CMPT 210: Probability and Computing

Lecture 8

Sharan Vaswani
February 1, 2024

Recap - Conditional Probability

For events E and F, we wish to compute $\operatorname{Pr}[E \mid F]$, the probability of event E conditioned on F.
Approach 1: With conditioning, F can be interpreted as the new sample space such that for $\omega \notin F, \operatorname{Pr}[\omega \mid F]=0$.

Example: For computing $\operatorname{Pr}[$ we get a $6 \mid$ the outcome is even], the new sample space is $F=\{2,4,6\}$ and the resulting probability space is uniform. $\operatorname{Pr}[\{$ even number $\}]=\frac{1}{3}$ and $\operatorname{Pr}[\{$ odd number $\}]=0$.
Approach 2: $\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}$.
Example: $E \cap F=\{6\} . \operatorname{Pr}[E \cap F]=\frac{1}{6} . \operatorname{Pr}[F]=\operatorname{Pr}[2]+\operatorname{Pr}[4]+\operatorname{Pr}[6]=\frac{1}{2}$. Hence, $\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}=\frac{1 / 6}{1 / 2}=\frac{1}{3}$.

Conditional Probability - Generalization to multiple events

Multiplication Rule: For events $E_{1}, E_{2}, E_{3}, \operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]$. Proof:

$$
\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \frac{\operatorname{Pr}\left[E_{2} \cap E_{1}\right]}{\operatorname{Pr}\left[E_{1}\right]} \frac{\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]}{\operatorname{Pr}\left[E_{1} \cap E_{2}\right]}=\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]
$$

We can order the events to compute $\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]$ more easily. For example,

$$
\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{2}\right] \operatorname{Pr}\left[E_{3} \mid E_{2}\right] \operatorname{Pr}\left[E_{1} \mid E_{2} \cap E_{3}\right]
$$

Can extend this to n events i.e. in general,

$$
\operatorname{Pr}\left[E_{1} \cap E_{2} \ldots \cap E_{n}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right] \ldots \operatorname{Pr}\left[E_{n} \mid E_{1} \cap E_{2} \cap \ldots E_{n-1}\right]
$$

Conditional Probability - Examples

Q: The organization that Jones works for is running a father-son dinner for those employees having at least one son. Each of these employees is invited to attend along with his youngest son. If Jones is known to have two children, what is the conditional probability that they are both boys given that he is invited to the dinner? Assume that the sample space S is given by $S=\{(b, b),(b, g),(g, b),(g, g)\}$ and all outcomes are equally likely. For instance, (b, g) means that the younger child is a boy and the older child is a girl.

The event that we care about is Jones has both boys. Hence, $E=\{(b, b)\}$.
Additional information that we are conditioning on is that Jones is invited to the dinner meaning that he has at least one son. Hence, $F=\{(b, b),(b, g),(g, b)\}$.
Hence, $E \cap F=\{(b, b)\}, \operatorname{Pr}[E \cap F]=\frac{|E \cap F|}{|\mathcal{S}|}=\frac{1}{4} . \operatorname{Pr}[F]=\frac{|F|}{|\mathcal{S}|}=\frac{3}{4}$.
$\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}=\frac{1 / 4}{3 / 4}=\frac{1}{3}$.

Conditional Probability - Examples

Q: Ms. Perez figures that there is a 30 percent chance that her company will set up a branch office in Phoenix. If it does, she is 60 percent certain that she will be made manager of this new operation. What is the probability that there will be a branch in Phoenix and Perez will be its office manager?
$E=$ Perez will be a branch office manager; $F=$ her company will set up a branch office in Phoenix; $E \cap F=$ Perez will be an office manager in the Phoenix branch.

From the question, we know that $\operatorname{Pr}[F]=0.3, \operatorname{Pr}[E \mid F]=0.6$. Hence, $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[E \mid F]=0.3 \times 0.6=0.18$.

Conditional Probability Examples

Q: Suppose we have a bowl containing 6 white and 5 black balls. We randomly draw a ball. What is the probability that we draw a black ball? Ans: $\frac{5}{11}$
Q: We randomly draw two balls, one after the other (without putting the first back). What is the probability that we (i) draw a black ball followed by a white ball (ii) draw a white ball followed by a black ball (iii) we get one black ball and one white ball (iv) both black (v) both white?
$\mathrm{B} 1=$ Draw black first, W1 $=$ Draw white first. B2 $=$ Black second, W2 $=$ White second.
(i) $\operatorname{Pr}[B 1]=\frac{5}{11} . \operatorname{Pr}[W 2 \mid B 1]=\frac{6}{10}$. Hence, $\operatorname{Pr}[B 1 \cap W 2]=\operatorname{Pr}[B 1] \operatorname{Pr}[W 2 \mid B 1]=\frac{30}{110}$.
(ii) $\operatorname{Pr}[W 1]=\frac{6}{11} \cdot \operatorname{Pr}[B 2 \mid W 1]=\frac{5}{10}$. Hence, $\operatorname{Pr}[W 1 \cap B 2]=\operatorname{Pr}[W 1] \operatorname{Pr}[B 2 \mid W 1]=\frac{30}{110}$.
(iii) $G=(B 1 \cap W 2) \cup(W 1 \cap B 2)$. Events $B 1 \cap W 2$ and $B 2 \cap W 1$ are mutually exclusive. By the union rule for mutually exclusive events, $\operatorname{Pr}[G]=\operatorname{Pr}[B 1 \cap W 2]+\operatorname{Pr}[W 1 \cap B 2]=\frac{60}{110}$.
(iv) $\operatorname{Pr}[B 1 \cap B 2]=\operatorname{Pr}[B 1] \operatorname{Pr}[B 2 \mid B 1]=\frac{20}{110}$.
(v) $\operatorname{Pr}[W 1 \cap W 2]=\operatorname{Pr}[W 1] \operatorname{Pr}[W 2 \mid W 1]=\frac{30}{110}$.

Questions?

Back to throwing dice - Tree Diagram

Q: Suppose we throw two standard dice one after the other. What is the probability that we get two 6's in a row?

Identify Outcomes: Each leaf is an outcome and $\mathcal{S}=\{(1,1),(1,2),(1,3), \ldots(6,6)\}$.
Identify Event: $E=\{(6,6)\}$.
Compute probabilities: $\operatorname{Pr}[$ Dice 1 is 6$]=\frac{1}{6}$. $\operatorname{Pr}[(6,3)]=\operatorname{Pr}[$ Dice 2 is $3 \cap$ Dice 1 is 6$]=$ $\operatorname{Pr}[$ Dice 2 is $3 \mid$ Dice 1 is 6$] \operatorname{Pr}[$ Dice 1 is 6$]=\frac{1}{6} \frac{1}{6}=\frac{1}{36}$. $\operatorname{Pr}[E]=\operatorname{Pr}[$ dice 1 is $6 \cap$ dice 2 is 6$]=\frac{1}{36}$.

Monty Hall Problem

Q: Suppose you're on a game show, and you're given the choice of three doors. Behind one door is a car, behind the others, goats. You pick a door, say A, and the host, who knows what's behind the doors, opens another door, say C, which has a goat. He says to you, "Do you want to pick door B?" Is it to your advantage to switch your choice of doors?

- The car is equally likely to be hidden behind each of the three doors.
- The player is equally likely to pick each of the three doors, regardless of the car's location.
- After the player picks a door, the host must open a different door with a goat behind it and offer the player the choice of staying with the original door or switching.
- If the host has a choice of which door to open, then he is equally likely to select each of them.

Tree Diagram for the Monty Hall Problem - Identify Outcomes

$$
\begin{aligned}
& \mathcal{S}=\{(A, A, B),(A, A, C),(A, B, C),(A, C, B), \ldots\} \\
& E_{1}=\text { Prize is behind door } C= \\
& \{(C, A, B),(C, B, A),(C, C, A),(C, C, B)\}
\end{aligned}
$$

Tree Diagram for the Monty Hall Problem - Identify Event

$E=$ Switching wins $=$
$\{(A, B, C),(A, C, B),(B, A, C),(B, C, A),(C, A, B),(C, B, A)\}$
$\operatorname{Pr}[(A, A)]=\operatorname{Pr}[C a r$ is at $\mathrm{A} \cap$ Player picks A$]=$
$\operatorname{Pr}[P l a y e r$ picks $\mathrm{A} \mid \mathrm{Car}$ is at A$] \operatorname{Pr}[C a r$ is at A$]=\frac{1}{3} \frac{1}{3}=\frac{1}{9}$.
$\operatorname{Pr}[(A, A, B)]=\operatorname{Pr}[$ Door B is revealed $\cap \mathrm{AA}]=$ $\operatorname{Pr}[$ Door B is revealed $\mid A A] \operatorname{Pr}[A A]=\frac{1}{2} \frac{1}{9}=\frac{1}{18}$.

Tree Diagram for the Monty Hall Problem - Compute Probabilities

$$
\begin{gathered}
\operatorname{Pr}[E]=\operatorname{Pr}[(A, B, C)]+\operatorname{Pr}[(A, C, B)]+\operatorname{Pr}[(B, A, C)]+ \\
\operatorname{Pr}[(B, C, A)]+\operatorname{Pr}[(C, A, B)]+\operatorname{Pr}[(C, B, A)]=\frac{1}{9} \times 6=\frac{2}{3} .
\end{gathered}
$$

Monty Hall Problem and Conditional Probability

Questions?

Conditional Probability - Examples

Q: In a best-of-three series, the local hockey team wins the first game with probability $\frac{1}{2}$. In subsequent games, their probability of winning is determined by the outcome of the previous game. If the team won the previous game, then they are invigorated by victory and win the current game with probability $\frac{2}{3}$. If they lost the previous game, then they are demoralized by defeat and win the current game with probability only $\frac{1}{3}$. What is the probability that the local team wins the series, given that they win the first game? Note that the series is over as soon as a team wins two games.

Conditional Probability - Examples

game 1 game 2	game 3	outcome	event A: win the series	event B: win game 1	outcome probability
$1 / 3$					

Sample space: $\mathcal{S}=\{(W, W),(W, L, W),(W, L, L),(L, W, W),(L, W, L),(L, L)\}$.
Events: $T=\{(W, W),(W, L, W),(L, W, W)\}, F=\{(W, W),(W, L, W),(W, L, L)\}$.

$$
\operatorname{Pr}[T \mid F]=\frac{\operatorname{Pr}[T \cap F]}{\operatorname{Pr}[F]}=\frac{\operatorname{Pr}[\{(W, W),(W, L, W)\}]}{\operatorname{Pr}[\{(W, W),(W, L, W),(W, L, L)\}]}=\frac{1 / 3+1 / 18}{1 / 3+1 / 18+1 / 9}=\frac{7}{9}
$$

Conditional Probability - Examples

game 1	game 2	game 3	outcome	event $\mathrm{A}:$ win the series	event $\mathrm{B}:$ win game 1	outcome probability
$1 / 3$						

Q: What is the probability that the team wins the series if they lose Game 1? Ans: $\frac{1 / 9}{1 / 9+1 / 18+1 / 3}=\frac{2}{9}$
Q: What is the probability that the team wins the series? Ans: $\frac{1}{2}$
Q: What is the probability that the series goes to Game 3? Ans: $\frac{1}{3}$

Conditional Probability - Examples

| game 1 game 2 game 3 | outcome | event A:
 win the
 series | event B:
 win
 game 1 | outcome
 probability |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 3$ | | | | |

Q: What is the probability that the team won their first game given that they won the series?
Recall that $T=\{(W, W),(W, L, W),(L, W, W)\}, F=\{(W, W),(W, L, W),(W, L, L)\}$. We wish to compute $\operatorname{Pr}[F \mid T]=\frac{\operatorname{Pr}[F \cap T]}{\operatorname{Pr}[T]}=\frac{\operatorname{Pr}\{[(W, W),(W, L, W)\}]}{\operatorname{Pr}[\{(W, W),(W, L, W),(L, W, W)\}]}=\frac{1 / 3+1 / 18}{1 / 3+1 / 18+1 / 9}=\frac{7}{9}$.

