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Number of ways of choosing size k-subsets from a size n-set: (}) (E.g. Number of n-bit
sequences with exactly k ones).

Binomial Theorem: Forall n€ Nand a,b € R, (a+ b)" =", (J)a"*b*.



Generalization to Multinomials

We saw how to split a set into two subsets - one that contains some elements, while the other
does not. Can generalize the arguments to split a set into more than two subsets.

A (ki, ka, ..., kn)-split of set A is a sequence of sets (A1, Ap,...An) s.t. sets A; form a
partition (A1 UA, U... = Aand for i # j, AiNA; = 0) and |A;| = k;.

An example of a (2,1,3)-split of A={1,2,3,4,5,6} is ({2,4},{1},{3,5,6}). Here, m =3,
A1 = {2,4}, A2 = {1}, A3 = {3,5,6} s.t. |A1| = 2, |A2‘ = 1, ‘A3| = 3, A1 UA2 UA3 = A and
fori#j, AinA; = 0.

Example: Consider strings of length 6 of a’s, b's and ¢’s such that number of a's = 2; number
of b’s = 1 and number of ¢'s = 3. Possible strings: abaccc, ccbaac, bacacc, cbacac.
Each possible string, e.g. bacacc can be written as a (2,1, 3)-split of A={1,2,3,4,5,6} as

({2,4},{1},{3,5,6}) where A; records the positions of a, A, records the positions of b and As
records the positions of c.



Generalization to Multinomials

Q: Show that the number of ways to obtain an (ki, ka, ..., km) split of A with |A] = nis
(kl,k;...km) = klikj!...km! where 3. ki = n.

Can map any permutation (a, az, ... a,) into a split by selecting the first k; elements to form
set A1, next ko to form set A and so on. For the same split, the order of the elements in each
subset does not matter. Hence f : number of permutations — number of splits is a

kil kol ... kn!-to-1 function.

|[number of permutations| n!

Hence, PRSI = Talkal. kol

number of splits| =




Generalization to Multinomials - Example

Q: Count the number of permutations of the letters in the word BOOKKEEPER.

We want to count sequences of the form (1E,1P,2E,1B,1K,1R,20,1K) = EPEEBKROOK.
There is a bijection between such sequences and (1,2,2,3,1,1) split of A= {1,2,...,10} where
Aj is the set of positions of B's, A; is the set of positions of O's, Az is set of positions of K and

SO on.

For example, the above sequence maps to the following split:

({5} {89}, { 6,10}, {134} {2} {7})

Hence, the total number of sequences that can be formed from the letters in BOOKKEEPER =
number of (1,2,2,3,1,1) splits of A =[10] ={1,2,...,10} = %

Q: Count the number of permutations of the letters in the word (i) ABBA (ii) A;BBA, and (iii)
A18182A2? Ans: 6, 12, 24



Generalization to Multinomials - Example

Q: Suppose we are planning a 20 km walk, which should include 5 northward km, 5 eastward km,
5 southward km, and 5 westward km. We can move in steps of 1 km in any direction. For
example, a valid walk is (NENWSNSSENSWWESWEENW) that corresponds to 1 km north
followed by 1 km east and so on. How many different walks are possible?

Ans: The set A ={1,2,...,20} needs to be split into 4 subsets N, S, E, W s.t.
IN| = |S| = |E| = |[W| = 5. Counting the number of walks = counting the number of sequences
of the form (3N,5W,4S,4E,2N,1E,1S) = number of ways to obtain an (5,5, 5, 5)-split of set

{1,2,3,...20}. The total number of walks = (g?)!‘,.




Multinomial Theorem

Forall myne N and z1,2,...zm € R,

n
(atzt.. . +zm)" = Z (kl ko k )zfizgz P
p W99 o o 0 9 Wygp

klak2;~--7km
kitka+...km=n

n . n!
where (kl,kz,...,km) AT

Example 1: If m=2, ks = k, ko = n— k and z; = a, zo = b, recover the Binomial theorem.

Example 2: If n =4, m = 3, then the coefficient of abc? in (a+ b+ c)* is (; ‘1‘ o) = T



Questions?



Inclusion-Exclusion Principle

AUBU C| = |A| + |B| + |C| (this is the Sum

Recall that if A, B, C are disjoint subsets, then,
rule from Lecture 2).

For two general sets A, B, |AU B| = |A| + |B| — |AN B|. The last term fixes the “double

counting”.
Similarly, [AUBUC| = |A|+ |B|+|C| - |ANB|—|BNC|—|ANC|+|ANnBNC|.

In general,

[Uimt2n Al =D 1A= Y JANAl+ > AN A; 0 Al

ijst 1<i<j<n ik st 1<i<j<k<n



Inclusion-Exclusion Principle - Example

Q: Suppose there are 60 math majors, 200 EECS majors, and 40 physics majors. A student is
allowed to double or even triple major. There are 4 math-EECS double majors, 3 math-physics
double majors, 11 EECS-physics double majors and 2-triple majors. What is the total number of
students across these three departments?

If M, E, P are the sets of students majoring in math, EECS and physics respectively, then we
wish to compute | MUEUP| = [M|+ |E|+|P|—|IMNE|—|MNP|—|ENP|+|MNENP|
=300-|MNE|—|IMNP|—|ENP|+|MNENP|.

IMNE|=4+2=6,

MNP|=3+2=5,
IMUEUP|=300—6—5—13+2 = 278.

PNE|=114+2=13. [MNENP|=2



Inclusion-Exclusion Principle - Example

Q: In how many permutations of the set {0,1,2,...,9} do either 4 and 2, 0 and 4, or 6 and 0
appear consecutively? For example, in the following permutation 42067891235, 4 and 2 appear
consecutively, but 6 and 0 do not (the order matters).

Let P4y be the set of sequences such that 4 and 2 appear consecutively. Similarly, we define Pgq
and Py4. So we want to compute
|Paz U Peo U Pos| = |Paz|+|Peol -+ |Poa| — |Pa2 N Peo| — | Pa2 M Poa| — | Peo N Poa| +| Pa2 M Peo M Poal.

Let us first compute |Pgz| = 9!. Similarly, |Pso| = |Poa| = 9.

What about intersections? |Ps2 N Pgg| = Number of sequences of the form
(42,60,1,3,5,7,8,9) = 8. Similarly, |Pso N Pos| = |Paz N Po4| = 8!.

|Pa> N Peo N Pog| = Number of sequences of the form (6042,1,3,5,7,8,9) = 7!.

By the inclusion-exclusion principle, |Paa U Pgo U Poa| =3 x 91 — 3 x 8! + 71.



Combinatorial Proofs

Recall that if we have to choose k elements out of a size n set. Number of ways to do this is (Z)
But this is equivalent to saying, we want to find the number of ways to throw away n — k
elements = (,",). Hence, () = (,",). Can prove algebraic statements using combinatorial
arguments.

Q: Prove Pascal'’s identity using a combinatorial proof: (}) = (Zj) + (";1)

Consider n students in this class. What is the number of ways of selecting k students? (Z)

What is the number of ways of selecting k students if we have to ensure to include a particular
student? (J_7).

What is the number of ways of selecting k students if we have to ensure to NOT include a
particular student? (", %).

Number of ways to select k students = number of ways of selecting k students to include a
particular student + number of ways of selecting k students to NOT include a particular student.

Hence, () = (;73) + (", 1). 10



Counting Practice

Q: In how many ways can we place (i) two identical black rooks (ii) a black rook and a white
rook such that they do not share the same row or column?

abocde fgh

(a) valid (b) invalid

Figure 15.2  Two ways to place 2 rooks (E) on a chessboard. The configuration
in (b) is invalid because the rooks are in the same column.

Ans: The first rook can occupy 8 x 8 positions. After selecting the first rook, the number of
valid remaining positions = 7 x 7. Since two positions are equivalent (because these are two

identical rooks), by the division rule, total number of ways to place the rooks = @ = 32 x 49.

Ans: Same as before but since the two rooks are different, we are not double-counting. Hence,
the number of ways = 64 x 49.

11



Questions?



Pigeonhole principle

Q: A drawer in a dark room contains red socks, green socks, and blue socks. How many socks
must you withdraw to be sure that you have a matching pair?

Such problems can be tackled using the Pigeonhole principle.

Pigeonhole Principle: If there are more pigeons than holes they occupy, then there must be at
least two pigeons in the same hole.

Formally, if |A| > |B|, then for every total function (one that has an assignment for every
element in A), f : A — B, there exist two different elements of A that are mapped by f to the
same element of B.

For the above problem, A = set of socks we picked = pigeons, B = set of colors {red, blue,
green} = pigeonholes. |A| = number of socks we picked. |B| =3. f: A— B s.t. f(sock we
picked) = it's color.

If there are more pigeons than holes (picked socks than colors), then at least two pigeons will be
in the same hole (two of the picked socks will have the same color, and we get a matching pair).
Hence, to ensure a matching pair, we need to pick 4 socks. 12



Pigeonhole principle - Example

Q: A class has 54 students. Prove that there exist at least 2 students with their birthday in the
same week.

Ans: 54 students = pigeons. 52 weeks = pigeonholes.

Q: In the set of integers {1,2,...,100}, use the pigeonhole principle to prove that there exist
two numbers whose difference is a multiple of 41.

Ans: {1,2,...,100} = pigeons, {0,1,2,...40} = holes, f : {1,2,...,100} — {0,1,2,...40}
s.t. f(n) = n mod 41 i.e. f(n) returns the remainder after dividing by 41. Since |pigeons| >
|holes|, there exist 2 numbers a, b that have the same remainder after dividing by 41. Let the
remainder be r, then a = 41my + r and b = 41my + r where my, my are integers.
a—b=41(my — my). Hence, a — b is a multiple of 41.

13



Pigeonhole principle - Example

A kind of problem that arises in cryptography is to find different subsets of numbers with the
same sum. For example, in this list of 25-digit numbers, find a subset of numbers that have the
same sum. For example, maybe the sum of the last ten numbers in the first column is equal to
the sum of the first eleven numbers in the second column.

0020450135385502964445038  3171004832173501394113017

1646021
0480445991866915676240092  3208234421597368647019265
100949 1235489891224 4962430971

0081 343 3
6042900801199280218026001  8518399140676002660747477
It 199499 136
6116171789137737806701405  8543691283470191452333763
12531

6144868073001582360723512  8675309258374137092461352
130150512923407781106901 1 3790044132737084094417246
6247314393851160234746152  8694321112363996867296665
1311567111143866433882104  3§70332127437971355322815
6814428044266874963488274  8772321203608477245851154
1470020452721203567686214  4080503804577801451363100
$791422161
15782710472 24920

43102354 4235096831 123777788211249
6949630451363087152423541  0137845566925526349897704
17635802191 3 1220
7128211143613619828415650  915376266803189291934419

2 5 3427

r 2
184 483705294821

This is a hard problem which is why it is used in cryptography. The first step to figure out is
whether there even exists such a subset of numbers. We can do this using the pigeonhole

principle!
14



Pigeonhole principle - Example

Q: More generally, in a list of n b-digit numbers, are there two different subsets of numbers that
have the same sum?

Let A = set of all subsets of the n numbers. For example, if b = 3, an element of A is
{113,221}, |A| =2~

Let B be the set of possible sums of such subsets. f is a function that maps each subset to its
corresponding sum. For example, if b =3, f({113,221}) = 334.

Let us compute |B|. For any list of n numbers, the minimum possible sum = 0 and the max
possible sum < 10? x n. For example, if b= 3 and n =5, then the maximum possible sum =
999 x 5 < 1000 x 5. Hence, |B| < 10® x n.

By the pigeonhole principle, for any list of n b-digit numbers, there definitely exist different
subsets with the same sum if |A| > |B| i.e. if 27 > 10 x n.

For b = 3, this is possible if 2” > 1000n, meaning this is possible if nlog(2) > 3 + log(n) (since

log is a monotonic function). Let's plot.
15



Pigeonhole - Example

Graph for x*log(2), 3+log(x)

]

x: 13.8222579  y:4.16091424 [
»

(1f8[+

More info

Hence, it is possible when n > 15. Similarly, for a general b, there exist different subsets with the
same sum if nlog(2) > b+ log(n).

16



Questions?



