∗∥2] ≤ (1− µηmin)
T ∥w0 − w∗∥2 ≤ exp (−µT ηmin) ∥w0 − w∗∥2

=⇒ E[∥wT − w∗∥2] ≤ exp

(
−µT min

{
1
L
, ηmax

})
∥w0 − w∗∥2

Hence, when minimizing smooth, strongly-convex functions under interpolation, SGD + SLS will
will converge to the minimizer at an exponential rate.

If interpolation is not exactly satisfied, we can modify the proof to get an O
(
exp

(−T
κ

)
+ ζ2

)
rate, where ζ2 := E [fik(w

∗)− f ∗ik].

When minimizing convex functions under (exact) interpolation, SGD + SLS results in an
O(1/T) rate without requiring knowledge of L. (Need to prove this in Assignment 3!)

Do not have strong theoretical results for SGD + SLS on smooth, non-convex problems.
7

Stochastic Line-Search and Effect of Over-parametrization

Objective: minθ1,θ2
1
2n

∑n
i=1 ∥θ2 θ1xi − yi∥2 ; Parameterization: θ1 ∈ Rk×6, θ2 ∈ R10×k .

8

Stochastic Line-Search - Experimental Results

Task: Multi-class classification with logistic loss.

9

Stochastic Polyak Step-size

When interpolation is (approximately) satisfied, we can use SGD with the stochastic Polyak
step-size (SPS) [LVLLJ21]: At iteration k , for hyper-parameter c ∈ (0, 1) and f ∗ik := minw fik(w),

ηk =
fik(wk)− f ∗ik
c ∥∇fik(wk)∥2

.

Common machine learning losses (squared loss, logistic loss, exponential loss) are lower-bounded
by zero. Algorithmically, we can set f ∗ik = 0.

SPS matches the SLS rates on smooth, (strongly) convex functions. E.g. SPS with c = 1/2

achieves the O
(
exp

(−T
κ

)
+ ζ2

)
rate for smooth, strongly-convex functions.

Much simpler and computationally inexpensive to implement compared to SLS.
Unlike SLS, SPS can be used for minimizing non-smooth, convex functions.
Results in large step-sizes and requires some additional heuristics for stabilizing the method.
For neural networks, generalization for SGD + SPS was typically worse than for SGD + SLS.
Requires access to f ∗ik which might be difficult to compute for more general problems.

10

Adaptivity for SGD

Noise-adaptivity: When minimizing smooth, strongly-convex functions, with T iterations of
SGD with ηk := 1

L

(1
T

) k
T , we can obtain an O

(
exp

(−T
κ

)
+ ζ2

T

)
rate, where

ζ2 := Ei [fi (w
∗)− f ∗i]. Adaptive to the extent of interpolation, but requires L to set the step-size.

Problem-adaptivity: SGD with the step-size set according to SLS/SPS is adaptive to L, but
results in an O

(
exp

(−T
κ

)
+ ζ2

)
rate.

[VDTB21] attempts to combine the above ideas to obtain both noise and problem adaptivity i.e.

use SLS to set γk ≈ 1
L and use ηk = γk

(1
T

) k
T . Either not guaranteed to converge to the

minimizer or will converge to the minimizer at a slower (than optimal) rate.

For smooth, strongly-convex problems, we do not (yet) know how to make SGD problem and
noise-adaptive, and achieve the optimal rate.

For smooth, convex problems, AdaGrad is both problem and noise-adaptive.

11

Questions?

11

Minimizing smooth, strongly-convex functions

For minimizing smooth, strongly-convex functions f (w) = 1
n

∑n
i=1 fi (w) to an ϵ-suboptimality,

Deterministic GD requires O(κ log(1/ϵ)) iterations, and O(n κ log(1/ϵ)) gradient evaluations.

SGD with a decreasing step-size requires O(1/ϵ) iterations, and O(1/ϵ) gradient evaluations.

Under exact interpolation, SGD with a constant step-size requires O(κ log(1/ϵ)) iterations,
and O(κ log(1/ϵ)) gradient evaluations.

For finite-sum problems of the form 1
n

∑n
i=1 fi (w), variance reduced methods require

O((n + κ) log(1/ϵ)) gradient evaluations.

12

Variance Reduced Methods

Recall that under exact interpolation, the variance decreases as we approach the minimizer.

On the other hand, variance reduced methods explicitly reduce the variance by either storing the
past stochastic gradients to approximate the full gradient [SLRB17] or by computing the full
gradient every “few” iterations [JZ13].

With variance reduction, we can use acceleration techniques to improve the dependence on the
condition number, and require O((n +

√
κ) log(1/ϵ)) gradient evaluations [AZ17].

For smooth, convex finite-sum problems, variance reduced techniques require
O
(
(n + 1

ϵ) log(
1/ϵ)

)
gradient evaluations [NLST17], compared to deterministic GD that requires

O(nϵ) gradient evaluations and SGD that requires O(1
ϵ2) gradient evaluations.

We will use SVRG (Stochastic Variance Reduced Gradient) [JZ13] for smooth, strongly-convex
finite-sum problems, and prove that it requires O((n + κ) log(1/ϵ)) gradient evaluations.

13

SVRG

For simplicity, we will use Loopless SVRG [KHR20] that has a simpler implementation and
analysis compared to the original paper [JZ13].

Algorithm SVRG
1: function SVRG (f , w0, η, p ∈ (0, 1])
2: v0 = w0

3: for k = 0, . . . ,T − 1 do
4: gk = ∇fik(wk)−∇fik(vk) +∇f (vk)
5: wk+1 = wk − ηgk

6: vk+1 =

{
vk with probability 1− p

wk with probability p

7: end for
8: return wT

14

Minimizing smooth, strongly-convex functions using SVRG

Claim: When minimizing f (w) = 1
n

∑n
i=1 fi (w) such that (i) f is µ-strongly convex, (ii) each fi

is convex and L-smooth, T iterations of SVRG with η = 1
6L and p = 1

n returns iterate wT ,

E[∥wT − w∗∥2] ≤
(
max

{(
1− µ

6L

)
,

(
1− 1

2n

)})T [
2n ∥w0 − w∗∥2

]
.

Case 1:
(
1− µ

6L

)
≤

(
1− 1

2n

)
=⇒ n ≥ 3κ. In this case, for achieving an ϵ-suboptimality, we

need T iterations such that T ≥ 2n log
(

2n ∥w0−w∗∥2

ϵ

)
.

Case 2:
(
1− µ

6L

)
>

(
1− 1

2n

)
=⇒ n ≤ 3κ. In this case, for achieving an ϵ-suboptimality, we

need T iterations such that T ≥ 6κ log
(

2n ∥w0−w∗∥2

ϵ

)
.

Putting the cases together, for achieving an ϵ-suboptimality, we need T = O ((n + κ) log(1/ϵ)).

In each iteration, the number of expected gradient evaluations is
(1− p) (2) + (p) (n + 2) = pn + 2 = 3. Hence, in expectation, SVRG requires
O ((n + κ) log(1/ϵ)) gradient evaluations to achieve an ϵ-suboptimality.

15

Minimizing smooth, strongly-convex functions using SVRG

Proof: Using the algorithm update, wk+1 = wk − ηgk and following a similar proof as before,

∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2η ⟨gk ,wk − w∗⟩+ η2 ∥gk∥2

=⇒ E ∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2η⟨E[gk],wk − w∗⟩+ η2 E[∥gk∥2]
(Since η does not depend on ik)

= ∥wk − w∗∥2 − 2η⟨∇f (wk),wk − w∗⟩+ η2 E[∥gk∥2]
(E[gk] = E[∇fik(wk)−∇fik(vk) +∇f (vk)] = ∇f (wk))

By strong-convexity,

E ∥wk+1 − w∗∥2 ≤ (1− µη) ∥wk − w∗∥2 − 2η [f (wk)− f (w∗)] + η2 E[∥gk∥2] (5)

Next, we will bound E[∥gk∥2].

16

Minimizing smooth, strongly-convex functions using SVRG

E[∥gk∥2] = E[∥∇fik(wk)−∇fik(vk) +∇f (vk)∥2]
= E[∥∇fik(wk)−∇fik(w∗) +∇fik(w∗)−∇fik(vk) +∇f (vk)∥2]

≤ 2E
[
∥∇fik(wk)−∇fik(w∗)∥2

]
+ 2E

[
∥∇fik(w∗)−∇fik(vk) +∇f (vk)∥2

]
((a+ b)2 ≤ 2a2 + 2b2)

= 2E
[
∥∇fik(wk)−∇fik(w∗)∥2

]
+ 2E

[
∥∇fik(w∗)−∇fik(vk)− E [∇fik(w∗)−∇fik(vk)]∥2

]
(Since E[∇fik(w

∗)] = ∇f (w∗) = 0)

For any vector x , E
[
∥x − E[x]∥2

]
≤ E[∥x∥2]. Using this with x = ∇fik(w∗)−∇fik(vk)

≤ 2E
[
∥∇fik(wk)−∇fik(w∗)∥2

]
+ 2E

[
∥∇fik(w∗)−∇fik(vk)∥2

]
≤ 4LE [fik(wk)− fik(w

∗) + ⟨∇fik(w∗),w∗ − wk⟩] + 2E
[
∥∇fik(w∗)−∇fik(vk)∥2

]
(Smoothness of fik)

=⇒ E[∥gk∥2] ≤ 4LE[f (wk)− f (w∗)] + 2E
[
∥∇fik(w∗)−∇fik(vk)∥2

]
(6) 17

Minimizing smooth, strongly-convex functions using SVRG

Using Eq. (5) with Eq. (6),

E ∥wk+1 − w∗∥2 ≤ (1− µη) ∥wk − w∗∥2 − 2η [f (wk)− f (w∗)]

+ η2
[
4LE[f (wk)− f (w∗)] + 2E

[
∥∇fik(w∗)−∇fik(vk)∥2

]]
≤ (1− µη) ∥wk − w∗∥2 + (4L η2 − 2η)E [f (wk)− f (w∗)]

+
2η2

n

n∑
i=1

[
∥∇fi (w∗)−∇fi (vk)∥2

]
Define Dk := 4η2

pn

∑n
i=1

[
∥∇fi (w∗)−∇fi (vk)∥2

]
.

E ∥wk+1 − w∗∥2 ≤ (1− µη) ∥wk − w∗∥2 + (4L η2 − 2η)E [f (wk)− f (w∗)] +
p

2
Dk (7)

18

Minimizing smooth, strongly-convex functions using SVRG

Recall that Dk = 4η2

pn

∑n
i=1

[
∥∇fi (w∗)−∇fi (vk)∥2

]
. Using the algorithm,

E[Dk+1] = (1− p)Dk + p
4η2

pn

n∑
i=1

[
∥∇fi (w∗)−∇fi (wk)∥2

]
≤ (1− p)Dk +

8η2 L

n

n∑
i=1

[fi (wk)− fi (w
∗) + ⟨∇fi (w∗),w∗ − wk⟩]

(Smoothness)

=⇒ E[Dk+1] ≤ (1− p)Dk + 8η2 L [f (wk)− f (w∗)] (8)

19

Minimizing smooth, strongly-convex functions using SVRG

Using Eq. (7) + Eq. (8),

E ∥wk+1 − w∗∥2 + E[Dk+1] ≤ (1− µη) ∥wk − w∗∥2 + (4L η2 − 2η)E [f (wk)− f (w∗)] +
p

2
Dk

+ (1− p)Dk + 8η2 L [f (wk)− f (w∗)]

= (1− µη) ∥wk − w∗∥2 + (12L η2 − 2η) [f (wk)− f (w∗)] +
(
1− p

2

)
Dk

=
(
1− µ

6L

)
∥wk − w∗∥2 +

(
1− p

2

)
Dk (Since η = 1

6L)

≤ max
{(

1− µ

6L

)
,
(
1− p

2

)} [
∥wk − w∗∥2 +Dk

]
E
[
∥wk+1 − w∗∥2 +Dk+1

]
≤ max

{(
1− µ

6L

)
,

(
1− 1

2n

)} [
∥wk − w∗∥2 +Dk

]
(Since p = 1

n)

Define Φk :=
[
∥wk − w∗∥2 +Dk

]
and ρ := max

{(
1− µ

6L

)
,
(
1− 1

2n

)}
=⇒ E[Φk+1] ≤ ρΦk 20

Minimizing smooth, strongly-convex functions using SVRG

Recall that E[Φk+1] ≤ ρΦk . Taking expectation w.r.t the randomness in iterations from k = 0 to
T − 1 and recursing,

E[ΦT] ≤ ρTΦ0

=⇒ E[∥wT − w∗∥2] ≤ ρT
[
∥w0 − w∗∥2 +D0

]
(Lower bounding ϕT since DT is positive)

= ρT

[
∥w0 − w∗∥2 + 4η2

n∑
i=1

∥∇fi (w0)−∇fi (w∗)∥2
]

≤ ρT

[
∥w0 − w∗∥2 + 4η2 L2

n∑
i=1

∥w0 − w∗∥2
]

(Smoothness)

=⇒ E[∥wT − w∗∥2] ≤
(
max

{(
1− µ

6L

)
,

(
1− 1

2n

)})T [
2n ∥w0 − w∗∥2

]
(Since η = 1

6L)

21

Questions?

21

References i

Zeyuan Allen-Zhu, Katyusha: The first direct acceleration of stochastic gradient methods,
The Journal of Machine Learning Research 18 (2017), no. 1, 8194–8244.

Rie Johnson and Tong Zhang, Accelerating stochastic gradient descent using predictive
variance reduction, Advances in neural information processing systems 26 (2013).

Dmitry Kovalev, Samuel Horváth, and Peter Richtárik, Don’t jump through hoops and
remove those loops: Svrg and katyusha are better without the outer loop, Algorithmic
Learning Theory, PMLR, 2020, pp. 451–467.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien, Stochastic
polyak step-size for sgd: An adaptive learning rate for fast convergence, International
Conference on Artificial Intelligence and Statistics, PMLR, 2021, pp. 1306–1314.

22

References ii

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč, Sarah: A novel method for
machine learning problems using stochastic recursive gradient, International Conference on
Machine Learning, PMLR, 2017, pp. 2613–2621.

Mark Schmidt, Nicolas Le Roux, and Francis Bach, Minimizing finite sums with the
stochastic average gradient, Mathematical Programming 162 (2017), no. 1, 83–112.

Sharan Vaswani, Benjamin Dubois-Taine, and Reza Babanezhad, Towards noise-adaptive,
problem-adaptive stochastic gradient descent, arXiv preprint arXiv:2110.11442 (2021).

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon
Lacoste-Julien, Painless stochastic gradient: Interpolation, line-search, and convergence
rates, Advances in neural information processing systems 32 (2019).

23

