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Recap

Sample (outcome) space S: Nonempty (countable) set of possible outcomes. Example: When
we threw one dice, the sample space is {1, 2, 3, 4, 5, 6}.

Outcome ω ∈ S: Possible “thing” that can happen. Example: When we threw one dice, a
possible outcome is ω = 1.

Event E : Any subset of the sample space. Example: When we threw one dice, a possible event
is E = {6} (first example) or E = {3, 6} (second example).

Probability function on a sample space S is a total function Pr : S → [0, 1]. For any ω ∈ S,

0 ≤ Pr [ω] ≤ 1 ;
∑
ω∈S

Pr[ω] = 1 ; Pr[E ] =
∑
ω∈E

Pr[ω]

Union: For mutually exclusive events E1,E2, . . . ,En,
Pr[E1 ∪ E2 ∪ . . .En] = Pr[E1] + Pr[E2] + . . .+ Pr[En].
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Probability Rules

Complement rule: Pr[E ] = 1 − Pr[E c ].

Proof : Recall that E ∩ E c = {} and E ∪ E c = S. Since E and E c are disjoint,

Pr[E ∪ E c ] = Pr[E ] + Pr[E c ] =⇒ Pr[S ] = Pr[E ] + Pr[E c ] =⇒ Pr[E c ] = 1 − Pr[E ].

Inclusion-Exclusion rule: For any two events E ,F , Pr[E ∪ F ] = Pr[E ] + Pr[F ]− Pr[E ∩ F ].

Proof :

Pr[E ∪ F ] =
∑

ω∈{E∪F}

Pr[ω] =
∑

ω∈{E−F}

Pr[ω] +
∑

ω∈{F−E}

Pr[ω] +
∑

ω∈{E∩F}

Pr[ω]

(Since disjoint)

=

 ∑
ω∈{E−F}

Pr[ω] +
∑

ω∈{E∩F}

Pr[ω]

+

 ∑
ω∈{F−E}

Pr[ω] +
∑

ω∈{E∩F}

Pr[ω]

−
∑

ω∈{E∩F}

Pr[ω]

=
∑
ω∈E

Pr[ω] +
∑
ω∈F

Pr[ω]−
∑

ω∈{E∩F}

Pr[ω] = Pr[E ] + Pr[F ]− Pr[E ∩ F ]
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Probability Rules

Union Bound: For any two events E ,F , Pr[E ∪ F ] ≤ Pr[E ] + Pr[F ].

Proof : By the inclusion-exclusion rule, Pr[E ∪ F ] = Pr[E ] + Pr[F ]− Pr[E ∩ F ]. Since
probabilities are non-negative, Pr[E ∩ F ] ≥ 0 and hence, Pr[E ∪ F ] ≤ Pr[E ] + Pr[F ].

Union Bound: For any events E1,E2,E3, . . .En,

Pr[E1 ∪ E2 ∪ E3 . . . ∪ En] ≤
n∑

i=1

Pr[Ei ]

Monotonicity rule: For events A and B, if A ⊂ B, then Pr[A] < Pr[B].

Proof :

Pr[A] =
∑
ω∈A

Pr[ω] =
∑
ω∈B

Pr[ω]−
∑

ω∈{B−A}

Pr[ω] =⇒ Pr[A] < Pr[B]

(Since probabilities are non-negative.)
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Uniform Probability Spaces

Definition: A probability space is uniform if Pr[ω] is the same for every outcome ω ∈ S.

Since
∑

ω∈S Pr [ω] = 1 =⇒ Pr[ω] = 1
|S| for all ω ∈ S.

Example: For a standard dice, S = {1, 2, 3, 4, 5, 6}, Pr[1] = Pr[2] = . . . = Pr[6] = 1/6.

Pr[E ] =
∑

ω∈E Pr [ω] = |E |Pr [ω] = |E |
|S| .

Example: For a standard dice, if E = {3, 6}, then, Pr[E ] = |E |
|S| =

2
6 = 1/3.

Hence, for uniform probability spaces, computing the probability is equivalent to counting the
outcomes we “care” about.
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Back to throwing dice

Q: Suppose we have a loaded (not “standard”) dice such that the probability of getting an even
number is twice that of getting an odd number (all even numbers are equally likely, and so are
the odd numbers). What is the probability of getting a 6?

Let p be the probability of getting an odd number. Probability of getting an even number = 2p.∑
ω∈S Pr[ω] = 1 =⇒ 3p + 3(2p) = 1 =⇒ p = 1

9 . Hence, probability of getting an odd
number = 1

9 . Probability of getting a 6 = Probability of getting an even number = 2
9 .

Q: What is the probability that we get either a 3 or a 6? Ans: 1
9 + 2

9 = 1
3

Q: What is the probability that we get a prime number Ans: 2
9 + 1

9 + 1
9 = 4

9
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Probability Examples

Q: Suppose we select a card at random from a standard deck of 52 cards. What is the
probability of getting:

A spade Ans: 1
4

A spade facecard Ans: 3
52

A black card Ans: 1
2

The queen of hearts Ans: 1
52

An ace Ans: 1
13
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Probability Examples

Q: A class consists of 6 men and 4 women. An exam is given and the students are ranked
according to their performance. Assuming that no two students obtain the same scores and all
rankings are considered equally likely, what is the probability that women receive the top 4
scores?

In general, let the number of men be m and let the number of women be w .

Number of possible rankings = Number of permutations = (m + w)!.

The event of interest is that where the women achieve the top scores. In a possible ranking, let’s
fix the top w slots for women. The w women can be arranged in w ! ways. And the m men can
be arranged in m! ways. Hence, total number of rankings where women receive the top scores =
m! w !.

Since all rankings are equally likely, probability that women receive the top w scores = m!w !
(m+w)! .

In this case, since m = 6 and w = 4, probability that women receive the top 4 scores = 6! 4!
10! .
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Probability Examples

Q: A class consists of m men and w women. An exam is given and the students are ranked
according to their performance. Assuming that no two students obtain the same scores and all
rankings are considered equally likely, what is probability that women receive the top t (t ≤ w)
scores?

Number of ways to select the t women that have top scores =
(
w
t

)
. The top t women can be

arranged in t! ways. The number of remaining students is equal to m + w − t. These can be
arranged in (m + w − t)! ways. Hence, total number of rankings where women receive the top t

scores =
(
w
t

)
(m + w − t)! t!.

As before, the total number of rankings = (m + w)!. Since all rankings are equally likely, the

probability that women receive the top t scores = (wt ) (m+w−t)! t!

(m+w)! = w ! (m+w−t)!
(w−t)!(m+w)!
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Probability Examples

Q: A committee of size 5 is to be selected from a group of 6 CS and 9 Math students (no double
majors allowed). If the selection is made randomly (all selections are equally likely), what is the
probability that the committee consists of 3 CS and 2 Math students?

Number of possible ways of selecting the committee = |S| =
(15

5

)
.

The event of interest (E ) requires choosing 3 CS and 2 Math students. Number of ways we can
select the CS students =

(6
3

)
. Similarly, number of ways we can select the Math students =

(9
2

)
.

Hence, |E | =
(6
3

) (9
2

)
=⇒ Pr[E ] = |E |

|S| =
(63) (

9
2)

(15
5 )

.
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Probability Examples

Q: From a set of n items a random sample of size k is to be selected (all selections are equally
likely). What is the probability a given item (α) will be among the k selected items?

Number of ways of choosing the sample =
(
n
k

)
.

If we want a particular item in the sample, number of ways of choosing the other items =
(
n−1
k−1

)
.

Hence, probability that a given item will be among the k selected = (n−1
k−1)
(nk)

= k
n .
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Probability Examples

Q: From a set of n items a random sample of size k is to be selected (all selections are equally
likely). Given two items of interest: α and β, what is the probability that (i) both α and β will
be among the k selected (ii) at least one of α or β will be among the k selected (iii) neither α
nor β will be among the k selected?

(i) If we want both α and β to be in the sample, number of ways of choosing the other items =(
n−2
k−2

)
. Hence, probability that both α and β will be in the sample = (n−2

k−2)
(nk)

= k(k−1)
n(n−1) .

(ii) Let A be the event that item α is in the selection. Pr[A] = k
n . Similarly B be the event that

item β is in the selection. Pr[B] = k
n . We want to compute Pr[A ∪ B]. By the union-rule,

Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B]. Hence, probability that either α or β will be among the
k selected items = 2k

n − k(k−1)
n(n−1) .

(iii) If we want neither α nor β to be in the sample, number of ways of choosing the items =(
n−2
k

)
. Hence, probability that neither α nor β will be in the sample = (n−2

k )
(nk)

= (n−k)(n−k−1)
n(n−1) .
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Probability - Examples

Q: Let us consider random permutations (all permutations are equally likely) of the letters (i)
ABBA (ii) ABBA’. What is the probability that the third letter is B?

Ans: (i) |S| = 4!
2! 2! = 6. |E | = 3!

2!1! = 3. Pr[E ] = 1
2 .

(ii) |S| = 4!
2! 1! 1! = 12. |E | = 3!

1!1! = 6. Pr[E ] = 1
2 .
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Questions?
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Birthday Paradox

Q: There are 75 students in the class. What is the probability that two students have their
birthdays in the same week? Ans: 1. By the pigeonhole principle, there has to be a pair of
students that have their birthdays in the same week.

Q: In this class, what is the probability that two students share the same birthday? Assume that
(i) each student is equally likely to be born on any day of the year, (ii) no leap years and (iii)
student birthdays are independent of each other.

Let n be the number of students, and let d be the number of days in the year. Let’s order the
students according to their ID. A birthday sequence is (11 Feb, 23 April, 31 August, . . . ). First
let’s count the number of possible birthday sequences.

The first student’s birthday can be one of d days. Similarly, the second student’s birthday can be
one of d days, and so on. By the product rule, the total number of birthday sequences =
d × d × . . . = dn.
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Birthday Paradox

The event of interest is that two students share the same birthday. Let us compute the probability
of the event that NO two students share the same birthday, and then use the complement rule.

The first birthday can be chosen in d ways, the second in d − 1 ways, and so on. By the
generalized product rule, the number of birthday sequences such that no birthday is shared =
d × (d − 1)× (d − 2)× . . . (d − (n − 1)).

Hence, the probability that no two students share the same birthday
= the number of birthday sequences such that no birthday is shared

total number of birthday sequences = d×(d−1)×(d−2)×...(d−(n−1))
dn

=

(
1 − 0

d

)
×
(

1 − 1
d

)
. . .

(
1 − n − 1

d

)
≤ exp(−0/d)× exp(−1/d) . . . exp(−(n − 1)/d)

(for x > 0, 1 − x ≤ exp(−x))

= exp

(
−0
d

+
−1
d

+ . . .
−(n − 1)

d

)
= exp

(
−n(n − 1))

2d

)
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Birthday Paradox

Probability that two students share a birthday ≥ 1 − exp
(
− n(n−1))

2d

)
. Let’s plot for d = 365.

Figure 1: Plotting exp
(
− n(n−1))

2d

)
for d = 365

In our class, there is > 99% that two students have the same birthday!
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Birthday Principle

If there are n pigeons and d pigeonholes, then the probability that two pigeons occupy the same
hole is ≥ 1 − exp

(
− n(n−1))

2d

)
For n = ⌈

√
2d⌉, probability that two pigeons occupy the same hole is about 1 − 1

e ≈ 0.632.

Example: If we are randomly throwing ⌈
√

2d⌉ balls into d bins, then the probability that two
balls land in the same bin is around 0.632.

Later in the course, we will see applications of this principle to load balancing.
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Questions?
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