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In Lecture 10, on Slide 6, we proved an O(1/T) convergence rate for SGD when minimizing smooth,
strongly-convex functions. For simplicity, we assumed that the stochastic gradients are bounded i.e.

there exists a G such that E ||V f;(w)||> < G? for all w.
In this note, we relax this assumption and use a proof similar to Gower et al. (2019). For this, we
will use ideas from the proof for the decreasing step-size (Slide 6 in Lecture 10) and constant step-size

(Slide 1 in Lecture 10). We will prove the following claim.

Claim: For L-smooth, p-strongly convex functions, 7" iterations of SGD with
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- . pl26 —1] —[2r — 1] 2, 0’ 0% [1 + log(T)]
E — < —w’ :

Proof: For the proof, we will require that n, < % in Phase 2, i.e. for all k£ > kg
— < — k—1.
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Since Phase 2 only starts when k > ko = [2x — 1], this ensures that 7, < 5- in Phase 2. Expanding the
iterate distance to w* similar to the previous proofs,

[wisr — w*||* = [Jwy, — eV fa(wi) — w*||?
= |Jwy, — w*||* = 20V fir(wi), wp — w*) + 0} |V fie(wy)]”

*Thanks to Reza Babanezhad for checking the proof.



Taking expectation w.r.t i; on both sides,
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Using p-strong convexity, f(y) > f(z) +(Vf(z),y —x) + 5 |ly — z||* with y = w* and z = wy,
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Using L-smoothness of f,
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Let us first analyze Phase 2. Since 7, < 5~ in Phase 2, using Eq. (1) for all k > ko,
Elllwpsr — w[*) < (1= o) [fwy = w*|I* = ne[f (wi) = f(w")] + 173 0
Proceeding with the proof as in Slides 7-8,
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Taking expectation w.r.t the randomness from iterations k = ky to T' — 1,
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Summing from k& = kg to T'— 1 in Phase 2
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Dividing by T' — kg, using Jensen’s inequality for the LHS, and by definition of wr,
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Let us now simplify the second term similar to Slide 9,
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Putting everything together,
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Since ky is a constant, this already implies an O(1/T) rate if we can control ||wy,, — w*||>. We will analyze
Phase 1 to bound this term. Proceeding with the proof in Slide 1, using Eq. (1) for k < ko.
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Since n = % for all k < ko,
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Since the above inequality is true for all k& < kg, using it for k = kg — 1,

2

H 2 . 9
Efllwr, — ' 7] < (1= £) g1 = vl + 75

Taking expectation w.r.t the randomness from iterations £ = 0 to kg — 1,
E[||wy, — w||*] < pE [Jw, 1 — w’[|* + (Denoting p := 1 —#/1)

Unrolling the recursion until £ = 0,
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Putting everything together,

E[f(wr) — f(w)] < T“_koko {exp (‘—’““) o — w2+ } + "2&;?%)}

e e () vt ] S

— E[f(ar) = f(w”)] < 7= M2k — 1

Hence, we have controlled |Jwy, — w*||* term, and this gives us an overall O(1/T) rate. We can do a
more careful analysis of Phase 2 to get last-iterate convergence i.e. for wy instead of wr.
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