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Recap

Expectation/mean of a random variable R is denoted by E[R] and “summarizes” its distribution.
Formally, E[R] :=

∑
ω∈S Pr[ω]R[ω]

Alternate definition of expectation: E[R] =
∑

x∈Range(R) x Pr[R = x ].

Linearity of Expectation: For n random variables R1,R2, . . . ,Rn and constants a1, a2, . . . , an,
E
[∑n

i=1 aiRi

]
=

∑n
i=1 ai E[Ri ].
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Max Cut

Given a graph G = (V, E), partition the graph’s vertices into two complementary sets S and T ,
such that the number of edges between the set S and the set T is as large as possible.

Max Cut has applications to VLSI circuit design.

Equivalently, find a set U ⊆ V of vertices that solve the following

max
U⊆V

|δ(U)|where δ(U) := {(u, v) ∈ E|u ∈ U and v /∈ U}

Here, δ(U) is referred to as the “cut” corresponding to the set U .
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Max Cut

Max Cut is NP-hard (Karp, 1972), meaning that there is no polynomial (in |E|) time
algorithm that solves Max Cut exactly.
We want to find an approximate solution U such that, if OPT is the size of the optimal cut,
then, |δ(U)| ≥ αOPT where α ∈ (0, 1) is the multiplicative approximation factor.
Randomized algorithm that guarantees an approximate solution with α = 1

2 with probability
close to 1 (Erdos, 1967).
Algorithm with α = 0.878. (Goemans and Williamson, 1995).
Under some technical conditions, no efficient algorithm has α > 0.878 (Khot et al, 2004).

We will use Erdos’ randomized algorithm and first prove the result in expectation. We wish to
prove that for U returned by Erdos’ algorithm,

E[|δ(U)|] ≥ 1
2
OPT

Algorithm: Select U to be a random subset of V i.e. for each vertex v , choose v to be in the
set U independently with probability 1

2 (do not even look at the edges!).
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Max Cut

Claim: For Erdos’ algorithm, E[|δ(U)|] ≥ 1
2OPT .

Proof: For each edge (u, v) ∈ E , let Xu,v be the indicator random variable equal to 1 iff the
event Eu,v = {(u, v) ∈ δ(U)} happens.

E[|δ(U)|] = E

 ∑
(u,v)∈E

Xu,v

 =
∑

(u,v)∈E

E [Xu,v ] =
∑

(u,v)∈E

Pr[Eu,v ]

(Linearity of expectation, and Expectation of indicator r.v’s.)

Pr[Eu,v ] = Pr[(u, v) ∈ δ(U)] = Pr [(u ∈ U ∩ v /∈ U) ∪ (u /∈ U ∩ v ∈ U)]
= Pr [(u ∈ U ∩ v /∈ U)] + Pr [(u /∈ U ∩ v ∈ U)] (Union rule for mutually exclusive events)

Pr[Eu,v ] = Pr[u ∈ U ] Pr[v /∈ U ] + Pr[u /∈ U ] Pr[v ∈ U ] = 1
2

1
2
+

1
2

1
2
=

1
2
.

(Independent events)

=⇒ E[|δ(U)|] =
∑

(u,v)∈E

Pr[Eu,v ] =
|E|
2

≥ OPT
2

.
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Questions?
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Conditional Expectation

Similar to probabilities, expectations can be conditioned on some event.

For random variable R, the expected value of R conditioned on an event A is given by:

E[R|A] =
∑

x∈Range(R)

x Pr[R = x |A]

Q: If we throw a standard dice and define R to be the random variable equal to the number that
comes up, what is the expected value of R given that the number is at most 4?

Let A be the event that the number is at most 4.
Pr[R = 1|A] = Pr[(R=1)∩A]

Pr[A] = Pr[R=1]
Pr[A] = 1/6

4/6 = 1/4.
Pr[R = 2|A] = Pr[R = 3|A] = Pr[R = 4|A] = 1

4 and Pr[R = 5|A] = Pr[R = 6|A] = 0.

E[R|A] =
∑

x∈{1,2,3,4}

x Pr[R = x |A] = 1
4
[1 + 2 + 3 + 4] =

5
2
.

Q: What is the expected value of R given that the number is at least 4? Ans:
E[R|A] =

∑
x∈{4,5,6} x Pr[R = x |A] = 1

3 [4 + 5 + 6] = 5. 5


