CMPT 210: Probability and Computing

Lecture 22

Sharan Vaswani
April 2, 2024

Recap

Tail inequalities bound the probability that the r.v. takes a value much different from its mean.
Markov's Theorem: If X is a non-negative random variable, then for all $x>0$, $\operatorname{Pr}[X \geq x] \leq \frac{\mathbb{E}[X]}{x}$.
Chebyshev's Theorem: For a r.v. X and all $x>0, \operatorname{Pr}[|X-\mathbb{E}[X]| \geq x] \leq \frac{\operatorname{Var}[X]}{x^{2}}$.

Pairwise Independent Sampling

Claim: Let $G_{1}, G_{2}, \ldots, G_{n}$ be pairwise independent random variables with the same mean μ and standard deviation σ. Define $S_{n}:=\sum_{i=1}^{n} G_{i}$, then,

$$
\operatorname{Pr}\left[\left|\frac{S_{n}}{n}-\mu\right| \geq \epsilon\right] \leq \frac{1}{n}\left(\frac{\sigma}{\epsilon}\right)^{2} .
$$

Proof: Let us compute $\mathbb{E}\left[S_{n} / n\right]$ and $\operatorname{Var}\left[S_{n} / n\right]$.

$$
\mathbb{E}\left[S_{n}\right]=\mathbb{E}\left[\sum_{i=1}^{n} G_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[G_{i}\right]=n \mu \Longrightarrow \mathbb{E}\left[S_{n} / n\right]=\frac{1}{n} \mathbb{E}\left[S_{n}\right]=\mu
$$

(Using linearity of expectation)

$$
\begin{aligned}
\operatorname{Var}\left[S_{n}\right] & =\operatorname{Var}\left[\sum_{i=1}^{n} G_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[G_{i}\right]=n \sigma^{2} \\
\Longrightarrow \operatorname{Var}\left[S_{n} / n\right] & =\frac{1}{n^{2}} \operatorname{Var}\left[S_{n}\right]=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Pairwise Independent Sampling

Using Chebyshev's Theorem,

$$
\operatorname{Pr}\left[\left|\frac{S_{n}}{n}-\mathbb{E}\left[\frac{S_{n}}{n}\right]\right| \geq \epsilon\right]=\operatorname{Pr}\left[\left|\frac{S_{n}}{n}-\mu\right| \geq \epsilon\right] \leq \frac{\operatorname{Var}\left[S_{n} / n\right]}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}}
$$

Hence, for arbitrary pairwise independent r.v's, if n increases, the probability of deviation from the mean μ decreases.

Weak Law of Large Numbers: Let $G_{1}, G_{2}, \ldots, G_{n}$ be pairwise independent variables with the same mean μ and (finite) standard deviation σ. Define $X_{n}:=\frac{\sum_{i=1}^{n} G_{i}}{n}$, then for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|X_{n}-\mu\right| \leq \epsilon\right]=1
$$

Proof: Follows from the theorem on pairwise independent sampling since $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|X_{n}-\mu\right| \leq \epsilon\right]=\lim _{n \rightarrow \infty}\left[1-\frac{\sigma^{2}}{n \epsilon^{2}}\right]=1$.

Questions?

Sums of Random Variables

If we know that the r.v X is (i) non-negative and (ii) $\mathbb{E}[X]$, we can use Markov's Theorem to bound the probability of deviation from the mean.

If we know both (i) $\mathbb{E}[X]$ and (ii) $\operatorname{Var}[X]$, we can use Chebyshev's Theorem to bound the probability of deviation.

In many cases the random variable of interest is a sum of r.v's (e.g., for the voter poll application), and we can use the Chernoff bound to obtain tighter bounds on the deviation from the mean.

Chernoff Bound: Let $T_{1}, T_{2}, \ldots, T_{n}$ be mutually independent r.v's such that $0 \leq T_{i} \leq 1$ for all i. If $T:=\sum_{i=1}^{n} T_{i}$, for all $c \geq 1$ and $\beta(c):=c \ln (c)-c+1$,

$$
\operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \exp (-\beta(c) \mathbb{E}[T])
$$

If $T_{i} \sim \operatorname{Ber}(p)$ and are mutually independent, then $T_{i} \in\{0,1\}$ and we can use the Chernoff bound to bound the deviation from the mean for $T \sim \operatorname{Bin}(n, p)$. In general, if $T_{i} \in[0,1]$, the Chernoff Bound can be used even if the T_{i} 's have different distributions!

Chernoff Bound - Binomial Distribution

Q: Bound the probability that the number of heads that come up in 1000 independent tosses of a fair coin exceeds the expectation by 20% or more.

Let T_{i} be the indicator r.v. for the event that coin i comes up heads, and let T denote the total number of heads. Hence, $T=\sum_{i=1}^{1000} T_{i}$. For all $i, T_{i} \in\{0,1\}$ and are mutually independent r.v's. Hence, we can use the Chernoff Bound.

We want to compute the probability that the number of heads is larger than the expectation by 20% meaning that $c=1.2$ for the Chernoff Bound. Computing $\beta(c)=c \ln (c)-c+1 \approx 0.0187$. Since the coin is fair, $\mathbb{E}[T]=1000 \frac{1}{2}=500$. Plugging into the Chernoff Bound,

$$
\operatorname{Pr}[T \geq c \mathbb{E}[T]] \leq \exp (-\beta(c) \mathbb{E}[T]) \Longrightarrow \operatorname{Pr}[T \geq 1.2 \mathbb{E}[T]] \leq \exp (-(0.0187)(500)) \approx 0.0000834
$$

Comparing this to using Chebyshev's inequality,

$$
\begin{aligned}
\operatorname{Pr}[T \geq c \mathbb{E}[T]] & =\operatorname{Pr}[T-\mathbb{E}[T] \geq(c-1) \mathbb{E}[T]] \leq \operatorname{Pr}[|T-\mathbb{E}[T]| \geq(c-1) \mathbb{E}[T]] \\
& \leq \frac{\operatorname{Var}[T]}{(c-1)^{2}(\mathbb{E}[T])^{2}}=\frac{1000 \frac{1}{4}}{(1.2-1)^{2}\left(500^{2}\right)}=\frac{250}{0.2^{2} 500^{2}}=\frac{250}{10000}=0.025 .
\end{aligned}
$$

