CMPT 210: Probability and Computing

Lecture 16

Sharan Vaswani
March 12, 2024

Recap

Expectation/mean of a random variable R is denoted by $\mathbb{E}[R]$ and "summarizes" its distribution. Formally, $\mathbb{E}[R]:=\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega] R[\omega]$
Alternate definition of expectation: $\mathbb{E}[R]=\sum_{x \in \operatorname{Range}(R)} \times \operatorname{Pr}[R=x]$.
Linearity of Expectation: For n random variables $R_{1}, R_{2}, \ldots, R_{n}$ and constants $a_{1}, a_{2}, \ldots, a_{n}$, $\mathbb{E}\left[\sum_{i=1}^{n} a_{i} R_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[R_{i}\right]$.

Max Cut

Given a graph $G=(\mathcal{V}, \mathcal{E})$, partition the graph's vertices into two complementary sets \mathcal{S} and \mathcal{T}, such that the number of edges between the set \mathcal{S} and the set \mathcal{T} is as large as possible.

Max Cut has applications to VLSI circuit design.

Equivalently, find a set $\mathcal{U} \subseteq \mathcal{V}$ of vertices that solve the following

$$
\max _{\mathcal{U} \subseteq \mathcal{V}}|\delta(\mathcal{U})| \text { where } \delta(\mathcal{U}):=\{(u, v) \in \mathcal{E} \mid u \in \mathcal{U} \text { and } v \notin \mathcal{U}\}
$$

Here, $\delta(\mathcal{U})$ is referred to as the "cut" corresponding to the set \mathcal{U}.

Max Cut

- Max Cut is NP-hard (Karp, 1972), meaning that there is no polynomial (in $|\mathcal{E}|$) time algorithm that solves Max Cut exactly.
- We want to find an approximate solution \mathcal{U} such that, if OPT is the size of the optimal cut, then, $|\delta(\mathcal{U})| \geq \alpha$ OPT where $\alpha \in(0,1)$ is the multiplicative approximation factor.
- Randomized algorithm that guarantees an approximate solution with $\alpha=\frac{1}{2}$ with probability close to 1 (Erdos, 1967).
- Algorithm with $\alpha=0.878$. (Goemans and Williamson, 1995).
- Under some technical conditions, no efficient algorithm has $\alpha>0.878$ (Khot et al, 2004).

We will use Erdos' randomized algorithm and first prove the result in expectation. We wish to prove that for \mathcal{U} returned by Erdos' algorithm,

$$
\mathbb{E}[|\delta(\mathcal{U})|] \geq \frac{1}{2} O P T
$$

Algorithm: Select \mathcal{U} to be a random subset of \mathcal{V} i.e. for each vertex v, choose v to be in the set \mathcal{U} independently with probability $\frac{1}{2}$ (do not even look at the edges!).

Max Cut

Claim: For Erdos' algorithm, $\mathbb{E}[|\delta(\mathcal{U})|] \geq \frac{1}{2} O P T$.
Proof: For each edge $(u, v) \in \mathcal{E}$, let $X_{u, v}$ be the indicator random variable equal to 1 iff the event $E_{u, v}=\{(u, v) \in \delta(\mathcal{U})\}$ happens.

$$
\mathbb{E}[|\delta(\mathcal{U})|]=\mathbb{E}\left[\sum_{(u, v) \in \mathcal{E}} X_{u, v}\right]=\sum_{(u, v) \in \mathcal{E}} \mathbb{E}\left[X_{u, v}\right]=\sum_{(u, v) \in \mathcal{E}} \operatorname{Pr}\left[E_{u, v}\right]
$$

(Linearity of expectation, and Expectation of indicator r.v's.)
$\operatorname{Pr}\left[E_{u, v}\right]=\operatorname{Pr}[(u, v) \in \delta(\mathcal{U})]=\operatorname{Pr}[(u \in \mathcal{U} \cap v \notin \mathcal{U}) \cup(u \notin \mathcal{U} \cap v \in \mathcal{U})]$
$=\operatorname{Pr}[(u \in \mathcal{U} \cap v \notin \mathcal{U})]+\operatorname{Pr}[(u \notin \mathcal{U} \cap v \in \mathcal{U})] \quad$ (Union rule for mutually exclusive events)
$\operatorname{Pr}\left[E_{u, v}\right]=\operatorname{Pr}[u \in \mathcal{U}] \operatorname{Pr}[v \notin \mathcal{U}]+\operatorname{Pr}[u \notin \mathcal{U}] \operatorname{Pr}[v \in \mathcal{U}]=\frac{1}{2} \frac{1}{2}+\frac{1}{2} \frac{1}{2}=\frac{1}{2}$.
(Independent events)

$$
\Longrightarrow \mathbb{E}[|\delta(\mathcal{U})|]=\sum_{(u, v) \in \mathcal{E}} \operatorname{Pr}\left[E_{u, v}\right]=\frac{|\mathcal{E}|}{2} \geq \frac{\mathrm{OPT}}{2}
$$

Questions?

Conditional Expectation

Similar to probabilities, expectations can be conditioned on some event.
For random variable R, the expected value of R conditioned on an event A is given by:

$$
\mathbb{E}[R \mid A]=\sum_{x \in \operatorname{Range}(R)} x \operatorname{Pr}[R=x \mid A]
$$

Q: If we throw a standard dice and define R to be the random variable equal to the number that comes up, what is the expected value of R given that the number is at most 4 ?

Let A be the event that the number is at most 4 .

$$
\begin{aligned}
& \operatorname{Pr}[R=1 \mid A]=\frac{\operatorname{Pr}[(R=1) \cap A]}{\operatorname{Pr}[A]}=\frac{\operatorname{Pr}[R=1]}{\operatorname{Pr}[A]}=\frac{1 / 6}{4 / 6}=1 / 4 . \\
& \operatorname{Pr}[R=2 \mid A]=\operatorname{Pr}[R=3 \mid A]=\operatorname{Pr}[R=4 \mid A]=\frac{1}{4} \text { and } \operatorname{Pr}[R=5 \mid A]=\operatorname{Pr}[R=6 \mid A]=0 . \\
& \qquad \mathbb{E}[R \mid A]=\sum_{x \in\{1,2,3,4\}} x \operatorname{Pr}[R=x \mid A]=\frac{1}{4}[1+2+3+4]=\frac{5}{2}
\end{aligned}
$$

Q: What is the expected value of R given that the number is at least 4? Ans:
$\mathbb{E}[R \mid A]=\sum_{x \in\{4,5,6\}} \times \operatorname{Pr}[R=x \mid A]=\frac{1}{3}[4+5+6]=5$.

