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Recap

Interpolation: Over-parameterized models (such as deep neural networks) are capable of exactly
fitting the training dataset.

When minimizing f (w) = 1
n

∑n
i=1 fi (w), if ∥∇f (w)∥ = 0, then ∥∇fi (w)∥ = 0 for all i ∈ [n] i.e.

the variance in the stochastic gradients becomes zero at a stationary point.

Under interpolation, since the noise is zero at the optimum, SGD does not need to decrease the
step-size and can converge to the minimizer by using a constant step-size.

If f is strongly-convex and interpolation is satisfied (e.g. when using kernels or least squares with
d > n), constant step-size SGD can converge to the minimizer at an O(exp(−T/κ)) rate. Hence,
SGD matches the rate of deterministic GD, but compared to GD, each iteration is cheap.
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Minimizing smooth, strongly-convex functions using SGD under interpolation

Claim: When minimizing f (w) = 1
n

∑n
i=1 fi (w) such that (i) f is µ-strongly convex, (ii) each fi

is convex and L-smooth, (iii) interpolation is exactly satisfied i.e. ∥∇fi (w
∗)∥ = 0, T iterations of

SGD with ηk = η = 1
L returns iterate wT such that,

E[∥wT − w∗∥2] ≤ exp

(
−T

κ

)
∥w0 − w∗∥2

.

Before analyzing the convergence of SGD, let us first study the effect of interpolation on σ2(w).

σ2(w) := Ei ∥∇f (w)−∇fi (w)∥2 = ∥∇f (w)∥2 + Ei ∥∇fi (w)∥2 − 2E [⟨∇f (w),∇fi (w)⟩]
= Ei ∥∇fi (w)∥2 + ∥∇f (w)∥2 − 2 ∥∇f (w)∥2 (Unbiasedness)

≤ Ei ∥∇fi (w)∥2 ≤ Ei [2L [fi (w)− fi (w
∗)]]

(Using L-smoothness, convexity of fi and ∇fi (w
∗) = 0)

=⇒ σ2(w) ≤ 2L[f (w)− f (w∗)] (Unbiasedness)

As w gets closer to the solution (in terms of the function values), the variance decreases
becoming zero at w∗. Hence, under interpolation, we do not need to decrease the step-size.
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Minimizing smooth, strongly-convex functions using SGD under interpolation

Proof: Following the same proof as before, we get that,

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2
k E

[
∥∇fik(wk)∥2

]
≤ ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2

k Ei [2L [fik(wk)− fik(w
∗)]]

(Using L-smoothness, convexity of fi and ∇fi (w
∗) = 0)

= ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ 2L η2
k E [f (wk)− f (w∗)]

(Unbiasedness)

= ∥wk − w∗∥2 (1 − µηk)− 2ηk [f (wk)− f (w∗)] + 2L η2
k E [f (wk)− f (w∗)]

(Strong-convexity)

=
(
1 − µ

L

)
∥wk − w∗∥2 (Since ηk = η = 1

L )

Taking expectation w.r.t the randomness from iterations k = 0 to T − 1 and recursing,

E[∥wT − w∗∥2] ≤
(
1 − µ

L

)T

∥w0 − w∗∥2 ≤ exp

(
−T

κ

)
∥w0 − w∗∥2
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Minimizing smooth, strongly-convex functions using SGD under interpolation

We can modify the proof in order to get an O
(
exp

(−T
κ

)
+ ζ2

)
where ζ2 ∝ Ei ∥∇fi (w

∗)∥2.

Moreover, as before, if we use a mini-batch of size b, the effective noise is ζ2
b ∝ Ei∥∇fi (w

∗)∥2

b .
Hence, if the model is sufficiently over-parameterized so that it almost interpolates the data, and
we are using a large batch-size, then ζ2

b is small, and constant step-size works well.

When minimizing convex functions under (exact) interpolation, constant step-size SGD results in
O(1/T ) convergence, matching deterministic GD, but with much smaller per-iteration cost
(Need to prove this in Assignment 3!)
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Questions?

4



Minimizing smooth, non-convex functions using SGD under interpolation

When minimizing non-convex functions, interpolation is not enough to guarantee a fast
(matching the deterministic) O(1/T ) rate for SGD.

Can achieve this rate under the strong growth condition (SGC) on the stochastic gradients.
Formally, there exists a constant ρ > 1 such that for all w ,

Ei ∥∇fi (w)∥2 ≤ ρ ∥∇f (w)∥2

Hence, SGC implies that ∥∇fi (w
∗)∥2 = 0 for all i and hence interpolation.

As before, let us study the effect of SGC on the variance σ2(w).

σ2(w) := Ei ∥∇fi (w)−∇f (w)∥2 = Ei ∥∇fi (w)∥2 − ∥∇f (w)∥2 (Unbiasedness)

=⇒ σ2(w) ≤ (ρ− 1) ∥∇f (w)∥2 (SGC)

Hence, SGC implies that as w gets closer to a stationary point (in terms of the gradient norm),
the variance decreases and constant step-size SGD converges to a stationary point.
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Minimizing smooth, non-convex functions using SGD under interpolation

Claim: For (i) L-smooth functions lower-bounded by f ∗, (ii) under ρ-SGC, T iterations of SGD
with ηk = 1

ρL returns an iterate ŵ such that,

E[∥∇f (ŵ)∥2] ≤ 2ρL [f (w0)− f ∗]

T
.Proof: Similar to the proof in Lecture 8, using the L-smoothness of f with x = wk and
y = wk+1 = wk − ηk∇fik(wk),

f (wk+1) ≤ f (wk) + ⟨∇f (wk),−ηk∇fik(wk)⟩+
L

2
η2
k ∥∇fik(wk)∥2

Taking expectation w.r.t ik on both sides and using that ηk is independent of ik

E[f (wk+1)] ≤ f (wk)− ηkE [⟨∇f (wk),∇fik(wk)⟩] +
Lη2

k

2
E
[
∥∇fik(wk)∥2

]
E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +

Lη2
k

2
E
[
∥∇fik(wk)∥2

]
(Unbiasedness)
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Minimizing smooth, non-convex functions using SGD under interpolation

Recall E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +
Lη2

k

2 E
[
∥∇fik(wk)∥2

]
. Using ρ-SGC,

E[f (wk+1)] ≤ f (wk)− ηk ∥∇f (wk)∥2 +
Lρη2

k

2
∥∇f (wk)∥2

E[f (wk+1)] ≤ f (wk)−
1

2ρL
∥∇f (wk)∥2 (Using ηk = η = 1

ρL )

Taking expectation w.r.t the randomness from iterations i = 0 to k − 1, and summing

T−1∑
k=0

E[∥∇f (wk)∥2] ≤ 2ρL
T−1∑
k=0

E[f (wk)− f (wk+1)] =⇒
∑T−1

k=0 E[∥∇f (wk)∥2]

T
≤ 2ρLE[f (w0)− f ∗]

T

(Dividing by T )

Defining ŵ := argmink∈{0,1,...,T−1} E[∥∇f (wk)∥2],

E[∥∇f (ŵ)∥2] ≤ 2ρL [f (w0)− f ∗]

T
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Questions?
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