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Recap

Tail inequalities bound the probability that the r.v. takes a value much different from its mean.

Markov’s Theorem: If X is a non-negative random variable, then for all x > 0,
Pr[X ≥ x ] ≤ E[X ]

x .

Chebyshev’s Theorem: For a r.v. X and all x > 0, Pr[|X − E[X ]| ≥ x ] ≤ Var[X ]
x2 .
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Pairwise Independent Sampling

Claim: Let G1,G2, . . . ,Gn be pairwise independent random variables with the same mean µ and
standard deviation σ. Define Sn :=

∑n
i=1 Gi , then,

Pr

[∣∣∣∣Snn − µ

∣∣∣∣ ≥ ϵ

]
≤ 1

n

(σ
ϵ

)2
.

Proof : Let us compute E[Sn/n] and Var[Sn/n].

E[Sn] = E

[
n∑

i=1

Gi

]
=

n∑
i=1

E[Gi ] = nµ =⇒ E[Sn/n] =
1
n
E[Sn] = µ

(Using linearity of expectation)

Var[Sn] = Var

[
n∑

i=1

Gi

]
=

n∑
i=1

Var[Gi ] = nσ2

(Using linearity of variance for pairwise independent r.v’s)

=⇒ Var[Sn/n] =
1
n2 Var[Sn] =

σ2

n
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Pairwise Independent Sampling

Using Chebyshev’s Theorem,

Pr

[∣∣∣∣Snn − E
[
Sn
n

]∣∣∣∣ ≥ ϵ

]
= Pr

[∣∣∣∣Snn − µ

∣∣∣∣ ≥ ϵ

]
≤ Var[Sn/n]

ϵ2
=

σ2

nϵ2

Hence, for arbitrary pairwise independent r.v’s, if n increases, the probability of deviation from
the mean µ decreases.

Weak Law of Large Numbers: Let G1,G2, . . . ,Gn be pairwise independent variables with the
same mean µ and (finite) standard deviation σ. Define Xn :=

∑n
i=1 Gi

n , then for every ϵ > 0,

lim
n→∞

Pr[|Xn − µ| ≤ ϵ] = 1.

Proof : Follows from the theorem on pairwise independent sampling since
limn→∞ Pr[|Xn − µ| ≤ ϵ] = limn→∞

[
1 − σ2

nϵ2

]
= 1.
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Questions?
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Sums of Random Variables

If we know that the r.v X is (i) non-negative and (ii) E[X ], we can use Markov’s Theorem to
bound the probability of deviation from the mean.

If we know both (i) E[X ] and (ii) Var[X ], we can use Chebyshev’s Theorem to bound the
probability of deviation.

In many cases the random variable of interest is a sum of r.v’s (e.g., for the voter poll
application), and we can use the Chernoff bound to obtain tighter bounds on the deviation from
the mean.

Chernoff Bound: Let T1,T2, . . . ,Tn be mutually independent r.v’s such that 0 ≤ Ti ≤ 1 for all
i . If T :=

∑n
i=1 Ti , for all c ≥ 1 and β(c) := c ln(c)− c + 1,

Pr[T ≥ cE[T ]] ≤ exp(−β(c)E[T ])

If Ti ∼ Ber(p) and are mutually independent, then Ti ∈ {0, 1} and we can use the Chernoff
bound to bound the deviation from the mean for T ∼ Bin(n, p). In general, if Ti ∈ [0, 1], the
Chernoff Bound can be used even if the Ti ’s have different distributions! 4



Chernoff Bound – Binomial Distribution

Q: Bound the probability that the number of heads that come up in 1000 independent tosses of
a fair coin exceeds the expectation by 20% or more.

Let Ti be the indicator r.v. for the event that coin i comes up heads, and let T denote the total
number of heads. Hence, T =

∑1000
i=1 Ti . For all i , Ti ∈ {0, 1} and are mutually independent

r.v’s. Hence, we can use the Chernoff Bound.

We want to compute the probability that the number of heads is larger than the expectation by
20% meaning that c = 1.2 for the Chernoff Bound. Computing β(c) = c ln(c)− c + 1 ≈ 0.0187.
Since the coin is fair, E[T ] = 1000 1

2 = 500. Plugging into the Chernoff Bound,

Pr[T ≥ cE[T ]] ≤ exp(−β(c)E[T ]) =⇒ Pr[T ≥ 1.2E[T ]] ≤ exp(−(0.0187) (500)) ≈ 0.0000834.

Comparing this to using Chebyshev’s inequality,

Pr[T ≥ cE[T ]] = Pr[T − E[T ] ≥ (c − 1)E[T ]] ≤ Pr[|T − E[T ]| ≥ (c − 1)E[T ]]

≤ Var[T ]

(c − 1)2 (E[T ])2
=

1000 1
4

(1.2 − 1)2(5002)
=

250
0.22 5002 =

250
10000

= 0.025.
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