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Interpolation: Over-parameterized models (such as deep neural networks) are capable of exactly
fitting the training dataset.

When minimizing f(w) = 1 37 fi(w), if |[Vf(w)|| = 0, then |[Vf(w)| = 0 for all i € [n] i.e.

~n
the variance in the stochastic gradients becomes zero at a stationary point.
Under interpolation, since the noise is zero at the optimum, SGD does not need to decrease the
step-size and can converge to the minimizer by using a constant step-size.

If f is strongly-convex and interpolation is satisfied (e.g. when using kernels or least squares with
d > n), constant step-size SGD can converge to the minimizer at an O(exp(—7/x)) rate. Hence,
SGD matches the rate of deterministic GD, but compared to GD, each iteration is cheap.



Minimizing smooth, strongly-convex functions using SGD under interpolation

Claim: When minimizing f(w) = 1 3°7 | fi(w) such that (i) f is u-strongly convex, (ii) each f;

n

is convex and L-smooth, (iii) interpolation is exactly satisfied i.e. ||Vfi(w*)|| =0, T iterations of

SGD with 1 = n = 1 returns iterate wr such that,

* =1 *
Eflwr — wIF] < o0 (=) Iwo - wI”

Before analyzing the convergence of SGD, let us first study the effect of interpolation on o?(w).
o*(w) := B; | VF(w) = VEW)|? = [VF(w)|* + Ei [|V(w)|* = 2E[(VF(w), VEi(w))]
=E [|[VEW)|? + [VF(w) | — 2| VF(w)|? (Unbiasedness)
< By [V(w)| < B 2L [F(w) — i(w)]
(Using L-smoothness, convexity of f; and Vf;(w*) = 0)
— o?(w) <2L[f(w) — f(w*)] (Unbiasedness)
As w gets closer to the solution (in terms of the function values), the variance decreases
becoming zero at w*. Hence, under interpolation, we do not need to decrease the step-size.



Minimizing smooth, strongly-convex functions using SGD under interpolation

Proof: Following the same proof as before, we get that,
Eflweer — w1 = [[we — w12~ 20 (VF(we), we — w*) + 0 E [V (i) ]
< wie = w*|* = 20V F (wie)s wic — w*) + 1 By [2L [Fi(wie) — i (w)]

(Using L-smoothness, convexity of f; and Vf;(w*) = 0)

(VF(wie), w — w*) + 2L g E[f (wie) — F(w*)]
(Unbiasedness)

= wic = w1 (1 = k) = 20k [F (wi) = F(w*)] + 2L E[F (wie) — F(w")]

(Strong-convexity)

*12 .
= (1= ) llwe — | (Since =7 = 1)

= fwic — w* || — 2

Taking expectation w.r.t the randomness from iterations k =0 to T — 1 and recursing,

|2 w\T 2 —T 12
Eflwr —w' "1 < (1= 2) " llwo —w*|* < exp (K) lwo — w|



Minimizing smooth, strongly-convex functions using SGD under interpolation

We can modify the proof in order to get an O (exp (=) + ¢?) where ¢ o E; |V i(w*)|.

. kN2
Moreover, as before, if we use a mini-batch of size b, the effective noise is C,f x M'
Hence, if the model is sufficiently over-parameterized so that it almost interpolates the data, and
we are using a large batch-size, then (2 is small, and constant step-size works well.

When minimizing convex functions under (exact) interpolation, constant step-size SGD results in
O(1/T) convergence, matching deterministic GD, but with much smaller per-iteration cost
(Need to prove this in Assignment 3!)



Questions?



Minimizing smooth, non-convex functions using SGD under interpolation

When minimizing non-convex functions, interpolation is not enough to guarantee a fast
(matching the deterministic) O(1/T) rate for SGD.

Can achieve this rate under the strong growth condition (SGC) on the stochastic gradients.
Formally, there exists a constant p > 1 such that for all w,

E; [[VA(w)|* < p [[VF(w)]>
Hence, SGC implies that ||V(w*)||* = 0 for all i and hence interpolation.

As before, let us study the effect of SGC on the variance o2(w).
?(w) :=E; |[VHi(w) — VF(W)|]> = E; [VH(W)|? — [VF(w)]? (Unbiasedness)
— o?(w) < (p— 1) [VF(w)|? (SGC)

Hence, SGC implies that as w gets closer to a stationary point (in terms of the gradient norm),
the variance decreases and constant step-size SGD converges to a stationary point.



Minimizing smooth, non-convex functions using SGD under interpolation

Claim: For (i) L-smooth functions lower-bounded by f*, (ii) under p-SGC, T iterations of SGD

with 7, = ﬁ returns an iterate W such that,

2oL [F(wo) — 7]
T

Proof: Similar to the proof in Lecture 8, using the L-smoothness of f with x = wj and

E[|VF(W)[*] <

Y = W1 = Wi — 0 Vi (wi),
Flwksa) < Flo) + (FF(wi), 4V i) + 72 [V (o)
Taking expectation w.r.t i, on both sides and using that 7 is independent of i
BIF (wera)] < F(wi) — B [T F(wi), Vhi(wil] + 2% B [V fu(wi) ]

L .
Elf (wira)] < F(wi) = i [ VAWl + =2 E {1V fic(wi)|I] (Unbiasedness)



Minimizing smooth, non-convex functions using SGD under interpolation

Recall E[f (wi1)] < F(wi) — mic [VF(we)|? + “E E [||w,-k(wk)||2] Using p-SGC
2 L/”?i 2
Eff (wir)] < f(wi)) = i [IVF(wi) [* + =7 IV (wi |

1 .
Elf (i)l < (wi) = 27 IV F (wi)1* (Using e =1 = ;)

Taking expectation w.r.t the randomness from iterations i = 0 to k — 1, and summing
T-1

> ElIVF (e )12 < 2oL ;)E[f W) — Fwipr)] = 240 E[”Tw(wk)” I 2pLE[f(;V°) =

(Dividing by T)
Defining w := arg MiNgeio1,.., T-1} E[HVf(wk)HZ],

B[V ()|} < 20 =]



Questions?



