
CMPT 409/981: Optimization for Machine Learning

Lecture 1

Sharan Vaswani

September 8, 2022

Successes of Machine Learning

(a) Natural language processing (b) Speech recognition

(c) Reinforcement learning (d) Self-driving cars 1

Machine Learning 101

2

Machine Learning 101

3

Modern Machine Learning

(a) (b)

Figure 1: Models for multi-class classification on Image-Net. Number of examples = 1.2 M

Faster optimization methods can have a big practical impact!
4

Optimization for Machine Learning

(Non)-Convex minimization: Supervised learning (classification/regression), Matrix
factorization for recommender systems, Image denoising.

Online optimization: Learning how to play Go/Atari games, Imitating an expert and
learning from demonstrations, Regulating control systems like industrial plants.

Min-Max optimization: Generative Adversarial Networks, Adversarial Learning,
Multi-agent RL.

5

Course structure

Objective: Introduce foundational optimization concepts with applications to machine learning.

Syllabus:

(Non)-Convex minimization: Gradient Descent, Momentum/Acceleration, Mirror Descent,
Newton/Quasi-Newton methods, Stochastic gradient descent (SGD), Variance reduction

Online optimization: Follow the (regularized) leader, Adaptive methods (AdaGrad, Adam)

Min-Max optimization: (Stochastic) Gradient Descent-Ascent, (Stochastic) Extragradient

What we won’t get time to cover in detail: Non-smooth optimization, Convex analysis,
Global optimization.

What we won’t get time to cover: Constrained optimization, Distributed optimization,
Multi-objective optimization.

6

Course Logistics

Instructor: Sharan Vaswani (TASC-1 8221) Email: sharan_vaswani@sfu.ca

Office Hours: Monday 4 pm - 5 pm (TASC-1 8221), TBD

Teaching Assistant: Zahra MiriKharaji Email: zmirikha@sfu.ca

Course Webpage: https://vaswanis.github.io/409_981-F22.html

Piazza: https://piazza.com/sfu.ca/fall2022/cmpt409981/home

Prerequisites: Linear Algebra, Multivariable calculus, (Undergraduate) Machine Learning

7

sharan_vaswani@sfu.ca
zmirikha@sfu.ca
https://vaswanis.github.io/409_981-F22.html
https://piazza.com/sfu.ca/fall2022/cmpt409981/home

Course Logistics – Grading

Assignments [4 × 12.5% = 50%]

Assignments to be submitted online, typed up in Latex with accompanying code submitted
as a zip file.

Each assignment will be due in 10 days (at 11.59 pm PST).

For some flexibility, each student is allowed 1 late-submission and can submit in the next
class (no late submissions beyond that).

If you use up your late-submission and submit late again, you will lose 50% of the mark.

8

Course Logistics – Grading

Final Project [50%]

Aim is to give you a taste of research in Optimization.

Projects to be done in groups of 3-4 (more details will be on Piazza)

Will maintain a list on Piazza on possible project topics. You are free to choose from the
list or propose a topic that combines Optimization with your own research area.

Project Proposal [10%] – Discussion (before 20 October) + Report (due 24 October)

Project Milestone [5%] – Update (before 20 November)

Project Presentation [10%] (6 December)

Project Report [25%] (15 December)

9

Questions?

9

Minimizing functions

Consider minimizing a function over the domain D

min
w∈D

f (w).

Setting: Have access to a zero-order oracle – querying the oracle at w ∈ D returns f (w).

Objective: For a target accuracy of ϵ > 0, if w∗ ∈ D is the minimizer of f , return a point
ŵ ∈ D s.t. f (ŵ)− f (w∗) ≤ ϵ. Characterize the required number of oracle calls.

Example 1: Minimize a one-dimensional function s.t. f (w) = 0 for all x ̸= w∗, and f (w∗) = −ϵ.

Example 2: Easom function:
f (x1, x2) = − cos(x1) − cos(x2) exp(−(x1 − π)2 − (x2 − π)2).

Minimizing generic functions is hard! We need to make assumptions on the structure.
10

Lipschitz continuous functions

Consider minimizing a function over the domain D:

min
w∈D

f (w).

Assumption: f is Lipschitz continuous meaning that f can not change arbitrarily fast as w

changes. Formally, for any x , y ∈ D,

|f (x)− f (y)| ≤ G ∥x − y∥

where G is the Lipschitz constant.

Example: f (x) := −x sin(x) in the [−10, 10] interval.

−10 −5 0 5 10

−6

−4

−2

0

2

4

x

f
(x
)

f (x)

Lipschitz continuity of the function immediately implies that the gradients are bounded i.e. for
all x ∈ D, ∥∇f (x)∥ ≤ G .

11

Global Minimization

Consider minimizing a G -Lipschitz continuous function over a unit hyper-cube:

min
w∈[0,1]d

f (w).

Objective: For a target accuracy of ϵ > 0, if w∗ ∈ [0, 1]d is the minimizer of f , return a point
ŵ ∈ [0, 1]d s.t. f (ŵ)− f (w∗) ≤ ϵ. Characterize the required number of zero-order oracle calls.

Naive algorithm: Divide the hyper-cube into cubes with length of each side equal to ϵ′ > 0 (to
be determined). Call the zero-order oracle on the centers of these 1

(ϵ′)d
cubes and return the

point ŵ with the minimum function value.

Analysis: The minimizer lies in/at the boundary of one of these cubes, and hence by returning
the minimum ŵ , we guarantee that ŵ is at most

√
dϵ′ away from w∗ i.e. ∥ŵ − w∗∥ ≤

√
dϵ′.

By G -Lipschitz continuity, f (ŵ)− f (w∗) ≤ G ∥ŵ − w∗∥ ≤ G
√
dϵ′. For a target accuracy of ϵ,

we can set ϵ′ = ϵ
G
√
d
. Hence, for this naive algorithm, total number of oracle calls =

(
G
√
d

ϵ

)d

.

12

Global Minimization

Consider minimizing a differentiable, G -Lipschitz continuous function over a unit hyper-cube:

min
w∈[0,1]d

f (w).

Q: Suppose we do a random search over the cubes? What is the expected number of function
evaluations?

Ans: The probability of finding the correct cube is p := ϵ′d . If X is a r.v. equal to 1 if we find
the correct cube, then X follows a Geometric distribution. Hence, expected number of

evaluations is 1
p = (ϵ′)d =

(
ϵ

G
√
d

)d

.

Is our naive algorithm good? Can we do better?

Lower-Bound: For minimizing a G -Lipschitz continuous function over a unit hyper-cube, any
algorithm requires Ω

((
G
ϵ

)d)
calls to the zero-order oracle.

Our naive-algorithm is sub-optimal by a factor of O
(
(
√
d)d

)
.

13

Questions?

13

Smooth functions

Recall that Lipschitz continuous functions have bounded gradients i.e. ∥∇f (w)∥ ≤ G and can
still include non-smooth (not differentiable everywhere) functions.

For example, f (x) = |x | is 1-Lipschitz continuous but not differentiable at x = 0 and the
gradient changes from −1 at 0− to +1 at 0+.

An alternative assumption that we can make is that f is smooth – it is differentiable everywhere
and its gradient is Lipschitz-continuous i.e. it can not change arbitrarily fast.

Formally, the gradient ∇f is L-Lipschitz continuous if for all x , y ∈ D,

∥∇f (x)−∇f (y)∥ ≤ L ∥x − y∥

where L is the Lipschitz constant of the gradient (also called the smoothness constant of f).

Q: Does Lipschitz-continuity of the gradient imply Lipschitz-continuity of the function? Ans:
No, x2

2 is 1-smooth but its gradient equal to x is unbounded over R.

14

Smooth functions – Examples

If f is twice-differentiable and smooth, then for all x ∈ D, ∇2f (x) ⪯ L Id i.e. σmax[∇2f (x)] ≤ L

where σmax is the maximum singular value.

Q: Does f (x) = x3 have a Lipschitz-continuous gradient over R? Ans: No, f ′′(x) = 12x which is
not bounded as x → ∞

Q: Does f (x) = x3 have a Lipschitz-continuous gradient over [0, 1]?

Ans: Yes, because f ′′(x) = 12x is bounded on [0, 1].

Q: The negative entropy function is given by f (x) = x log(x). Does it have a
Lipschitz-continuous gradient over [0, 1]? Ans: No, f ′′(x) = 1/x → ∞ as x → 0.

15

Smooth functions – Examples

Linear Regression on n points with d features. Feature matrix: X ∈ Rn×d , vector of
measurements: y ∈ Rn and parameters w ∈ Rd .

min
w∈Rd

f (w) :=
1
2
∥Xw − y∥2

f (w) =
1
2
[wT(XTX)w − 2wTXTy + yTy] ;∇f (w) = XTXw − XTy ;∇f (w) = XTX

If f is L-smooth, then, σmax[∇2f (w)] ≤ L for all w . Hence, for linear regression L = λmax[X
TX].

Q: Is the linear regression loss-function Lipschitz continuous? Ans: No. Since ∥∇f (w)∥ → ∞ as
w → ∞.

Q: Compute L for ridge regression – ℓ2-regularized linear regression where
f (w) := 1

2 ∥Xw − y∥2 + λ
2 ∥w∥2. Ans: L = λmax[X

TX] + λ

16

Smooth functions

Claim: For an L-smooth function, f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L
2 ∥y − x∥2 for all x , y ∈ D.

Proof:

f (y) = f (x) +

∫ 1

t=0
[∇f (x + t (y − x))] (y − x)T dt (Fundamental theorem of calculus)

= f (x) + ⟨∇f (x), y − x⟩+
∫ 1

t=0
[∇f (x + t (y − x))] (y − x)T dt − [∇f (x)] (y − x)T

= f (x) + ⟨∇f (x), y − x⟩+
∫ 1

t=0
[∇f (x + t (y − x))−∇f (x)] (y − x)T dt

≤ f (x) + ⟨∇f (x), y − x⟩+
∫ 1

t=0
∥∇f (x + t (y − x))−∇f (x)∥ ∥y − x∥ dt

(Cauchy–Schwarz)

≤ f (x) + ⟨∇f (x), y − x⟩+ L

∫ 1

t=0
∥x + t (y − x)− x∥ ∥y − x∥ dt (Lipschitz continuity)

= f (x) + ⟨∇f (x), y − x⟩+ L ∥y − x∥2
∫ 1

t=0
t dt = f (x) + ⟨∇f (x), y − x⟩+ L

2
∥y − x∥2

17

Smooth functions

The inequality f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L
2 ∥y − x∥2 can be interpreted as a global

quadratic upper-bound on f at point x i.e. the bound holds for all y ∈ D.

There are other related (not necessarily equivalent) ways to state the L-smoothness of f (you will
need to prove these in Assignment 1).

f (y) ≥ f (x) + ⟨f (x), y − x⟩+ 1
2L

∥∇f (y)−∇f (x)∥2

⟨∇f (x)−∇f (y), x − y⟩ ≤ L ∥x − y∥2

18

Questions?

18

Local Minimization

Even though f is smooth, it still includes functions with multiple local/global minimum and
stationary points. Eg: f (x) = −x sin(x).

Consider minimizing a smooth function over Rd (unconstrained minimization)

min
w∈Rd

f (w).

Since we have seen that global minimization can be impossible (without Lipschitz assumption on
f) or the number of oracle calls can be exponential in d , let us aim to solve an easier problem.

Access to a first-order oracle – query the oracle at point w and it returns f (w) and ∇f (w).

Objective: For a target accuracy of ϵ > 0, return a point ŵ s.t. ∥∇f (ŵ)∥2 ≤ ϵ? Characterize
the required number of oracle calls.

We only care about making the gradient small and finding an approximate stationary point.

19

Local Minimization

Recall that L-smoothness of f implies that f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L
2 ∥y − x∥2.

Idea: Since the RHS is a global upper-bound on the true function, instead of minimizing the
function directly, let us minimize the upper-bound at x w.r.t y .

Setting the gradient of the RHS w.r.t y to zero, we obtain ŷ as:

∇f (x) + L [ŷ − x] = 0 =⇒ ŷ = x − 1
L
∇f (x)

This is exactly the gradient descent update at x!

We can do this iteratively i.e. starting at w0, form the upper-bound at w0, minimize it by setting
w1 = w0 − 1

L∇f (w0), then form the quadratic upper-bound at w1 and repeat. Continue to do
this until we find a point ŵ s.t. ∥∇f (ŵ)∥2 ≤ ϵ and terminate.

This is exactly the gradient descent procedure – move in the direction of the negative gradient
(“downhill”) with step-size η equal to to 1/L. Formally, at iteration k , the GD update is:

wk+1 = wk − η∇f (wk).
20

