CMPT 409/981: Optimization for Machine Learning

Lecture 1

Sharan Vaswani
September 8, 2022

Successes of Machine Learning

hitps:/ /wwweblog goog] . s foste compose-gmail hitps:/ /vy cnet.com /news/ whatis-siri/

(a) Natural language processing (b) Speech recognition

(c) Reinforcement learning (d) Self-driving cars 1

Machine Learning 101
Dataset {) cat} { &3 ’ dOg }

Model
O MO,
~
Training: O
Prediction
Input-label M0, x)

Update parameters

{x, y} usmg optimization
Loss

Output: M(6*,.) f(a, {x.y}

Machine Learning 101

Validation
Dataset: }; { Q g dog}
Trained Model
Q\ M(9*)
Validation: { ﬂ ’ dog I dog
Prediction
{x, y} M(6*, x)

Output: Validation Accuracy

Measures how good the trained model is

Modern

Machine Learning

160
1380 1437
140
%
S
= 120
& 100
s
5 ®
5 60,2 624
s & a5
5
2 33,0
5 21,8 230 256
2 134
e il
o m N
PO I I R T R T)
& & N IS G G I Y T
X ORI SHRRO O X & F &
F &S F S F
[A RGPy

Sobezak, Szymon, et al. "Restricted Boltzmann machine as an aggregation technique for binary descriptors.”, 2019.

Model size

()

ResNet-34
MobileNIEV2
I%)lleNelrvl
ResNet-18
o0® GooglLeNet
ENet
5 b fd-MobileNet

BN-NIN
ShuffleNet

Top-1 accuracy [%]

=

SqueezeNet
BN-AlexNet

AlexNet

incet (-]
DenseNet:
D¢ SeNel—ng ResNet 50
75 [eNet-121

Inception-v4

Xception
ResNet-101 ResNet-152

VGG-16

VGG-19

35M 65M 95M 125M 155M

10

20 30 40 50
Operations (G-Ops]

Canziani et al, “An Analysis of Deep Neural Network Models for Practical Applications”, 2016.

Number of operations for computing the loss

(b)

Figure 1: Models for multi-class classification on Image-Net. Number of examples = 1.2 M

Faster optimization methods can have a big practical impact!

Optimization for Machine Learning

@ (Non)-Convex minimization: Supervised learning (classification/regression), Matrix
factorization for recommender systems, Image denoising.

@ Online optimization: Learning how to play Go/Atari games, Imitating an expert and
learning from demonstrations, Regulating control systems like industrial plants.

@ Min-Max optimization: Generative Adversarial Networks, Adversarial Learning,
Multi-agent RL.

Course structure

Objective: Introduce foundational optimization concepts with applications to machine learning.
Syllabus:

@ (Non)-Convex minimization: Gradient Descent, Momentum/Acceleration, Mirror Descent,
Newton/Quasi-Newton methods, Stochastic gradient descent (SGD), Variance reduction

@ Online optimization: Follow the (regularized) leader, Adaptive methods (AdaGrad, Adam)
e Min-Max optimization: (Stochastic) Gradient Descent-Ascent, (Stochastic) Extragradient

What we won’t get time to cover in detail: Non-smooth optimization, Convex analysis,
Global optimization.

What we won’t get time to cover: Constrained optimization, Distributed optimization,
Multi-objective optimization.

Course Logistics

Instructor: Sharan Vaswani (TASC-1 8221) Email: sharan_vaswani@sfu.ca
e Office Hours: Monday 4 pm - 5 pm (TASC-1 8221), TBD

Teaching Assistant: Zahra MiriKharaji Email: zmirikha@sfu.ca

Course Webpage: https://vaswanis.github.io/409_981-F22.html

Piazza: https://piazza.com/sfu.ca/fall2022/cmpt409981/home

Prerequisites: Linear Algebra, Multivariable calculus, (Undergraduate) Machine Learning

sharan_vaswani@sfu.ca
zmirikha@sfu.ca
https://vaswanis.github.io/409_981-F22.html
https://piazza.com/sfu.ca/fall2022/cmpt409981/home

Course Logistics — Grading

Assignments [4 x 12.5% = 50%)
@ Assignments to be submitted online, typed up in Latex with accompanying code submitted
as a zip file.
e Each assignment will be due in 10 days (at 11.59 pm PST).

@ For some flexibility, each student is allowed 1 late-submission and can submit in the next
class (no late submissions beyond that).

@ If you use up your late-submission and submit late again, you will lose 50% of the mark.

Course Logistics — Grading

Final Project [50%]

@ Aim is to give you a taste of research in Optimization.
@ Projects to be done in groups of 3-4 (more details will be on Piazza)

@ Will maintain a list on Piazza on possible project topics. You are free to choose from the
list or propose a topic that combines Optimization with your own research area.

Project Proposal [10%] — Discussion (before 20 October) + Report (due 24 October)

Project Milestone [5%] — Update (before 20 November)

Project Presentation [10%] (6 December)
Project Report [25%] (15 December)

Questions?

Minimizing functions

Consider minimizing a function over the domain D

i)

Setting: Have access to a zero-order oracle — querying the oracle at w € D returns f(w).

Objective: For a target accuracy of € > 0, if w* € D is the minimizer of f, return a point
w € D s.t. f(W)— f(w*) < e Characterize the required number of oracle calls.

Example 1: Minimize a one-dimensional function s.t. f(w) = 0 for all x # w*, and f(w*) = —e.

Example 2: Easom function:
f(x1,x) = —cos(x1) — cos(x2) exp(—(x1 —)2 — (x2 — m)3).

Minimizing generic functions is hard! We need to make assumptions on the structure.
10

Lipschitz continuous functions

Consider minimizing a function over the domain D:

i)

Assumption: f is Lipschitz continuous meaning that f can not change arbitrarily fast as w
changes. Formally, for any x,y € D,

[F(x) = f(¥)| <G [Ix =y
where G is the Lipschitz constant.

Example: f(x) := —x sin(x) in the [—10, 10] interval.

Lipschitz continuity of the function immediately implies that the gradients are bounded i.e. for
all x e D, |[VF(x)]| < G.

11

Global Minimization

Consider minimizing a G-Lipschitz continuous function over a unit hyper-cube:

min f(w).
wel0,1]¢

Objective: For a target accuracy of € > 0, if w* € [0,1]9 is the minimizer of f, return a point
w € [0,1]7 s.t. f(W) — f(w*) < e. Characterize the required number of zero-order oracle calls.

Naive algorithm: Divide the hyper-cube into cubes with length of each side equal to ¢ > 0 (to
be determined). Call the zero-order oracle on the centers of these ﬁ cubes and return the

point w with the minimum function value.

Analysis: The minimizer lies in/at the boundary of one of these cubes, and hence by returning
the minimum W, we guarantee that W is at most v/de’ away from w* i.e. ||W — w*|| < V/d¢'.
By G-Lipschitz continuity, f(#) — f(w*) < G ||W — w*|| < Gv/de'. For a target accuracy of e,

d
we can set € = Gf/ﬁ' Hence, for this naive algorithm, total number of oracle calls = (GT\/E> .

12

Global Minimization

Consider minimizing a differentiable, G-Lipschitz continuous function over a unit hyper-cube:

in f(w).
ooy)

Q: Suppose we do a random search over the cubes? What is the expected number of function
evaluations?

Ans: The probability of finding the correct cube is p := €’9. If X is a r.v. equal to 1 if we find
the correct cube, then X follows a Geometric distribution. Hence, expected number of

d
f el _ond _ [_e
evaluations is = (¢')? = (G\/E) :
Is our naive algorithm good? Can we do better?
Lower-Bound: For minimizing a G-Lipschitz continuous function over a unit hyper-cube, any

. . d
algorithm requires Q ((%)) calls to the zero-order oracle.

Our naive-algorithm is sub-optimal by a factor of O ((\fd)d)

13

Questions?

Smooth functions

Recall that Lipschitz continuous functions have bounded gradients i.e. ||[Vf(w)|| < G and can
still include non-smooth (not differentiable everywhere) functions.

For example, f(x) = |x| is 1-Lipschitz continuous but not differentiable at x = 0 and the
gradient changes from —1 at 0~ to +1 at 0*.

An alternative assumption that we can make is that f is smooth — it is differentiable everywhere
and its gradient is Lipschitz-continuous i.e. it can not change arbitrarily fast.

Formally, the gradient Vf is L-Lipschitz continuous if for all x,y € D,
[VE(x) = VIl < Llx—yl

where L is the Lipschitz constant of the gradient (also called the smoothness constant of f).

Q: Does Lipschitz-continuity of the gradient imply Lipschitz-continuity of the function? Ans:
No, % is 1-smooth but its gradient equal to x is unbounded over R.

14

Smooth functions — Examples

If f is twice-differentiable and smooth, then for all x € D, V2f(x) < Lly i.e. omax[V3f(x)] < L
where o nax is the maximum singular value.

Q: Does f(x) = x3 have a Lipschitz-continuous gradient over R? Ans: No, f”(x) = 12x which is
not bounded as x — oo

Q: Does f(x) = x3 have a Lipschitz-continuous gradient over [0, 1]?
Ans: Yes, because f”(x) = 12x is bounded on [0, 1].

Q: The negative entropy function is given by f(x) = xlog(x). Does it have a
Lipschitz-continuous gradient over [0,1]? Ans: No, f”(x) = 1/x — oo as x — 0.

15

Smooth functions — Examples

Linear Regression on n points with d features. Feature matrix: X € R"*9 vector of
measurements: y € R” and parameters w € RY.

. 1 2
f == || Xw —
min £(w) i= 5 [Xw |

f(w) = % W (XTX)w —2w™ Xy + yTy] ; VIi(w) = X" Xw — XTy; Vi(w) = XX

If fis L-smooth, then, oma[V2f(w)] < L for all w. Hence, for linear regression L = Amax[XTX].

Q: Is the linear regression loss-function Lipschitz continuous? Ans: No. Since |Vf(w)| — oo as
w — 00.

Q: Compute L for ridge regression — {>-regularized linear regression where
Fw) == L[| Xw — y|* + 2 [wll’. Ans: L = Amax[XTX] + A
16

Smooth functions

Claim: For an L-smooth function, f(y) < f(x) + (Vf(x),y —x) + 5 |ly — x| for all x,y € D.
Proof:

fly)="f(x)+ /i [Vf(x+t(y —x))] (y = x)" dt (Fundamental theorem of calculus)
= f(x) +(VF(x),y = x) + /t:O [VE(x+t(y =x)] (y = x)7 dt = [VF(x)] (y = x)7
= f(x) +(VF(x),y —x) + /::o [VE(x+t(y —x)) = VI(x)] (v —x)7 dt

1
< £+ (VFGOy =)+ [[Vt =) = VGl Ly =l o
(Cauchy-Schwarz)

1
< f(x)+(VFf(x),y —x)+ L / [Ix+t(y —x) —x|| |ly — x|| dt (Lipschitz continuity)
t=0

= 00+ (VA(y =X+ Ly =i [rde=F00+(TFRy =0 +5 Iy =xI°

Smooth functions

The inequality f(y) < f(x) + (Vf(x),y —x) + 5 |ly — x||* can be interpreted as a global
quadratic upper-bound on f at point x i.e. the bound holds for all y € D.

There are other related (not necessarily equivalent) ways to state the L-smoothness of f (you will
need to prove these in Assignment 1).

F(y) 2 F() + (F(,y =)+ o7 IVF(Y) = VFG)?
(VF(x) = V() x —y) < Llx =y

18

Questions?

Local Minimization

Even though f is smooth, it still includes functions with multiple local/global minimum and

stationary points. Eg: f(x) = —x sin(x).

Consider minimizing a smooth function over R? (unconstrained minimization)

min f(w).

weRd
Since we have seen that global minimization can be impossible (without Lipschitz assumption on
f) or the number of oracle calls can be exponential in d, let us aim to solve an easier problem.
Access to a first-order oracle — query the oracle at point w and it returns f(w) and Vf(w).

Objective: For a target accuracy of € > 0, return a point W s.t. |[VF(W)||*> < €? Characterize
the required number of oracle calls.

We only care about making the gradient small and finding an approximate stationary point.

19

Local Minimization

Recall that L-smoothness of f implies that f(y) < f(x) + (Vf(x),y — x) + 5 ||y — x|

Idea: Since the RHS is a global upper-bound on the true function, instead of minimizing the
function directly, let us minimize the upper-bound at x w.r.t y.

Setting the gradient of the RHS w.r.t y to zero, we obtain y as:
1
Vi(x)+ L[y —x]=0 = y=x— ZVf(X)

This is exactly the gradient descent update at x!

We can do this iteratively i.e. starting at wg, form the upper-bound at wg, minimize it by setting
w1 = wp — %Vf(wo), then form the quadratic upper-bound at w; and repeat. Continue to do
this until we find a point W s.t. |[Vf(#)||> < e and terminate.

This is exactly the gradient descent procedure — move in the direction of the negative gradient
(“downhill") with step-size 1) equal to to 1/r. Formally, at iteration k, the GD update is:

Wigy1 = W — an(Wk). -

