CMPT 210: Probability and Computing

Lecture 2

Sharan Vaswani
January 11, 2024

Functions

We can also define a function with a set as the argument. For a set $S \in D$, $f(S):=\{x \mid \forall s \in S, x=f(s)\}$.
$A=\{a, b, c, \ldots z\}, B=\{1,2,3, \ldots 26\} . f: A \rightarrow B$ such that $f(a)=1, f(b)=2, \ldots$. $f(\{e, f, z\})=\{5,6,26\}$.
If D is the domain of f, then range $(f):=f(D)=f($ domain $(f))$.
Q: If $f: \mathbb{N} \rightarrow \mathbb{R}$, and $f(x)=x^{2}$. What is the domain and codomain of f ? What is the range?
Ans: $\mathbb{N}, \mathbb{R},\{0,1,4,9, \ldots\}$
Q: Consider $f:\{0,1\}^{5} \rightarrow \mathbb{N}$ s.t. $f(x)$ counts the length of a left to right search of the bits in the binary string x until a 1 appears. $f(01000)=2$.
What is $f(00001), f(00000)$? Is f a total function? Ans: 5 , undefined, No

Surjective Functions

Surjective functions: $f: A \rightarrow B$ is a surjective function iff for every $b \in B$, there exists an $a \in A$ s.t. $f(a)=b . f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x+1$ is a surjective function.
For surjective functions, $\mid \#$ arrows $|\geq|B|$.
Since each element of A is assigned at most one value, and some need not be assigned a value at all, \mid \#arrows $|\leq|A|$.
Hence, if f is a surjective function, then $|A| \geq|B|$.
$A=\{a, b, c, \ldots z, \alpha, \beta, \gamma, \ldots\}, B=\{1,2,3, \ldots 26\} . f: A \rightarrow B$ such that $f(a)=1$, $f(b)=2, \ldots . f$ does not assign any value to the Greek letters. For every number in B, there is a letter in A. Hence, f is surjective, and $|A|>|B|$.

Injective \& Bijective Functions

Injective functions: $f: A \rightarrow B$ is an injective function iff $\forall a \in A$, there is a unique $b \in B$ s.t. $f(a)=b$. If f is injective and $f(a)=f(b)$, then it implies that $a=b$.
Hence, $\mid \#$ arrows $|=|A| \leq|B|$. Hence, if f is a injective function, then $| A|\leq|B|$.
$A=\{a, b, c, \ldots z\}, B=\{1,2,3, \ldots 26,27, \ldots 100\} . f: A \rightarrow B$ such that $f(a)=1$, $f(b)=2, \ldots$. No element in A is assigned values $27,28, \ldots$, and for every letter in A, there is a unique number in B. Hence, f is injective, and $|A|<|B|$.

Bijective functions: f is a bijective function iff it is both surjective and injective, implying that $|A|=|B|$.
$A=\{a, b, c, \ldots z\}, B=\{1,2,3, \ldots 26\} . f: A \rightarrow B$ such that $f(a)=1, f(b)=2, \ldots$. Every element in A is assigned a unique value in B and for every element in B, there is a value in A that is mapped to it. f is bijective, and $|A|=|B|$.

Functions

Converse of the previous statements is also true.

- If $|A| \geq|B|$, then it's always possible to define a surjective function $f: A \rightarrow B$.
- If $|A| \leq|B|$, then it's always possible to define a injective function $f: A \rightarrow B$.
- If $|A|=|B|$, then it's always possible to define a bijective function $f: A \rightarrow B$.

Q: Recall that the Cartesian product of two sets $S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}, T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ is $S \times T:=\{(s, t) \mid s \in S, t \in T\}$. Construct a bijective function $f:(S \times T) \rightarrow\{1, \ldots n m\}$, and prove that $|S \times T|=n m$.
Ans: $f\left(s_{1}, t_{1}\right)=1, f\left(s_{1}, t_{n}\right)=n, f\left(s_{2}, t_{1}\right)=n+1$, and so on. $f\left(s_{i}, t_{j}\right)=n(i-1)+j$. Since f is bijective, $|S \times T|=|\{1, \ldots n m\}|=n m$.

Sequences

Examples: (a, b, a), (1,3,4), (4,3,1)
An element can appear twice. E.g. $(a, a, b) \neq(a, b)$.
The order of the elements does matter. E.g. $(a, b) \neq(b, a)$.
Q: What is the size of $(1,2,2,3)$? What is the size of $\{1,2,2,3\}$? Ans: 4,3 .
Sets and Sequences: The Cartesian product of sets $S \times T \times U$ is a set consisting of all sequences where the first component is drawn from S, the second component is drawn from T and the third from $U . S \times T \times U=\{(s, t, u) \mid s \in S, t \in T, u \in U\}$.
Q: For set $S=\{0,1\}, S^{3}=S \times S \times S$. Enumerate S^{3}. What is $\left|S^{3}\right|$?
Ans: $S^{3}=\{(0,0,0),(0,0,1) \ldots(1,1,1)\},\left|S^{3}\right|=8$

Questions?

Counting Sets - using a bijection

Q: Suppose we want to buy 10 donuts. There are 5 donut varieties - chocolate, lemon-filled, sugar, glazed, plain. What is the number of ways to select the 10 donuts?

Let A be the set of ways to select the 10 donuts. Each element of A is a potential selection. For example, 4 chocolate, 3 lemon, 0 sugar, 2 glazed and 1 plain.
Let's map each way to a string as follows: $\underbrace{0000}_{\text {chocolate lemon sugar glazed }} \underbrace{000}_{\text {plain }} \underbrace{00}$.
Lets fix the ordering - chocolate, lemon, sugar, glazed and plain, and abstract this out further to get the sequence: 00001000110010 . Hence, each way of choosing donuts is mapped to a binary sequence of length 14 with exactly 4 ones. Now, let B be all 14 -bit sequences with exactly 4 ones. An element of B is 11110000000000 .

Q: The above sequence corresponds to what donut order? Ans: All plain donuts.
For every way to select donuts, we have an equivalent sequence in B. And every sequence in B implies a unique way to select donuts. Hence, the mapping from $A \rightarrow B$ is a bijective function.

Counting Sets - using a bijection

Hence, $|A|=|B|$, meaning that we have reduced the problem of counting the number of ways to select donuts to counting the number of 14 -bit sequences with exactly 4 ones.

General result: The number of ways to choose n elements with k available varieties is equal to the number of $n+k-1$-bit binary sequences with exactly $k-1$ ones.

Q: There are 2 donut varieties - chocolate and lemon-filled. Suppose we want to buy only 2 donuts. Use the above result to count the number of ways in which we can select the donuts? What are these ways?

Ans: Since $n=2, k=2$, we want to count the sequences with exactly 1 one in 3 -bit sequences. $\{(0,0,1),(1,0,0),(0,1,0)\}$.
Q: In the above example, I want at least one chocolate donut. What are the types of acceptable 3 -bit sequences with this criterion? How many ways can we do this?

Ans: We want to count the number of 3 -bit sequences that start with zero and have exactly 1 one in them. So $\{(0,1,0),(0,0,1)\}$.

Counting Sets - using the sum rule

Q: Let R be the set of rainy days, S be the set of snowy days and H be the set of really hot days in 2023. A bad day can be either rainy, snowy or really hot. What is the number of good days?
Let B be the set of bad days. $B=R \cup S \cup H$, and we want to estimate $|\bar{B}|$. $|D|=365$.
$|\bar{B}|=|D|-|B|=365-|B|=365-|R \cup S \cup H|$.
Since the sets R, S and H are disjoint, $|R \cup S \cup H|=|R|+|S|+|H|$, and hence the number of good days $=365-|R|-|S|-|H|$.
Sum rule: If $A_{1}, A_{2} \ldots A_{m}$ are disjoint sets, then, $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{m}\right|=\sum_{i=1}^{m}\left|A_{i}\right|$.

Counting Sequences - using the product rule

Q: Suppose the university offers Math courses (denoted by the set M), CS courses (set C) and Statistics courses (set S). We need to pick one course from each subject - Math, CS and Statistics. What is the number of ways we can select we can select the 3 courses?

The above problem is equivalent to counting the number of sequences of the form (m, c, s) that maps to choose the Math course m, CS course c and Stats course s.

Recall that the product of sets $M \times C \times S$ is a set consisting of all sequences where the first component is drawn from M, the second component is drawn from C and the third from S, i.e. $M \times C \times S=\{(m, c, s) \mid m \in M, c \in C, s \in S\}$. Hence, counting the number of sequences is equivalent to computing $|M \times C \times S|$.
Product Rule: $|M \times C \times S|=|M| \times|C| \times|S|$.
Using the above equivalence, the number of sequences and hence, the number of ways to select the 3 courses is $|M| \times|C| \times|S|$.

Counting - Example

Q: What is the number of length n-passwords that can be generated if each character in the password is allowed to be lower-case letter?

Ans: Each possible password is of the form (a, b, d, \ldots,) where each element in the sequence can be selected from the $\{a, b, \ldots z\}$ set.
Using the equivalence between sequences and products of sets, counting the number of such sequences is equivalent to computing $|\{a, b, \ldots z\} \times\{a, b, \ldots z\} \times\{a, b, \ldots z\} \ldots|$.
Using the product rule, $|\{a, b, \ldots z\} \times\{a, b, \ldots z\} \times\{a, b, \ldots z\} \ldots|=$ $|\{a, b, \ldots z\}| \times|\{a, b, \ldots z\}| \times \ldots=26^{n}$.

Counting - Example

Q: What is the number of passwords that can be generated if the (i) first character is only allowed to be a lower-case letter, (ii) each subsequent character in the password is allowed to be lower-case letter or digit $(0-9)$ and (iii) the length of the password is required to be between 6-8 characters?

Let $L=\{a, b, \ldots z\}$ and $D=\{0,1,2, \ldots\}$. Using the equivalence between sequences and products of sets, the set of passwords of length 6 is given by $P_{6}=L \times(L \cup D)^{5}$. Using the product rule, $\left|P_{6}\right|=|L| \times(|L \cup D|)^{5}=|L| \times(|L|+|D|)^{5}$.
Since the total set of passwords are $P=P_{6} \cup P_{7} \cup P_{8}$, and a password can be either of length 6, 7 or 8 , sets P_{6}, P_{7} and P_{8} are disjoint. Using the sum rule, $|P|=\left|P_{6}\right|+\left|P_{7}\right|+\left|P_{8}\right|=$ $|L| \times\left[(|L|+|D|)^{5}\left(1+(|L|+|D|)+(|L|+|D|)^{2}\right)\right]=26 \times 36^{5} \times[1+36+1296]$.

Counting sequences - using the generalized product rule

Q: Suppose we have p prizes to be handed amongst the set A of n students. What are the number of ways in which we can distribute the prizes? Ans: Consider sequences of length p where element i is the student that receives prize i. The element i can be one of n students. The number of sequences is equal to $|A \times A \times \ldots|=|A|^{p}=n^{p}$.
Q: Suppose we have p prizes to be handed amongst the set A of n students. What are the number of ways in which we can distribute the prizes such that each prize goes to a different student i.e. no student receives more than one prize?

Consider sequences of length p. The first entry can be chosen in n ways (the first prize can be given to one of the n students). After the first entry is chosen, since the same student cannot receive the prize, the second entry can be chosen in $n-1$ ways, and so on. Hence, the total number of ways to distribute the prizes $=n \times(n-1) \times \ldots \times(n-(p-1))$.

Generalized product rule: If S is the set of length k sequences such that the first entry can be selected in n_{1} ways, after the first entry is chosen, the second one can be chosen in n_{2} ways, and so on, then $|S|=n_{1} \times n_{2} \times \ldots n_{k}$. If $n_{1}=n_{2}=\ldots=n_{k}$, we recover the product rule.

Counting - Example

Q: A dollar bill is defective if some digit appears more than once in the 8-digit serial number. What is the fraction of non-defective bills?

In order to compute the fraction of non-defective bills, we need to compute the quantity $\frac{\text { |serial numbers with all different digits| }}{\text { |possible serial numbers| }}$
For computing |possible serial numbers|, each digit can be one of 10 numbers. Hence, using the product rule, \mid possible serial numbers $\mid=10 \times 10 \ldots=10^{8}$.

For computing |serial numbers with all different digits|, the first digit can be one of 10 numbers. Once the first digit is chosen, the second one can be chosen in 9 ways, and so on. By the generalized product rule, \mid serial numbers with all different digits $\mid=10 \times 9 \times \ldots 3=1,814,400$. Fraction of non-defective bills $=\frac{1,814,400}{10^{8}}=1.8144 \%$.

Permutations

A permutation of a set S is a sequence of length $|S|$ that contains every element of S exactly once. Permutations of $\{a, b, c\}$ are $(a, b, c),(a, c, b),(b, c, a),(b, a, c),(c, a, b),(c, b, a)$.
Q: Given a set of size n, what is the total number of permutations?
Considering sequences of length n, the first entry can be chosen in n ways. Since each element can be chosen only once, the second entry can be chosen in $n-1$ ways, and so on.

By the generalized product rule, the number of permutations $=n \times(n-1) \times \ldots \times 1$.
Factorial: $n!:=n \times(n-1) \times \ldots \times 1$. By convention: $0!=1$.
How big is $n!$? Stirling approximation: $n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$.
Q: Which is bigger? n ! vs $n(n-1)(n+2)(n-3)$! ? Ans:
$n!=n(n-1)(n-2)(n-3)!<n(n-1)(n+2)(n-3)!$.
Q: In how many ways can we arrange n people in a line? Ans: n !

Counting - Division rule

k-to-1 function: Maps exactly k elements of the domain to every element of the codomain.
If $f: A \rightarrow B$ is a k-to- 1 function, then, $|A|=k|B|$.
Example: E is the set of ears in this room, and P is the set of people. Then f mapping the ears to people is a 2-to-1 function. Hence, $|E|=2|P|$.
Q: If $f: A \rightarrow B$ is a k-to- 1 function, and $g: B \rightarrow C$ is a m-to- 1 function, then what is $|A| /|C|$? Ans: $|A|=k|B|=k m|C|$. Hence $|A| /|C|$ is $k m$.
Q: If $f: A \rightarrow B$ is a k-to-1 function, and $g: C \rightarrow B$ is a m-to- 1 function, then what is $|A| /|C|$? Ans: $|A|=k|B| .|C|=m|B| .|A| /|C|=\frac{k}{m}$.

Counting - Example

Q: In how many ways can we arrange n people around a round table? Two seatings are considered to be the same arrangement if each person sits with the same person on their left in both seatings.

Starting from the head of the table, and going clockwise, each seating has an equivalent sequence. \mid seatings $\mid=$ number of permutations $=n!$.
n different seatings can result in the same arrangement (by clockwise rotation).
Hence, $f:$ seatings \rightarrow arrangements is an n-to- 1 function. Hence, the \mid seatings $|=n|$ arrangements \mid, meaning that the |arrangements $\mid=(n-1)!$.

Questions?

