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Minimizing smooth, strongly-convex functions using SGD

For smooth, strongly-convex functions, SGD with an O(1/k) decreasing step-size converges to
the minimizer at an Θ(1/T) rate (we will prove this later today).

Similar to the convex setting, using SGD with a constant step-size results in convergence to the
neighbourhood that depends on the noise in the stochastic gradients.

Claim: For L-smooth, µ-strongly convex functions, T iterations of SGD with ηk = η = 1
L returns

iterate wT such that,

E[∥wT − w∗∥2] ≤ exp

(
−T

κ

)
∥w0 − w∗∥2 +

σ2

µ L

Hence, SGD results in an exponential convergence to the neighbourhood of the minimizer.

Unlike the convex case for which we proved a guarantee on the average iterate w̄T , here we have
a guarantee for the last iterate wT .
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Minimizing smooth, strongly-convex functions using SGD

Proof: Following a proof similar to the convex case,

∥wk+1 − w∗∥2 = ∥wk − ηk∇fk(wk)− w∗∥2

= ∥wk − w∗∥2 − 2ηk⟨∇fk(wk),wk − w∗⟩+ η2
k ∥∇fk(wk)∥2

Taking expectation w.r.t ik on both sides,

E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2E [ηk⟨∇fk(wk),wk − w∗⟩] + E
[
η2
k ∥∇fk(wk)∥2

]
=⇒ E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2

k E
[
∥∇fk(wk)∥2

]
(Assuming ηk is independent of ik and Unbiasedness)
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Minimizing smooth, strongly-convex functions using SGD

Recall that E[∥wk+1 − w∗∥2] = ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2
k E

[
∥∇fk(wk)∥2

]
.

E[∥wk+1 − w∗∥2]

= ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2
k E

[
∥∇fk(wk)−∇f (wk) +∇f (wk)∥2

]
≤ ∥wk − w∗∥2 − 2ηk⟨∇f (wk),wk − w∗⟩+ η2

k E
[
∥∇f (wk)∥2

]
+ η2

k σ
2

(Using the bounded variance assumption)

Using µ-strong convexity, f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ µ
2 ∥y − x∥2 with y = w∗ and x = wk ,

≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)]− µηk ∥wk − w∗∥2 + η2
k E

[
∥∇f (wk)∥2

]
+ η2

k σ
2

(Eq. (1))

=⇒ E[∥wk+1 − w∗∥2]

≤ (1 − µηk) ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + 2L η2
k E[f (wk)− f (w∗)] + η2

k σ
2

(Using L-smoothness of f )
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Minimizing smooth, strongly-convex functions using SGD

E[∥wk+1 − w∗∥2] ≤ (1 − µηk) ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)] + 2L η2
k E[f (wk)− f (w∗)] + η2

k σ
2.

Setting ηk = η = 1
L

E[∥wk+1 − w∗∥2] ≤
(
1 − µ

L

)
∥wk − w∗∥2 +

σ2

L2

Since the above inequality is true for all k , using it for k = T − 1,

E[∥wT − w∗∥2] ≤
(
1 − µ

L

)
∥wT−1 − w∗∥2 +

σ2

L2

Taking expectation w.r.t the randomness from iterations k = 0 to T − 1,

=⇒ E[∥wT − w∗∥2] ≤ ρE ∥wT−1 − w∗∥2 +
σ2

L2 (Denoting ρ := 1 − µ/L)
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Minimizing smooth, strongly-convex functions using SGD

Recall that E[∥wT − w∗∥2] ≤ ρE ∥wT−1 − w∗∥2 + σ2

L2 . Unrolling the recursion until k = 0,

E[∥wT − w∗∥2] ≤ ρT ∥w0 − w∗∥2 +
σ2

L2

T−1∑
k=0

ρk ≤ ρT ∥w0 − w∗∥2 +
σ2

L2

∞∑
k=0

ρk

≤ ρT ∥w0 − w∗∥2 +
σ2

L2
1

1 − ρ
(Infinite geometric series)

=
(
1 − µ

L

)T

∥w0 − w∗∥2 +
σ2

µ L

≤ exp

(
−T

κ

)
∥w0 − w∗∥2 +

σ2

µ L
(1 − x ≤ exp(−x))

=⇒ E[∥wT − w∗∥2] ≤ exp

(
−T

κ

)
∥w0 − w∗∥2

︸ ︷︷ ︸
bias

+
σ2

µ L︸︷︷︸
neighbourhood
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Questions?
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Minimizing smooth, strongly-convex functions using SGD

Let us prove that SGD with an O(1/k) step-size results in O(1/T ) convergence to the
minimizer. For simplicity, similar to [LJSB12], let us assume that the stochastic gradients are
bounded in expectation, i.e. there exists a G such that E ∥∇fi (w)∥2 ≤ G 2 for all w .

Claim: For µ-strongly convex functions with the above assumption, T iterations of SGD with
ηk = 1

µ (k+1) returns iterate w̄T =
∑T−1

k=0 wk

T such that,

E[f (w̄T )− f (w∗)] ≤ G 2 [1 + log(T )]

2µT

Three problems – the above result (i) requires knowledge of µ, (ii) requires bounded stochastic
gradients, (iii) the guarantee only holds for the average iterate and not the last iterate.

[GLQ+19, Theorem 3.2] uses a constant, then O(1/k) step-size. Solves (ii), (iii)

[LZO21, VDTB21] use an O
(
(1/T)k/T

)
step-size and solves all three problems. Also prove a

noise-adaptive O
(
exp

(−T
κ

)
+ σ2

T

)
rate, but requires knowledge of T .
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Minimizing smooth, strongly-convex functions using SGD

Proof: Following the previous proof,

E ∥wk+1 − w∗∥2

≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)]− µηk ∥wk − w∗∥2 + η2
k E

[
∥∇fk(wk)∥2

]
≤ ∥wk − w∗∥2 − 2ηk [f (wk)− f (w∗)]− µηk ∥wk − w∗∥2 + η2

k G
2

(Using the boundedness of stochastic gradients)

=⇒ E[f (wk)− f (w∗)] ≤

[
∥wk − w∗∥2 (1 − µηk)− E ∥wk+1 − w∗∥2

]
2ηk

+
ηk
2

G 2

Taking expectation w.r.t the randomness from iterations k = 0 to T − 1,

E[f (wk)− f (w∗)] ≤
E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
2ηk

+
ηk
2

G 2
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Minimizing smooth, strongly-convex functions using SGD

Recall that E[f (wk)− f (w∗)] ≤ E[∥wk−w∗∥2 (1−µ ηk )−∥wk+1−w∗∥2]
2ηk

+ ηk

2 G 2.
Summing from k = 0 to T − 1,

T−1∑
k=0

E[f (wk)− f (w∗)] ≤
T−1∑
k=0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
2ηk

+
G 2

2

T−1∑
k=0

ηk

=
T−1∑
k=0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
2ηk

+
G 2

2

T−1∑
k=0

1
µ (k + 1)

≤
T−1∑
k=0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
2ηk

+
G 2 [1 + log(T )]

2µ

Dividing by T , using Jensen’s inequality for the LHS, and by definition of w̄T ,

E[f (w̄T )− f (w∗)] ≤ 1
T

T−1∑
k=0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
2ηk

+
G 2 [1 + log(T )]

2µT
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Minimizing smooth, strongly-convex functions using SGD

Recall that E[f (w̄T )− f (w∗)] ≤ 1
T

∑T−1
k=0

E[∥wk−w∗∥2 (1−µ ηk )−∥wk+1−w∗∥2]
2ηk

+ G2 [1+log(T )]
2µT .

1
2T

T−1∑
k=0

E
[
∥wk − w∗∥2 (1 − µ ηk)− ∥wk+1 − w∗∥2

]
ηk

=
1

2T
E

[
T−1∑
k=1

[
∥wk − w∗∥2

(
1
ηk

− 1
ηk−1

− µ

)]
+ ∥w0 − w∗∥2

(
1
η0

− µ

)
− ∥wT − w∗∥2

ηT−1

]

≤ 1
2T

E

[
T−1∑
k=1

[
∥wk − w∗∥2 (µ(k + 1)− µk − µ)

]
+ ∥w0 − w∗∥2 (µ− µ)

]
= 0

Putting everything together,

E[f (w̄T )− f (w∗)] ≤ G 2 [1 + log(T )]

2µT
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Questions?

9



Interpolation for over-parameterized models

Interpolation: Over-parameterized models (such as deep neural networks) are capable of exactly
fitting the training dataset.

Formally, when minimizing f (w) = 1
n

∑n
i=1 fi (w), interpolation means that if ∥∇f (w)∥ = 0,

then ∥∇fi (w)∥ = 0 for all i ∈ [n] i.e. the variance in the stochastic gradients becomes zero at a
stationary point. 10



SGD under Interpolation

Recall that SGD needs to decrease the step-size to counteract the noise (variance).

Idea: Under interpolation, since the noise is zero at the optimum, SGD does not need to
decrease the step-size and can converge to the minimizer by using a constant step-size.

If f is strongly-convex and the model is expressive enough such that interpolation is satisfied (for
example, when using kernels or least squares with d > n), constant step-size SGD can converge
to the minimizer at an O(exp(−T/κ)) rate.

In this setting, SGD matches the rate of deterministic (full-batch) GD, but compared to GD,
each iteration is cheap.

Moreover, empirical results (and theoretical results on “benign overfitting”) suggest that
interpolating the training dataset does not adversely affect the generalization error!
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