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Recap

Expectation/mean of a random variable R is denoted by E[R] and “summarizes” its distribution.
Formally, E[R] :=

∑
ω∈S Pr[ω]R[ω]

Alternate definition of expectation: E[R] =
∑

x∈Range(R) x Pr[R = x ].

Linearity of Expectation: For n random variables R1,R2, . . . ,Rn and constants a1, a2, . . . , an,
E
[∑n

i=1 aiRi

]
=

∑n
i=1 ai E[Ri ].

Conditional Expectation: For random variable R, the expected value of R conditioned on an
event A is given by:

E[R|A] =
∑

x∈Range(R)

x Pr[R = x |A]
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Law of Total Expectation

If R is a random variable S → V and events A1,A2, . . .An form a partition of the sample space
i.e. for all i , j , Ai ∩ Aj = ∅ and A1 ∪ A2 ∪ . . . ∪ An = S, then,

E[R] =
∑
i

E[R|Ai ] Pr[Ai ] .

Proof :

E[R] =
∑

x∈Range(R)

x Pr[R = x ] =
∑

x∈Range(R)

x
∑
i

Pr[R = x |Ai ] Pr[Ai ]

(Law of total probability)

=
∑
i

Pr[Ai ]
∑

x∈Range(R)

x Pr[R = x |Ai ]

=⇒ E[R] =
∑
i

Pr[Ai ]E[R|Ai ].
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Conditional Expectation - Examples

Q: Suppose that 49.6% of the people in the world are male and the rest female. If the expected
height of a randomly chosen male is 5 feet 11 inches, while the expected height of a randomly
chosen female is 5 feet 5 inches, what is the expected height of a randomly chosen person?

Define H to be the random variable equal to the height (in feet) of a randomly chosen person.
Define M to be the event that the person is male and F the event that the person is female.
We wish to compute E[H] and we know that E[H|M] = 5 + 11

12 and E[H|F ] = 5 + 5
12 .

Pr[M] = 0.496 and Pr[F ] = 1 − 0.496 = 0.504.
Hence, E[H] = E[H|M] Pr[M] + E[H|F ] Pr[F ] = 71

12 (0.496) + 65
12 (0.504).
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Questions?
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Randomized Quick Select

Given an array A of n distinct numbers, return the k th smallest element in A for k ∈ [1, n].

Algorithm Randomized Quick Select
1: function QuickSelect(A, k)
2: If Length(A) = 1, return A[1].
3: Select p ∈ A uniformly at random.
4: Construct sets Left := {x ∈ A|x < p} and Right := {x ∈ A|x > p}.
5: r = |Left|+ 1 {Element p is the r th smallest element in A.}
6: if k = r then
7: return p

8: else if k < r then
9: QuickSelect(Left, k)

10: else
11: QuickSelect(Right, k − r)
12: end if
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Randomized Quick Select

If A = {2, 7, 0, 1, 3} and we wish to find the 2nd smallest element meaning that k = 2.
According to the algorithm, p ∼ Uniform(A). Say p = 3.

Then after step 1, Left = {2, 0, 1} and Right = {7}. r := |Left|+ 1 = 3 + 1 = 4. Since r > k ,
we recurse on the left-hand side by calling the algorithm on {2, 0, 1} with k = 2.

p ∼ Uniform({2, 0, 1}). Say p = 1. After step 2, Left = {0} and Right = {2}.
r := |Left|+ 1 = 1 + 1 = 2. Since r = k , we terminate the recursion and return p = 1 as the
second-smallest element in A.

Q: Run the algorithm if p = 0 in the first step? Ans: Left = {} and Right = {2, 7, 1, 3}. Hence
r = 1 < k = 2. Hence we will recurse on the right-hand side by calling the algorithm on
{2, 7, 1, 3} with k = 1.

Q: Run the algorithm if p = 1 in the first step? Ans: Left = {0} and Right = {2, 7, 3}. Hence
r = 1 + 1 = 2. Hence we will return the pivot element p = 1.
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Randomized Quick Select – Analysis

Alternate way: Sort the elements in A and return the k th element in the sorted list. Uses
O (n log(n)) comparisons.

Q: Can Randomized Quick Select do better – what is the maximum number of comparisons
required by Randomized Quick Select in the worst-case? Ans: O(n2) when k = n and the pivots
are chosen in increasing order.

In the worst case, Randomized Quick Select is worse than the naive strategy of sorting and
returning the k th element. What about the average (over the pivot selection) case?

Claim: For any array A with n distinct elements, and for any k ∈ [n], Randomized Quick Select
performs fewer than 8n comparisons in expectation.

In order to prove this claim, we will need to prove the following lemma.
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Randomized Quick Select – Analysis

Lemma: The child sub-problem’s array (either Left or Right) after the partitioning (in Line 4 of
the algorithm) has expected size smaller than 7n

8 .

Proof : Define a “good” event E that the randomly chosen pivot splits the array roughly in half.

Formally, if n is the length of the array, then E is the event that r ∈
(
n
4 ,

3n
4

]
(for simplicity, let us

assume that n is divisible by 4.) Since p is chosen uniformly at random, Pr[E ] = 3n/4−n/4
n = 1

2 .

Recall that |Left| = r − 1 and |Right| = n − r . Hence if event E happens, then |Left| < 3n
4 and

|Right| < 3n
4 . Hence, |Child| < 3n

4 . If event E does not happen, in the worst-case, |Child| < n.
By using the law of total expectation,

E[|Child|] = E[|Child| |E ] Pr[E ] + E[|Child| |Ec ] Pr[Ec ]

<
3n
4

1
2
+ (n)

1
2
=

7n
8
.

Hence on average, the size of the child sub-problem is smaller than 7n
8 , proving the lemma.
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Randomized Quick Select – Analysis

In order to upper-bound the total number of comparisons, we use the Lemma with an induction
on n. Recall that we need to prove that Randomized Quick Select requires fewer than 8n
comparisons in expectation.

Base case: If n = 1, then we require 0 < 8(1) comparisons. Hence the base case is satisfied.

Inductive Step: Assume that for all m < n,
E[Total number of comparisons for size m array] < 8m.

E[Total number of comparisons for size n array]

= E[(n − 1) + Total number of comparisons in child sub-problem]

= (n − 1) + E[Total number of comparisons in child sub-problem] (Linearity of expectation)

< (n − 1) + 8E[|Child|] (Induction hypothesis)

< (n − 1) + 8
7n
8

< 8n. (Lemma)

Hence, for any k ∈ [n], on average, Randomized Quick Select requires fewer than 8n
comparisons, even though it might require O(n2) comparisons in the worst-case. 8



Questions?
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Independence of random variables

We define two random variables R1 and R2 to be independent if for all x1 ∈ Range(R1) and
x2 ∈ Range(R2), events [R1 = x1] and [R2 = x2] are independent. More formally, we require,

Pr[(R1 = x1) ∩ (R2 = x2)] = Pr[(R1 = x1)] Pr[(R2 = x2)]

Q: Suppose we toss three independent, unbiased coins. Let C be r.v. equal to the number of
heads that appear and M be the r.v. that is equal to 1 if all the coins match. Are random
variables C and M independent?

Range(C ) = {0, 1, 2, 3} and Range(M) = {0, 1}. Pr[C = 3] = 1
8 and Pr[M = 1] = 1

4 .
Pr[(C = 3) ∩ (M = 1)] = 1

8 ̸= 1
32 = Pr[C = 3] Pr[M = 1]. Hence, C and M are not

independent.
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Independence - Examples

Q: If H1 is the indicator r.v. equal to one if the first toss is a heads, are H1 and M independent?
Pr[H1 = 1] = Pr[H1 = 0] = 1

2 , Pr[M = 1] = 1
4 , Pr[M = 0] = 3

4 .
Pr[H1 = 0 ∩M = 1] = Pr[{TTT}] = 1

8 = Pr[H1 = 0] Pr[M = 1].
Pr[H1 = 1 ∩M = 1] = Pr[{HHH}] = 1

8 = Pr[H1 = 1] Pr[M = 1].
Pr[H1 = 0 ∩M = 0] = Pr[{THH,THT ,TTH}] = 3

8 = Pr[H1 = 0] Pr[M = 0].
Pr[H1 = 1 ∩M = 0] = Pr[{HHT ,HTH,HTT}] = 3

8 = Pr[H1 = 1] Pr[M = 0].
Hence, H1 and M are independent.
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Independence of random variables

Q: If R1 and R2 are not independent, is E[R1 + R2] = E[R1] + E[R2]?

Yes! Recall the derivation of the linearity of expectation. We never assumed that R1 and R2 are
independent for the proof and the linearity of expectation holds regardless of whether the random
variables are independent.

Q: If R1 and R2 are independent, is E[R1R2] = E[R1]E[R2]? Yes!

E[R1R2] =
∑

x∈Range(R1R2)

x Pr[R1R2 = x ] =
∑

r1∈Range(R1),r2∈Range(R2)

r1r2 Pr[R1 = r1 ∩ R2 = r2]

(x = r1 r2)

=
∑

r1∈Range(R1)

∑
r2∈Range(R2)

r1r2 Pr[R1 = r1 ∩ R2 = r2] (Splitting the sum)

=
∑

r1∈Range(R1)

∑
r2∈Range(R2)

r1r2 Pr[R1 = r1] Pr[R2 = r2] (Independence)

=
∑

r1∈Range(R1)

r1 Pr[R1 = r1]
∑

r2∈Range(R2)

r2 Pr[R2 = r2] = E[R1]E[R2]
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Independence of random variables

Alternate definition of independence – two random variables R1 and R2 are independent if for all
x1 ∈ Range(R1) and x2 ∈ Range(R2),

Pr[(R1 = x1)|(R2 = x2)] = Pr[(R1 = x1)]

Pr[(R2 = x2)|(R1 = x1)] = Pr[(R2 = x2)]

Similar to events, random variables R1,R2, . . . ,Rn are mutually independent if for all
x1, x2, . . . , xn, events [R1 = x1], [R2 = x2], . . . [Rn = xn] are mutually independent.

Mutual Independence of events: A set of events is said to be mutually independent if the
probability of each event in the set is the same no matter which of the events has occurred. For
events E1,E2 and E3 to be mutually independent, all the following equalities should hold:

Pr[E1 ∩ E2] = Pr[E1] Pr[E2] Pr[E1 ∩ E3] = Pr[E1] Pr[E3]

Pr[E2 ∩ E3] = Pr[E2] Pr[E3] Pr[E1 ∩ E2 ∩ E3] = Pr[E1] Pr[E2] Pr[E3].

Alternatively, (i) ∀i and j ̸= i , Pr[Ei |Ej ] = Pr[Ei ] and (ii) ∀i and j , k ̸= i , Pr[Ei |Ej ∩ Ek ] = Pr[Ei ].
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Expectation/Independence - Examples

Q: Suppose there is a dinner party where n people check in their coats. The coats are mixed up
during dinner, so that afterward each person receives a random coat. In particular, a person gets
their own coat with probability 1

n . What is the expected number of people who get their own
coat?

Let G be the number of people that get their own coat. We wish to compute E[G ]. Define Gi to
be the indicator r.v. that person i gets their own coat. Observe that G = G1 +G2 + . . .+Gn and
by linearity of expectation E[G ] = E[G1] + E[G2] + . . .+ E[Gn]. For each i , E[Gi ] = Pr[Gi ] =

1
n .

Hence, E[G ] = 1 meaning that on average one person will correctly receive their coat.

Q: If Gi is the indicator r.v. that person i gets their own coat, are the random variables
G1,G2, . . .Gn mutually independent?

No. Since if G1 = G2 = . . .Gn−1 = 1, then,
Pr[Gn = 1|(G1 = 1 ∩ G2 = 1 ∩ . . . ∩ Gn−1 = 1)] = 1 ̸= 1

n = Pr[Gn = 1]. Conditioning on
(G1,G2, . . . ,Gn−1) changes Pr[Gn], and hence the r.v’s are not independent. Notice that we
have used the linearity of expectation even though these r.v’s are not mutually independent.
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Questions?
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