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Markov’s Theorem

Markov’s theorem formalizes the intuition on the last slide of the previous class, and can be
stated as follows.

Markov’s Theorem: If X is a non-negative random variable, then for all x > 0,

Pr[X ≥ x ] ≤ E[X ]

x
.

Proof : Define I{X ≥ x} to be the indicator r.v. for the event [X ≥ x ]. Then for all values of X ,
x I{X ≥ x} ≤ X .

E[x I{X ≥ x}] ≤ E[X ] =⇒ x E[I{X ≥ x}] ≤ E[X ] =⇒ x Pr[X ≥ x ] ≤ E[X ]

=⇒ Pr[X ≥ x ] ≤ E[X ]

x
.

Since the above theorem holds for all x > 0, we can set x = cE[X ] for c ≥ 1. In this case,
Pr[X ≥ cE[X ]] ≤ 1

c . Hence, the probability that X is “far” from the mean in terms of the
multiplicative factor c is upper-bounded by 1

c .
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Markov’s Theorem – Example

Q: Suppose there is a dinner party where n people check in their coats. The coats are mixed up
during dinner, so that afterward each person receives a random coat. In particular, a person gets
their own coat with probability 1

n .

Recall that if G is the r.v. corresponding to the number of people that receive their own coat,
then we used the linearity of expectation to derive that E[G ] = 1. Using Markov’s Theorem,

Pr[G ≥ x ] ≤ E[G ]

x
=

1
x
.

Hence, we can bound the probability that x people receive their own coat. For example, there is
no better than 20% chance that more than 5 people get their own coat.
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Markov’s Theorem – Example

Q: If X is a non-negative r.v. such that E[X ] = 150, compute the probability that X is at least
200. Ans: Pr[X ≥ 200] ≤ E[X ]

200 = 3
4

Q: If we are provided additional information that X can not take values less than 100 and
E[X ] = 150, compute the probability that X is at least 200.

Define Y := X − 100. E[Y ] = E[X ]− 100 = 50 and Y is non-negative.

Pr[X ≥ 200] = Pr[Y + 100 ≥ 200] = Pr[Y ≥ 100] ≤ E[Y ]

100
=

50
100

=
1
2

Hence, if we have additional information (in the form of a lower-bound that a r.v. can not be
smaller than some constant b > 0), we can use Markov’s Theorem on the shifted r.v. (Y in our
example) and obtain a tighter bound on the probability of deviation.
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Chebyshev’s Theorem

Chebyshev’s Theorem: For a r.v. X and any constant y > 0,

Pr[|X − E[X ]| ≥ y ] ≤ Var[X ]

y2 .

Proof : Use Markov’s Theorem with some cleverly chosen function of X . Formally, for some
function f such that Y := f (X ) is non-negative. Using Markov’s Theorem for Y ,

Pr[f (X ) ≥ x ] ≤ E[f (X )]

x

Choosing f (X ) = |X − E[X ]|2 and x = y2 implies that f (X ) is non-negative and x > 0. Using
Markov’s Theorem,

Pr[|X − E[X ]|2 ≥ y2] ≤ E[|X − E[X ]|2]
y2

Note that Pr[|X − E[X ]|2 ≥ y2] = Pr[|X − E[X ]| ≥ y ], and hence,

Pr[|X − E[X ]| ≥ y ] ≤ E[|X − E[X ]|2]
y2 =

Var[X ]

y2
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Chebyshev’s Theorem

Chebyshev’s Theorem bounds the probability that the random variable X is “far” away from the
mean E[X ] by an additive factor of x .

If we set x = cσX where σX is the standard deviation of X , then by Chebyshev’s Theorem,

Pr[(X ≥ E[X ] + c σX ) ∪ (X ≤ E[X ]− c σX )] = Pr[|X − E[X ]| ≥ cσX ] ≤
Var[X ]

c2σ2
X

=
1
c2

Pr[E[X ]− cσX < X < E[X ] + cσX ] = Pr[|X − E[X ]| ≤ cσX ]

=⇒ Pr[E[X ]− cσX < X < E[X ] + cσX ] = 1 − Pr[|X − E[X ]| ≥ cσX ] ≥ 1 − 1
c2 .

Chebyshev’s Theorem is used to bound the probability that X is “concentrated” near its mean.

Unlike Markov’s Theorem, Chebyshev’s Theorem does not require the r.v. to be non-negative,
but requires knowledge of the variance.
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Chebyshev’s Theorem - Example

Q: If X is a non-negative r.v. such that E[X ] = 100 and σX = 15, compute the probability that
X is at least 300.

If we use Markov’s Theorem, Pr[X ≥ 300] ≤ E[X ]
300 = 1

3 .

Note that Pr[|X − 100| ≥ 200] = Pr[X ≤ −100 ∪ X ≥ 300] = Pr[X ≥ 300]. Using Chebyshev’s
Theorem,

Pr[X ≥ 300] = Pr[|X − 100| ≥ 200] ≤ Var[X ]

(200)2
=

152

2002 ≈ 1
178

.

Hence, by exploiting the knowledge of the variance and using Chebyshev’s inequality, we can
obtain a tighter bound.
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Chebyshev’s Theorem - Example

Q: Consider a r.v. X ∼ Bin(20, 0.75). Plot the PDFX , compute its mean and standard deviation
and bound Pr[10 < X < 20].

Range(X ) = {0, 1, . . . , 20} and for k ∈ Range(X ),
f (k) =

(
n
k

)
pk(1 − p)n−k .

E[X ] = np = (20)(0.75) = 15
Var[X ] = np(1 − p) = 20(0.75)(0.25) = 3.75 and hence
σX =

√
3.75 ≈ 1.94.

Pr[10 < X < 20] = 1 − Pr[X ≤ 10 ∪ X ≥ 20]

= 1 − Pr[|X − 15| ≥ 5]

= 1 − Pr[|X − E[X ]| ≥ 5]

≥ 1 − Var[X ]

(5)2
= 1 − 3.75

25
= 0.85.

Hence, the “probability mass” of X is “concentrated” around its mean.
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Voter Poll

Q: Suppose there is an election between two candidates Donald Trump and Joe Biden, and we
are hired by candidate Biden’s election campaign to estimate his chances of winning the election.
In particular, we want to estimate p, the fraction of voters favoring Biden before the election. We
conduct a voter poll – selecting (typically calling) people uniformly at random (with replacement
so that we can choose a person twice) and try to estimate p. What is the number of people we
should poll to estimate p reasonably accurately and with reasonably high probability?

Define Xi to be the indicator r.v. equal to 1 iff person i that we called favors Biden.

Assumption (1): The Xi r.v’s are mutually independent since the people we poll are chosen
randomly and we assume that their opinions do not affect each other.

Assumption (2): The people we call are identically distributed i.e. Xi = 1 with probability p.

Suppose we poll n people and define Sn :=
∑n

i=1 Xi as the r.v. equal to the total number of
people (amongst the ones we polled) that prefer Biden. Sn

n is the statistical estimate of p.

Q: What is the distribution of Sn? Ans: Sn ∼ Bin(n, p)
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Voter Poll

Goal: We want to find for what n is our estimate for p accurate up to an error ϵ > 0 and with
probability 1 − δ (for δ ∈ (0, 1)). Formally, we want to find an n such that

Pr

[∣∣∣∣Snn − p

∣∣∣∣ < ϵ

]
≥ 1 − δ .

Since Sn ∼ Bin(n, p), E[Sn] = np and hence, E
[
Sn

n

]
= p, meaning that our estimate is unbiased

– in expectation, the estimate is equal to p. Hence, the above statement is equivalent to,

Pr

[∣∣∣∣Snn − E
[
Sn
n

]∣∣∣∣ < ϵ

]
≥ 1 − δ

Hence, we can use Chebyshev’s Theorem for the r.v. Sn

n with x = ϵ to bound the LHS

Pr

[∣∣∣∣Snn − E
[
Sn
n

]∣∣∣∣ < ϵ

]
= 1 − Pr

[∣∣∣∣Snn − E
[
Sn
n

]∣∣∣∣ ≥ ϵ

]
≥ 1 − Var[Sn/n]

ϵ2
.

In order to achieve our goal, it is sufficient to find an n such that,

1 − Var[Sn/n]
ϵ2

≥ 1 − δ =⇒ Var[Sn/n]
ϵ2

≤ δ
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Voter Poll

Let us calculate the Var[Sn/n].

Var[Sn/n] =
1
n2 Var[Sn] (Using the property of variance)

=
1
n2 n p (1 − p) =

p (1 − p)

n
(Using the variance of the Binomial distribution)

Hence, we want to find n s.t.
p (1 − p)

nϵ2
≤ δ =⇒ n ≥ p(1 − p)

ϵ2 δ

But we do not know p! If n ≥ maxp
p(1−p)
ϵ2 δ , then for any p, n ≥ p(1−p)

ϵ2 δ . So the problem is to
compute maxp

p(1−p)
ϵ2 δ . This is a concave function and is maximized at p = 1/2.

Hence, n ≥ 1
4ϵ2δ is sufficient to ensure that Pr

[∣∣Sn

n − p
∣∣ < ϵ

]
≥ 1 − δ meaning that we have

estimated p upto an error ϵ and this bound is true with high probability equal to 1 − δ.

For example, if ϵ = 0.01 and δ = 0.01 meaning that we want the bound to hold 99% of the time,
then, we require n ≥ 250000. 10


