CMPT 210: Probability and Computing

Lecture 5

Sharan Vaswani
January 23, 2024

Introduction to Probability - Throwing dice

Q: Suppose we throw a standard dice. What is the probability that the number that comes up is 6 ?

What are the possible things that can happen? The dice comes up one of the numbers in $\{1,2,3,4,5,6\}$.

What are the things that we care about? Getting a 6.
In how many ways can this happen? Just one.
Probability of getting a $6=\frac{\text { Number of ways in which the thing we care about happens }}{\text { Total number of ways in which something can happen }}=\frac{1}{6}$.

Introduction to Probability - Throwing dice

Q: Suppose we throw a standard dice. What is the probability that we get either a 3 or a 6 ? What are the possible outcomes that can happen? The dice comes up one of the numbers in $\{1,2,3,4,5,6\}$.

What is the event that we care about? Getting either a 3 or 6 .
In how many ways can this event happen? Two (the dice comes 3 or 6).
Probability of getting either a 3 or a $6=\frac{\text { Number of ways in which the event we care about happens }}{\text { Total number of outcomes }}=\frac{2}{6}$.

Introduction to Probability - Throwing dice

Q: Suppose we throw two standard dice one after the other. What is the probability that we get two 6's in a row?

What are the possible outcomes that can happen? The first dice comes up one of the numbers in $1,2,3,4,5,6$, the second dice comes up one of the numbers in $1,2,3,4,5,6$.

If we consider both dice together, what are the possible outcomes - first dice is 1 , second dice is 1 ; first is 1 , second is 2 , and so on. Let us write this compactly. The space of outcomes is $\{(1,1),(1,2),(1,3), \ldots,(6,6)\}$.
What is the size of this outcome space? 36 (By the product rule)
What is the event that we care about? Getting $(6,6)$.
In how many ways can this happen? One (both die need to come up 6).
Probability of getting two 6 's in a row $=\frac{\text { Number of ways in which the event we care about happens }}{\text { |outcome space| }}=\frac{1}{36}$.

Probability Basics

Sample (outcome) space \mathcal{S} : Nonempty (countable) set of possible outcomes. Example: When we threw one dice, the sample space is $\{1,2,3,4,5,6\}$. When we threw two die, the sample space is $\{(1,1),(1,2),(1,3), \ldots\}=\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\}$ (using the relation between sets and sequences).

The sample space is not necessarily numbers. Example: If we are randomly choosing colors from the rainbow, then $\mathcal{S}=\{$ violet, indigo, blue, green, yellow, orange, red $\}$.

Outcome $\omega \in \mathcal{S}$: Possible "thing" that can happen. Example: When we threw one dice, a possible outcome is $\omega=1$. For the rainbow example, the color "red" is a possible outcome.

Event E : Any subset of the sample space. Example: When we threw one dice, a possible event is $E=\{6\}$ (first example) or $E=\{3,6\}$ (second example). When we threw two die, a possible event is $E=\{(6,6)\}$.
An event E "happens" if the outcome ω (from some process) is in set E i.e. if $\omega \in E$.

Union of events

Since the event E is a set, all the set theory we learned is useful!
Suppose E, F are two events in \mathcal{S}. Define the union $E \cup F$ to consist of outcomes that are either in E or F (this is just the definition of the union of two sets). Formally,

$$
G=E \cup F=\{\omega \mid \omega \in E \text { OR } \omega \in F\} .
$$

Another way to interpret this is to say event G occurs if either event E or event F occurs.
Example: We considered the case where we threw one dice and cared about getting either 3 or 6 .
In this case, event G happens if we get either 3 or 6 . Formally, $E=\{3\}, F=\{6\}$, $G=E \cup F=\{3,6\}$. And G occurs when the number that shows up is either 3 or 6 .

Can define union between more than two events in the same way we defined union between more than two sets. $G=E_{1} \cup E_{2} \cup \ldots E_{n}$. G happens when at least one of the events E_{i} happen.

Intersection of events

Suppose E, F are two events in \mathcal{S}. Define the intersection $E \cap F$ to consist of outcomes that are in both E and F (this is just the definition of the intersection of two sets). Formally,

$$
G=E \cap F=\{\omega \mid \omega \in E \text { AND } \omega \in F\}
$$

Another way to interpret this is to say event G occurs if both events E and F occur.
Example: We threw two dice and cared about getting 6 in the first throw and 6 in the second throw. In this case, E is the event we get a 6 for the first dice. $E=\{(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}, F$ is the event we get a 6 for the second dice. $F=\{(1,6),(2,6),(3,6),(4,6),(5,6),(6,6)\}, G=E \cap F=\{(6,6)\} . G$ happens when both E and F happen i.e. the first dice has a 6 and the second dice has 6 .

Can define intersection between more than two events in the same way we defined intersection between more than two sets. $G=E_{1} \cap E_{2} \cap \ldots E_{n}$. G happens when all of the events E_{i} happen.

Mutually exclusive and complement events

Mutually exclusive events: If E and F are two events such that $E \cap F=\{ \}$, then events E and F are mutually exclusive.

Example: We threw one dice and want to get both 3 and 6 . This is not possible. Formally, $E=\{6\}, F=\{3\}$ and $E \cap F=\{ \}$, hence, events E and F are mutually exclusive.
Complement of an event: If E is an event, then its complement E^{c} is defined such that $E \cap E^{c}=\{ \}$ and $E \cup E^{c}=\mathcal{S}$. Event E^{c} will occur if and only if event E does not occur.
Example: We threw one dice and want to get a 6 i.e. we define $E=\{6\} . E^{c}=\{1,2,3,4,5\}$.
Two complement events are mutually exclusive, but two mutually exclusive events need not be the complements of each other. Example: $E=\{6\}$ and $F=\{3\}$ are mutually exclusive, but not complements.

Subset: If $E \subset F$, then if E happens F will happen. Example: When we throw one dice, if $E=\{3\}$ and $F=\{1,2,3\}$ i.e. E is the event that we get 3 and F is the event that we can either $1,2,3$. Clearly, if E happens, F will happen.

Axioms of Probability

Probability function on a sample space \mathcal{S} is a total function $\operatorname{Pr}: \mathcal{S} \rightarrow[0,1]$.
For any $\omega \in \mathcal{S}, 0 \leq \operatorname{Pr}[\omega] \leq 1 \quad ; \quad \sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1$
Probability space: The outcome space \mathcal{S} together with the probability function.
Recall that we can define functions on sets. In this case, for an event $E, \operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]$.
Union: For mutually exclusive events $E_{1}, E_{2}, \ldots, E_{n}$ (sets $E_{1}, E_{2}, \ldots, E_{n}$ are disjoint),
$\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \ldots E_{n}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\ldots+\operatorname{Pr}\left[E_{n}\right]$.
Proof:

$$
\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \ldots E_{n}\right]=\sum_{\omega \in\left\{E_{1} \cup E_{2} \cup \ldots E_{n}\right\}} \operatorname{Pr}[\omega]
$$

Since E_{i} 's are disjoint, any ω can only be in one of $E_{1}, E_{2}, \ldots E_{n}$

$$
=\sum_{\omega \in E_{1}} \operatorname{Pr}[\omega]+\sum_{\omega \in E_{2}} \operatorname{Pr}[\omega]+\ldots+\sum_{\omega \in E_{n}} \operatorname{Pr}[\omega]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\ldots+\operatorname{Pr}\left[E_{n}\right] .
$$

Back to throwing dice

Q: Suppose we throw a standard dice. What is the probability that the number that comes up is 6 ?
$\mathcal{S}=\{1,2,3,4,5,6\}$. Since the dice is "standard", each outcome is equally likely, i.e. $\operatorname{Pr}[1]=\operatorname{Pr}[2]=\ldots=\operatorname{Pr}[6]$.

Since $\operatorname{Pr}[\mathcal{S}]=1 \Longrightarrow \sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1 \Longrightarrow \operatorname{Pr}[1]+\operatorname{Pr}[2]+\ldots \operatorname{Pr}[6]=1$
$\Longrightarrow \operatorname{Pr}[6]=\frac{1}{6}$.

Back to throwing dice

Q: Suppose we throw a standard dice. What is the probability that we get either a 3 or a 6 ? $E=\{3\}, F=\{6\}, G=\{3,6\}$. Since $E \cap F=\{ \}, E$ and F are mutually exclusive events, implying that $\operatorname{Pr}[G]=\operatorname{Pr}[E]+\operatorname{Pr}[F]=\operatorname{Pr}[\{3\}]+\operatorname{Pr}[\{6\}]=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$.
Hence, probability of getting either a 3 or a 6 is equal to $\frac{1}{3}$.
Q: Compute the probability of getting either 1,2 or 3 .
Ans: $\frac{1}{2}$
Q: Compute the probability of getting an even number.
Ans: $\frac{1}{2}$
Q: Compute the probability of getting either $1,2,3,4,5,6$
Ans: 1

