CMPT 210: Probability and Computing

Lecture 7

Sharan Vaswani
January 30, 2024

Recap

Sample (outcome) space \mathcal{S} : Nonempty (countable) set of possible outcomes.
Outcome $\omega \in \mathcal{S}$: Possible "thing" that can happen.
Event E : Any subset of the sample space. An event E "happens" if the outcome ω (from some process) is in set E i.e. if $\omega \in E$.

Probability function on a sample space \mathcal{S} is a total function $\operatorname{Pr}: \mathcal{S} \rightarrow[0,1]$. For any $\omega \in \mathcal{S}$,

$$
0 \leq \operatorname{Pr}[\omega] \leq 1 \quad ; \quad \sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1 \quad ; \quad \operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]
$$

Complement rule: $\operatorname{Pr}[E]=1-\operatorname{Pr}\left[E^{c}\right]$
Inclusion-Exclusion rule: For any two events $E, F, \operatorname{Pr}[E \cup F]=\operatorname{Pr}[E]+\operatorname{Pr}[F]-\operatorname{Pr}[E \cap F]$.
Uniform probability space: A probability space is said to be uniform if $\operatorname{Pr}[\omega]$ is the same for every outcome $\omega \in \mathcal{S}$. In this case, $\operatorname{Pr}[E]=\frac{|E|}{|\mathcal{S}|}$.

Birthday Principle

If there are n pigeons and d pigeonholes, then the probability that two pigeons occupy the same hole is $\geq 1-\exp \left(-\frac{n(n-1))}{2 d}\right)$
For $n=\lceil\sqrt{2 d}\rceil$, probability that two pigeons occupy the same hole is about $1-\frac{1}{e} \approx 0.632$.
Example: If we are randomly throwing $\lceil\sqrt{2 d}\rceil$ balls into d bins, then the probability that two balls land in the same bin is around 0.632 .

Later in the course, we will see applications of this principle to load balancing.

Conditional Probability

Conditioning is revising probabilities based on partial information (an event).
Q: Suppose we throw a "standard" dice, what is the probability of getting a 6 if we are told that the outcome is even?

We wish to compute $\operatorname{Pr}[$ we get a $6 \mid$ the outcome is even] or Probability of getting a 6 given that the outcome is even or Probability of a 6 conditioned on the event that the outcome is even.

Sample space: $\mathcal{S}=\{1,2,3,4,5,6\}$, Event: $E=\{6\}$. Additional information: Event $F=\{2,4,6\}$ has happened. With conditioning on F, new sample space $S^{\prime}=F=\{2,4,6\}$. Since each outcome in $S^{\prime}=\{2,4,6\}$ is equally likely, the new probability space is still a uniform probability space. Hence, conditioned on the event that the outcome is even, $\sum_{\omega \in S^{\prime}} \operatorname{Pr}[\omega]=1$ and $\operatorname{Pr}[$ even number $]=\frac{1}{3}$ and $\operatorname{Pr}[$ odd number $]=0$. Hence, $\operatorname{Pr}[6]=\frac{1}{3}$.
Q: What is the probability of getting either a 3 or 6 if we are told that the outcome is even? $E=\{3,6\}, F=\{2,4,6\}$. With conditioning, the new sample space $S^{\prime}=\{2,4,6\}$. By the same reasoning as above, $\operatorname{Pr}[6]=\frac{1}{3}$ and $\operatorname{Pr}[3]=0$. Hence, $\operatorname{Pr}[E]=\operatorname{Pr}[3]+\operatorname{Pr}[6]=\frac{1}{3}$.

Conditional Probability

Q: Suppose we throw two standard dice one after the other. What is the probability that the sum of the dice is 6 ?

Recall the sample space consists of tuples, i.e. $S=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}$. The event E consists of outcomes such that the sum of the dice is $6 . E=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$. Since all outcomes are equally likely, this is a uniform probability space, and $\operatorname{Pr}[E]=\frac{|E|}{|S|}=\frac{5}{36}$.
Q: Suppose I tell you that the first dice came up 4. Given this information, what is the probability that the sum of the dice is 6 ?
Let F be the event that the first dice came up 4. We wish to compute $\operatorname{Pr}[E \mid F]$, the probability that the sum of the dice is 6 conditioned on the event that the first dice came up 4.
With conditioning, the new sample space $S^{\prime}=F=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)\}$. For this new probability space, $E=\{(4,2)\}$. Since each outcome in S^{\prime} is equally likely, $\operatorname{Pr}[E \mid F]=\frac{|E|}{\left|S^{\prime}\right|}=\frac{1}{6}$.

Conditional Probability

Conditional Probability Rule: For two events E and $F, \operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}$, where $\operatorname{Pr}[F] \neq 0$.
Proof: By conditioning on F, the only outcomes we care about are in F i.e. for $\omega \notin F$, $\operatorname{Pr}[\omega \mid F]=0$.
Since we want to compute the probability that event E happens, we care about the outcomes that are in E. Hence, the outcomes we care about lie in both E and F, meaning that $\omega \in E \cap F$. $\Longrightarrow \operatorname{Pr}[E \mid F] \propto \sum_{\omega \in(E \cap F)} \operatorname{Pr}[\omega]$. By definition of proportionality, for some constant $c>0$, $\operatorname{Pr}[E \mid F]=c \sum_{\omega \in(E \cap F)} \operatorname{Pr}[\omega]$.
We know that $\operatorname{Pr}[F \mid F]=1$ (probability of event F given that F has happened). Hence, $\operatorname{Pr}[F \mid F]=1=c \sum_{\omega \in F} \operatorname{Pr}[\omega] \Longrightarrow c=\frac{1}{\sum_{\omega \in F} \operatorname{Pr}[\omega]}$.
Substituting the value of c,

$$
\operatorname{Pr}[E \mid F]=\frac{\sum_{\omega \in(E \cap F)} \operatorname{Pr}[\omega]}{\sum_{\omega \in F} \operatorname{Pr}[\omega]}=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} \text {, where } \operatorname{Pr}[F] \neq 0 \text {. }
$$

This formula gives an alternate way to compute conditional probabilities.

Back to throwing dice

Q: Suppose we throw a "standard" dice, what is the probability of getting a 6 if we are told that the outcome is even?

Sample space: $\mathcal{S}=\{1,2,3,4,5,6\}$ and $\operatorname{Pr}[1]=\operatorname{Pr}[2]=\ldots=\operatorname{Pr}[6]=\frac{1}{6}$.
Event: $E=\{6\}$. We are conditioning on $F=\{2,4,6\}$.
$\operatorname{Pr}[$ we get a $6 \mid$ the outcome is even $]=\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}$.
$E \cap F=\{6\} . \operatorname{Pr}[E \cap F]=\frac{1}{6} . \operatorname{Pr}[F]=\operatorname{Pr}[2]+\operatorname{Pr}[4]+\operatorname{Pr}[6]=\frac{1}{2}$.
Hence, $\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}=\frac{1 / 6}{1 / 2}=\frac{1}{3}$.
Q: What is the probability of getting either a 3 or 6 if we are told that the outcome is even? Ans: $E=\{3,6\}, F=\{2,4,6\} . E \cap F=\{6\} . \operatorname{Pr}[E]=\operatorname{Pr}[6]=\frac{1}{6} . \operatorname{Pr}[F]=\frac{1}{2}$. Hence, $\operatorname{Pr}[E \mid F]=\frac{1}{3}$.
Q: Suppose we throw two standard dice one after the other. What is the probability that the sum of the dice is 6 given that the first dice came up 4 ? Ans: $S=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}$, $E=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}, F=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)\}$. $\operatorname{Pr}[F]=\frac{6}{36}, E \cap F=\{(4,2)\} \operatorname{Pr}[E \cap F]=\frac{1}{36}, \operatorname{Pr}[E \mid F]=\frac{1 / 36}{6 / 36}=\frac{1}{6}$

Conditional Probability - Examples

Q: Suppose we select a card at random from a standard deck of 52 cards. What is the probability of getting:

- A spade conditioned on the event that I picked the red color Ans: 0
- A spade facecard conditioned on the event that I picked the black color Ans: $\frac{3}{26}$
- A black card conditioned on the event that I picked a spade facecard Ans: 1
- The queen of hearts given that I picked a queen Ans: $\frac{1}{4}$
- An ace given that I picked a spade Ans: $\frac{1}{13}$

