CMPT 210: Probability and Computing

Lecture 16

Sharan Vaswani

March 12, 2024

Expectation/mean of a random variable R is denoted by $\mathbb{E}[R]$ and "summarizes" its distribution. Formally, $\mathbb{E}[R] := \sum_{\omega \in S} \Pr[\omega] R[\omega]$

Alternate definition of expectation: $\mathbb{E}[R] = \sum_{x \in \text{Range}(R)} x \Pr[R = x].$

Linearity of Expectation: For *n* random variables R_1, R_2, \ldots, R_n and constants a_1, a_2, \ldots, a_n , $\mathbb{E}\left[\sum_{i=1}^n a_i R_i\right] = \sum_{i=1}^n a_i \mathbb{E}[R_i]$.

Max Cut

Given a graph $G = (\mathcal{V}, \mathcal{E})$, partition the graph's vertices into two complementary sets S and \mathcal{T} , such that the number of edges between the set S and the set \mathcal{T} is as large as possible.

Max Cut has applications to VLSI circuit design.

Equivalently, find a set $\mathcal{U} \subseteq \mathcal{V}$ of vertices that solve the following

$$\max_{\mathcal{U}\subseteq\mathcal{V}}|\delta(\mathcal{U})| \text{ where } \delta(\mathcal{U}):=\{(u,v)\in\mathcal{E}|u\in\mathcal{U} \text{ and } v\notin\mathcal{U}\}$$

Here, $\delta(\mathcal{U})$ is referred to as the "cut" corresponding to the set \mathcal{U} .

Max Cut

- Max Cut is NP-hard (Karp, 1972), meaning that there is no polynomial (in $|\mathcal{E}|$) time algorithm that solves Max Cut exactly.
- We want to find an approximate solution \mathcal{U} such that, if OPT is the size of the optimal cut, then, $|\delta(\mathcal{U})| \ge \alpha \text{ OPT}$ where $\alpha \in (0, 1)$ is the multiplicative approximation factor.
- Randomized algorithm that guarantees an approximate solution with $\alpha = \frac{1}{2}$ with probability close to 1 (Erdos, 1967).
- Algorithm with $\alpha = 0.878$. (Goemans and Williamson, 1995).
- Under some technical conditions, no efficient algorithm has $\alpha > 0.878$ (Khot et al, 2004).

We will use Erdos' randomized algorithm and first prove the result in expectation. We wish to prove that for \mathcal{U} returned by Erdos' algorithm,

$$\mathbb{E}[|\delta(\mathcal{U})|] \geq rac{1}{2} \mathit{OPT}$$

Algorithm: Select \mathcal{U} to be a random subset of \mathcal{V} i.e. for each vertex v, choose v to be in the set \mathcal{U} independently with probability $\frac{1}{2}$ (do not even look at the edges!).

Max Cut

Claim: For Erdos' algorithm, $\mathbb{E}[|\delta(\mathcal{U})|] \geq \frac{1}{2}OPT$.

Proof: For each edge $(u, v) \in \mathcal{E}$, let $X_{u,v}$ be the indicator random variable equal to 1 iff the event $E_{u,v} = \{(u, v) \in \delta(\mathcal{U})\}$ happens.

$$\mathbb{E}[|\delta(\mathcal{U})|] = \mathbb{E}\left[\sum_{(u,v)\in\mathcal{E}} X_{u,v}\right] = \sum_{(u,v)\in\mathcal{E}} \mathbb{E}\left[X_{u,v}\right] = \sum_{(u,v)\in\mathcal{E}} \Pr[E_{u,v}]$$
(Linearity of expectation, and Expectation of indicator r.v's.)

 $\Pr[E_{u,v}] = \Pr[(u,v) \in \delta(\mathcal{U})] = \Pr[(u \in \mathcal{U} \cap v \notin \mathcal{U}) \cup (u \notin \mathcal{U} \cap v \in \mathcal{U})]$

 $= \Pr\left[(u \in \mathcal{U} \cap v \notin \mathcal{U}) \right] + \Pr\left[(u \notin \mathcal{U} \cap v \in \mathcal{U}) \right] \quad \text{(Union rule for mutually exclusive events)}$

$$\Pr[E_{u,v}] = \Pr[u \in \mathcal{U}] \Pr[v \notin \mathcal{U}] + \Pr[u \notin \mathcal{U}] \Pr[v \in \mathcal{U}] = \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} = \frac{1}{2}.$$
(Independent events)

$$\implies \mathbb{E}[|\delta(\mathcal{U})|] = \sum_{(u,v)\in\mathcal{E}} \Pr[E_{u,v}] = \frac{|\mathcal{E}|}{2} \ge \frac{\mathsf{OPT}}{2}.$$

Questions?

Conditional Expectation

Similar to probabilities, expectations can be conditioned on some event.

For random variable R, the expected value of R conditioned on an event A is given by:

$$\mathbb{E}[R|A] = \sum_{x \in \mathsf{Range}(R)} x \; \mathsf{Pr}[R = x|A]$$

Q: If we throw a standard dice and define R to be the random variable equal to the number that comes up, what is the expected value of R given that the number is at most 4?

Let A be the event that the number is at most 4.

$$\Pr[R = 1|A] = \frac{\Pr[(R=1) \cap A]}{\Pr[A]} = \frac{\Pr[R=1]}{\Pr[A]} = \frac{1/6}{4/6} = 1/4.$$

$$\Pr[R = 2|A] = \Pr[R = 3|A] = \Pr[R = 4|A] = \frac{1}{4} \text{ and } \Pr[R = 5|A] = \Pr[R = 6|A] = 0.$$

$$\mathbb{E}[R|A] = \sum_{x \in \{1,2,3,4\}} x \Pr[R = x|A] = \frac{1}{4}[1+2+3+4] = \frac{5}{2}.$$

Q: What is the expected value of R given that the number is at least 4? Ans: $\mathbb{E}[R|A] = \sum_{x \in \{4,5,6\}} x \Pr[R = x|A] = \frac{1}{3}[4+5+6] = 5.$