CMPT 210: Probability and Computing

Lecture 25

Sharan Vaswani
April 11, 2024

Wrapping up

Sample (outcome) space \mathcal{S} : Nonempty (countable) set of possible outcomes.
Outcome $\omega \in \mathcal{S}$: Possible "thing" that can happen.
Event E : Any subset of the sample space.
Probability function on a sample space \mathcal{S} is a total function $\operatorname{Pr}: \mathcal{S} \rightarrow[0,1]$. For any $\omega \in \mathcal{S}$,

$$
0 \leq \operatorname{Pr}[\omega] \leq 1 \quad ; \quad \sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1 \quad ; \quad \operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]
$$

Wrapping up

Union: For mutually exclusive events $E_{1}, E_{2}, \ldots, E_{n}$, $\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \ldots E_{n}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\ldots+\operatorname{Pr}\left[E_{n}\right]$.
Complement rule: $\operatorname{Pr}[E]=1-\operatorname{Pr}\left[E^{c}\right]$
Inclusion-Exclusion rule: For any two events $E, F, \operatorname{Pr}[E \cup F]=\operatorname{Pr}[E]+\operatorname{Pr}[F]-\operatorname{Pr}[E \cap F]$.
Union Bound: For any events $E_{1}, E_{2}, E_{3}, \ldots E_{n}, \operatorname{Pr}\left[E_{1} \cup E_{2} \cup E_{3} \ldots \cup E_{n}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]$.
Uniform probability space: A probability space is said to be uniform if $\operatorname{Pr}[\omega]$ is the same for every outcome $\omega \in \mathcal{S}$. In this case, $\operatorname{Pr}[E]=\frac{|E|}{|\mathcal{S}|}$.

Wrapping up

Conditional Probability: For events E and F, probability of event E conditioned on F is given by $\operatorname{Pr}[E \mid F]$ and can be computed as $\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}$.
Probability rules with conditioning: For the complement $E^{c}, \operatorname{Pr}\left[E^{c} \mid F\right]=1-\operatorname{Pr}[E \mid F]$.
Conditional Probability for multiple events:
$\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]$.
Bayes rule: For events E and F if $\operatorname{Pr}[E] \neq 0, \operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]}{\operatorname{Pr}[E]}$.
Law of Total Probability: For events E and $F, \operatorname{Pr}[E]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]+\operatorname{Pr}\left[E \mid F^{c}\right] \operatorname{Pr}\left[F^{c}\right]$.
Independent Events: Events E and F are said to be independent, if knowledge that F has occurred does not change the probability that E occurs, i.e. $\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E]$ and $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F]$.

Wrapping up

Pairwise Independence: Events $E_{1}, E_{2}, \ldots, E_{n}$ are pairwise independent, if for every pair of events E_{i} and $E_{j}(i \neq j), \operatorname{Pr}\left[E_{i} \mid E_{j}\right]=\operatorname{Pr}\left[E_{i}\right]$ and $\operatorname{Pr}\left[E_{i} \cap E_{j}\right]=\operatorname{Pr}\left[E_{i}\right] \operatorname{Pr}\left[E_{j}\right]$.
Mutual Independence: Events $E_{1}, E_{2}, \ldots, E_{n}$ are mutually independent, if for every subset of events, the probability that all the selected events occur equals the product of the probabilities of the selected events. Formally, for every subset $S \subseteq\{1,2, \ldots, n\}, \operatorname{Pr}\left[\cap_{i \in S} E_{i}\right]=\prod_{i \in S} \operatorname{Pr}\left[E_{i}\right]$.
Random variable: A random "variable" R on a probability space is a total function whose domain is the sample space \mathcal{S}. The codomain is denoted by V (usually a subset of the real numbers), meaning that $R: \mathcal{S} \rightarrow V$.

Indicator Random Variables: An indicator random variable corresponding to an event E is denoted as \mathcal{I}_{E} and is defined such that for $\omega \in E, \mathcal{I}_{E}[\omega]=1$ and for $\omega \notin E, \mathcal{I}_{E}[\omega]=0$.

Wrapping up

Probability density function (PDF): Let R be a random variable with codomain V. The probability density function of R is the function $\mathrm{PDF}_{R}: V \rightarrow[0,1]$, such that $\operatorname{PDF}_{R}[x]=\operatorname{Pr}[R=x]$ if $x \in \operatorname{Range}(\mathrm{R})$ and equal to zero if $x \notin \operatorname{Range}(\mathrm{R})$.
$\sum_{x \in V} \operatorname{PDF}_{R}[x]=\sum_{x \in \operatorname{Range}(\mathrm{R})} \operatorname{Pr}[R=x]=1$.
Cumulative distribution function (CDF): The cumulative distribution function of R is the function $\mathrm{CDF}_{R}: \mathbb{R} \rightarrow[0,1]$, such that $\mathrm{CDF}_{R}[x]=\operatorname{Pr}[R \leq x]$.
Distribution over a random variable can be fully specified using the cumulative distribution function (CDF) (usually denoted by F). The corresponding probability density function (PDF) is denoted by f.

Wrapping up

Bernoulli Distribution: $f_{p}(0)=1-p, f_{p}(1)=p$. Example: When tossing a coin such that $\operatorname{Pr}[$ heads $]=p$, random variable R is equal to 1 if we get a heads (and equal to 0 otherwise). In this case, R follows the Bernoulli distribution i.e. $R \sim \operatorname{Ber}(p)$.
Uniform Distribution: If $R: \mathcal{S} \rightarrow V$, then for all $v \in V, f(v)=1 /|V|$. Example: When throwing an n-sided die, random variable R is the number that comes up on the die. $V=\{1,2, \ldots, n\}$. In this case, R follows the Uniform distribution i.e. $R \sim$ Uniform $\{1,2, \ldots, n\}$.
Binomial Distribution: $f_{n, p}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$. Example: When tossing n independent coins such that $\operatorname{Pr}[$ heads $]=p$, random variable R is the number of heads in n coin tosses. In this case, R follows the Binomial distribution i.e. $R \sim \operatorname{Bin}(n, p)$.
Geometric Distribution: $f_{p}(k)=(1-p)^{k-1} p$. Example: When repeatedly tossing a coin such that $\operatorname{Pr}[$ heads $]=p$, random variable R is the number of tosses needed to get the first heads. In this case, R follows the Geometric distribution i.e. $R \sim \operatorname{Geo}(p)$.

Wrapping up

Expectation/mean of a random variable R is denoted by $\mathbb{E}[R]$ and "summarizes" its distribution. Formally, $\mathbb{E}[R]:=\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega] R[\omega]$
Alternate definition of expectation: $\mathbb{E}[R]=\sum_{x \in \operatorname{Range}(R)} \times \operatorname{Pr}[R=x]$.
Expectation of transformed r.v's: For a random variable $X: \mathcal{S} \rightarrow V$ and a function $g: V \rightarrow \mathbb{R}$, we define $\mathbb{E}[g(X)]$ as follows: $\mathbb{E}[g(X)]:=\sum_{x \in \operatorname{Range}(X)} g(x) \operatorname{Pr}[X=x]$
Linearity of Expectation: For n random variables $R_{1}, R_{2}, \ldots, R_{n}$ and constants $a_{1}, a_{2}, \ldots, a_{n}$, $b_{1}, b_{2}, \ldots, b_{n}, \mathbb{E}\left[\sum_{i=1}^{n} a_{i} R_{i}+b_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[R_{i}\right]+b_{i}$.
Conditional Expectation: For random variable R, the expected value of R conditioned on an event A is given by $\mathbb{E}[R \mid A]=\sum_{x \in \operatorname{Range}(R)} \times \operatorname{Pr}[R=x \mid A]$
Law of Total Expectation: If R is a random variable $\mathcal{S} \rightarrow V$ and events $A_{1}, A_{2}, \ldots A_{n}$ form a partition of the sample space, then, $\mathbb{E}[R]=\sum_{i} \mathbb{E}\left[R \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right]$.

Wrapping up

Independent random variables: We define two random variables R_{1} and R_{2} to be independent if for all $x_{1} \in \operatorname{Range}\left(R_{1}\right)$ and $x_{2} \in \operatorname{Range}\left(R_{2}\right)$, events $\left[R_{1}=x_{1}\right]$ and $\left[R_{2}=x_{2}\right.$] are independent. More formally,

$$
\operatorname{Pr}\left[\left(R_{1}=x_{1}\right) \cap\left(R_{2}=x_{2}\right)\right]=\operatorname{Pr}\left[\left(R_{1}=x_{1}\right)\right] \operatorname{Pr}\left[\left(R_{2}=x_{2}\right)\right]
$$

Independent random variables: Two random variables R_{1} and R_{2} are independent if for all $x_{1} \in \operatorname{Range}\left(R_{1}\right)$ and $x_{2} \in \operatorname{Range}\left(R_{2}\right)$,

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(R_{1}=x_{1}\right) \mid\left(R_{2}=x_{2}\right)\right]=\operatorname{Pr}\left[\left(R_{1}=x_{1}\right)\right] \\
& \operatorname{Pr}\left[\left(R_{2}=x_{2}\right) \mid\left(R_{1}=x_{1}\right)\right]=\operatorname{Pr}\left[\left(R_{2}=x_{2}\right)\right]
\end{aligned}
$$

Expectation of product of r.v's: For two r.v's R_{1} and R_{2}, $\mathbb{E}\left[R_{1} R_{2}\right]=\sum_{x \in \operatorname{Range}\left(R_{1} R_{2}\right)} \times \operatorname{Pr}\left[R_{1} R_{2}=x\right]$.
Expectation of product of independent r.v's: For independent r.v's R_{1} and R_{2}, $\mathbb{E}\left[R_{1} R_{2}\right]=\mathbb{E}\left[R_{1}\right] \mathbb{E}\left[R_{2}\right]$.

Wrapping up

Joint distribution between r.v's X and Y can be specified by its joint PDF as follows:
$\operatorname{PDF}_{X, Y}[x, y]=\operatorname{Pr}[X=x \cap Y=y]$.
If X and Y are independent random variables, $\operatorname{PDF}_{X, Y}[x, y]=\operatorname{PDF}_{X}[x] \operatorname{PDF}_{Y}[y]$.
Marginalization: We can obtain the distribution for each r.v. from the joint distribution by marginalizing over the other r.v's i.e. $\operatorname{PDF}_{X}[x]=\sum_{i} \operatorname{PDF}_{X, Y}\left[x, y_{i}\right]$.
Variance: Standard way to measure the deviation from the mean. For r.v. X, $\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x \in \operatorname{Range}(X)}(x-\mu)^{2} \operatorname{Pr}[X=x]$ where $\mu:=\mathbb{E}[X]$.
Alternate definition of variance: $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mu^{2}=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$.
Standard Deviation: For r.v. X, the standard deviation of X is defined as
$\sigma_{X}:=\sqrt{\operatorname{Var}[X]}=\sqrt{\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}}$.

Wrapping up

Properties of variance: For constants a, b and r.v. $R, \operatorname{Var}[a R+b]=a^{2} \operatorname{Var}[R]$.
Pairwise Independence of r.v's: Random variables $R_{1}, R_{2}, R_{3}, \ldots R_{n}$ are pairwise independent if for any pair R_{i} and R_{j}, for $x \in \operatorname{Range}\left(R_{i}\right)$ and $y \in \operatorname{Range}\left(R_{j}\right)$, $\operatorname{Pr}\left[\left(R_{i}=x\right) \cap\left(R_{j}=y\right)\right]=\operatorname{Pr}\left[R_{i}=x\right] \operatorname{Pr}\left[R_{j}=y\right]$.
Linearity of variance for pairwise independent r.v's: If R_{1}, \ldots, R_{n} are pairwise independent, $\operatorname{Var}\left[R_{1}+R_{2}+\ldots R_{n}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[R_{i}\right]$.
Properties of variance: If R_{1}, \ldots, R_{n} are pairwise independent, for constants $a_{1}, a_{2}, \ldots a_{n}$ and $b_{1}, b_{2}, \ldots b_{n}, \operatorname{Var}\left[\sum_{i=1}^{n} a_{i} R_{i}+b_{i}\right]=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left[R_{i}\right]$.

Wrapping up

Covariance: For two random variables R and S, the covariance between R and S is defined as: $\operatorname{Cov}[R, S]=\mathbb{E}[(R-\mathbb{E}[R])(S-\mathbb{E}[S])]=\mathbb{E}[R S]-\mathbb{E}[R] \mathbb{E}[S]$.

Properties of covariance: If R and S are independent r.v's, $\mathbb{E}[R S]=\mathbb{E}[R] \mathbb{E}[S]$ and $\operatorname{Cov}[R, S]=0 . \operatorname{Cov}[R, R]=\operatorname{Var}[R] . \operatorname{Cov}[R, S]=\operatorname{Cov}[S, R]$.

Variance of sum of r.v's: For r.v's $R_{1}, R_{2}, \ldots, R_{n}$,
$\operatorname{Var}\left[\sum_{i=1}^{n} R_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[R_{i}\right]+2 \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left[R_{i}, R_{j}\right]$.
If R_{i} and R_{j} are pairwise independent, $\operatorname{Cov}\left[R_{i}, R_{j}\right]=0$ and $\operatorname{Var}\left[\sum_{i=1}^{n} R_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[R_{i}\right]$.
Correlation: For two r.v's R_{1} and R_{2}, the correlation between R_{1} and R_{2} is defined as $\operatorname{Corr}\left[R_{1}, R_{2}\right]=\frac{\operatorname{Cov}\left[R_{1}, R_{2}\right]}{\sqrt{\operatorname{Var}\left[R_{1}\right] \operatorname{Var}\left[R_{2}\right]}}$. $\operatorname{Corr}\left[R_{1}, R_{2}\right] \in[-1,1]$ and indicates the strength of the relationship between R_{1} and R_{2}.

Wrapping up

Bernoulli: If $R \sim \operatorname{Bernoulli}(p), \mathbb{E}[R]=p$ and $\operatorname{Var}[R]=p(1-p)$.
Uniform: If $R \sim$ Uniform $\left(\left\{v_{1}, \ldots, v_{n}\right\}\right), \mathbb{E}[R]=\frac{v_{1}+v_{2}+\ldots+v_{n}}{n}$ and $\operatorname{Var}[R]=\frac{\left[v_{1}^{2}+v_{2}^{2}+\ldots v_{n}^{2}\right]}{n}-\left(\frac{\left[v_{1}+v_{2}+\ldots v_{n}\right]}{n}\right)^{2}$.
Binomial: If $R \sim \operatorname{Bin}(n, p), \mathbb{E}[R]=n p$ and $\operatorname{Var}[R]=n p(1-p)$.
Geometric: If $R \sim \operatorname{Geo}(p), \mathbb{E}[R]=\frac{1}{p}$ and $\operatorname{Var}[R]=\frac{1-p}{p^{2}}$.

Wrapping up

Tail inequalities bound the probability that the r.v. takes a value much different from its mean.
Markov's Theorem: If X is a non-negative random variable, then for all $x>0$, $\operatorname{Pr}[X \geq x] \leq \frac{\mathbb{E}[X]}{x}$.
Chebyshev's Theorem: For a r.v. X and all $x>0, \operatorname{Pr}[|X-\mathbb{E}[X]| \geq x] \leq \frac{\operatorname{Var}[X]}{x^{2}}$.
Weak Law of Large Numbers: Let $G_{1}, G_{2}, \ldots, G_{n}$ be pairwise independent variables with the same mean μ and (finite) standard deviation σ. Define $T_{n}:=\frac{\sum_{i=1}^{n} G_{i}}{n}$, then for every $\epsilon>0$, $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|T_{n}-\mu\right| \leq \epsilon\right]=1$.
Chernoff Bound: If $T_{1}, T_{2}, \ldots, T_{n}$ are mutually independent r .v's such that $0 \leq T_{i} \leq 1$ for all i. If $T:=\sum_{i=1}^{n} T_{i}$, for all $c \geq 1$ and $\beta(c):=c \ln (c)-c+1, \operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \exp (-\beta(c) \mathbb{E}[T])$.

What's Next

We have studied random variables that can take on discrete values - number of heads when tossing a coin, the number on a dice or the number of attempts to hit the bullsye in a dart game.

We have used these discrete distributions for designing randomized algorithms for verifying matrix multiplication, finding the maximum cut in graphs, randomized quickselect and voter poll.

In many applications, it is often more natural to model quantities as continuous random variables, for example, the amount of time it takes to transmit a message over a noisy channel or study the distribution of income in a population.

Continuous random variables are often used in distributed computing and for machine learning fitting a model that can effectively explain the collected data.

What's Next

STAT 271: Probability and Statistics for Computing Science

- Continuous random variables and distributions
- Sampling and Parameter estimation
- Linear Regression
- Hypothesis testing
- Analysis of Variance

Questions?

