CMPT 210: Probability and Computing

Lecture 15

Sharan Vaswani
March 7, 2024

Recap

Random variable: A random "variable" R on a probability space is a total function whose domain is the sample space \mathcal{S}, meaning that $R: \mathcal{S} \rightarrow V$.

Bernoulli Distribution: $f_{p}(0)=1-p, f_{p}(1)=p$. Example: When tossing a coin such that $\operatorname{Pr}[$ heads $]=p$, random variable R is equal to 1 if we get a heads (and equal to 0 otherwise). In this case, $R \sim \operatorname{Ber}(p)$.
Uniform Distribution: If $R: \mathcal{S} \rightarrow V$, then for all $v \in V, f(v)=1 /|V|$. Example: When throwing an n-sided die, random variable R is the number that comes up on the die. $V=\{1,2, \ldots, n\} . \operatorname{In}$ this case, $R \sim \operatorname{Uniform}(1, n)$.
Binomial Distribution: $f_{n, p}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$. Example: When tossing n independent coins such that $\operatorname{Pr}[$ heads $]=p$, random variable R is the number of heads in n coin tosses. In this case, $R \sim \operatorname{Bin}(n, p)$.
Geometric Distribution: $f_{p}(k)=(1-p)^{k-1} p$. Example: When repeatedly tossing a coin such that $\operatorname{Pr}[$ heads $]=p$, random variable R is the number of tosses needed to get the first heads. In this case, $R \sim \operatorname{Geo}(p)$.

Expectation of Random Variables

Recall that a random variable R is a total function from $\mathcal{S} \rightarrow V$.
Definition: Expectation of R is denoted by $\mathbb{E}[R]$ and "summarizes" its distribution. Formally,

$$
\mathbb{E}[R]:=\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega] R[\omega]
$$

$\mathbb{E}[R]$ is also known as the "expected value" or the "mean" of the random variable R.
Q: We throw a standard dice, and define R to be the random variable equal to the number that comes up. Calculate $\mathbb{E}[R]$.
$\mathcal{S}=\{1,2,3,4,5,6\}$ and for $\omega \in \mathcal{S}, R[\omega]=\omega$. Since this is a uniform probability space,
$\operatorname{Pr}[\{1\}]=\operatorname{Pr}[\{2\}]=\ldots=\operatorname{Pr}[\{6\}]=\frac{1}{6}$.
$\mathbb{E}[R]=\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega] R[\omega]=\sum_{\omega \in\{1,2, \ldots, 6\}} \operatorname{Pr}[\omega] \omega=\frac{1}{6}[1+2+3+4+5+6]=\frac{7}{2}$. Hence, a random variable does not necessarily achieve its expected value.

Q: Let $S:=1 / R$. Is $\mathbb{E}[S]=1 / \mathbb{E}[R]$? Ans: No. $1 / \mathbb{E}[R]=2 / 7, \mathbb{E}[S]=\frac{49}{120} \neq 1 / \mathbb{E}[R]$

Expectation of Random Variables

Alternate definition: $\mathbb{E}[R]=\sum_{x \in \operatorname{Range}(R)} \times \operatorname{Pr}[R=x]$.
Proof:

$$
\begin{aligned}
\mathbb{E}[R] & =\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega] R[\omega]=\sum_{x \in \operatorname{Range}(R)} \sum_{\omega \mid R(\omega)=x} \operatorname{Pr}[\omega] R[\omega]=\sum_{x \in \operatorname{Range}(R)} \sum_{\omega \mid R(\omega)=x} \operatorname{Pr}[\omega] x \\
& =\sum_{x \in \operatorname{Range}(R)} x\left[\sum_{\omega \mid R(\omega)=x} \operatorname{Pr}[\omega]\right]=\sum_{x \in \operatorname{Range}(R)} x \operatorname{Pr}[R=x]
\end{aligned}
$$

Advantage: This definition does not depend on the sample space.
Q: We throw a standard dice, and define R to be the random variable equal to the number that comes up. Calculate $\mathbb{E}[R]$.
Range $(R)=\{1,2,3,4,5,6\} . R$ has a uniform distribution i.e. $\operatorname{Pr}[R=1]=\ldots=\operatorname{Pr}[R=6]=\frac{1}{6}$.
Hence, $\mathbb{E}[R]=\frac{1}{6}[1+\ldots+6]=\frac{7}{2}$.

Expectation of Random Variables

Q: If $R \sim$ Uniform $\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$, compute $\mathbb{E}[R]$.
Range of $R=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\operatorname{Pr}\left[R=v_{1}\right]=\operatorname{Pr}\left[R=v_{2}\right]=\ldots=\operatorname{Pr}\left[R=v_{n}\right]=\frac{1}{n}$. Hence, $\mathbb{E}[R]=\frac{v_{1}+v_{2}+\ldots+v_{n}}{n}$ and the expectation for a uniform random variable is the average of the possible outcomes.
Q: If $R \sim \operatorname{Bernoulli}(p)$, compute $\mathbb{E}[R]$.
Range of R is $\{0,1\}$ and $\operatorname{Pr}[R=1]=p$.

$$
\mathbb{E}[R]=\sum_{x \in\{0,1\}} x \operatorname{Pr}[R=x]=(0)(1-p)+(1)(p)=p
$$

Q: If \mathcal{I}_{A} is the indicator random variable for event A, calculate $\mathbb{E}\left[\mathcal{I}_{A}\right]$.
Range $\left(\mathcal{I}_{A}\right)=\{0,1\}$ and $\mathcal{I}_{A}=1$ iff event A happens.

$$
\mathbb{E}\left[\mathcal{I}_{A}\right]=\operatorname{Pr}\left[\mathcal{I}_{A}=1\right](1)+\operatorname{Pr}\left[\mathcal{I}_{A}=0\right](0)=\operatorname{Pr}[A]
$$

Hence, for \mathcal{I}_{A}, the expectation is equal to the probability that event A happens.

Expectation of Random Variables

Q: If $R \sim \operatorname{Geo}(p)$, compute $\mathbb{E}[R]$.
Range $[R]=\{1,2, \ldots\}$ and $\operatorname{Pr}[R=k]=(1-p)^{k-1} p$.

$$
\begin{aligned}
& \mathbb{E}[R]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p \Longrightarrow(1-p) \mathbb{E}[R]=\sum_{k=1}^{\infty} k(1-p)^{k} p \\
& \Longrightarrow(1-(1-p)) \mathbb{E}[R]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p-\sum_{k=1}^{\infty} k(1-p)^{k} p \\
& \Longrightarrow \mathbb{E}[R]=\sum_{k=0}^{\infty}(k+1)(1-p)^{k}-\sum_{k=1}^{\infty} k(1-p)^{k}=1+\sum_{k=1}^{\infty}(1-p)^{k}=1+\frac{1-p}{1-(1-p)}=\frac{1}{p}
\end{aligned}
$$

When tossing a coin multiple times, on average, it will take $\frac{1}{p}$ tosses to get the first heads.

Expectation of Random variables

Linearity of Expectation: For two random variables R_{1} and $R_{2}, \mathbb{E}\left[R_{1}+R_{2}\right]=\mathbb{E}\left[R_{1}\right]+\mathbb{E}\left[R_{2}\right]$. Proof:
Let $T:=R_{1}+R_{2}$, meaning that for $\omega \in \mathcal{S}, T(\omega)=R_{1}(\omega)+R_{2}(\omega)$.

$$
\begin{aligned}
& \mathbb{E}\left[R_{1}+R_{2}\right]=\mathbb{E}[T]=\sum_{\omega \in \mathcal{S}} T(\omega) \operatorname{Pr}[\omega]=\sum_{\omega \in \mathcal{S}}\left[R_{1}(\omega) \operatorname{Pr}[\omega]+R_{2}(\omega) \operatorname{Pr}[\omega]\right] \\
\Longrightarrow & \mathbb{E}\left[R_{1}+R_{2}\right]=\mathbb{E}\left[R_{1}\right]+\mathbb{E}\left[R_{2}\right]
\end{aligned}
$$

In general, for n random variables $R_{1}, R_{2}, \ldots, R_{n}$ and constants $a_{1}, a_{2}, \ldots, a_{n}$,

$$
\mathbb{E}\left[\sum_{i=1}^{n} a_{i} R_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[R_{i}\right]
$$

Back to throwing dice

Q: We throw two standard dice, and define R to be the random variable equal to the sum of the numbers that comes up on the dice. Calculate $\mathbb{E}[R]$.

Answer 1: Recall that $\mathcal{S}=\{(1,1), \ldots,(6,6)\}$ and the range of R is $V=\{2, \ldots, 12\}$. Calculate $\operatorname{Pr}[R=2], \operatorname{Pr}[R=3], \ldots, \operatorname{Pr}[R=12]$, and calculate $\mathbb{E}[R]=\sum_{x \in\{2,3, \ldots, 12\}} \times \operatorname{Pr}[R=x]$.
Answer 2: Let R_{1} be the random variable equal to the number that comes up on the first dice, and R_{2} be the random variable equal to the number on the second dice. We wish to compute $\mathbb{E}\left[R_{1}+R_{2}\right]$. Using linearity of expectation, $\mathbb{E}[R]=\mathbb{E}\left[R_{1}\right]+\mathbb{E}\left[R_{2}\right]$. We know that for each of the dice, $\mathbb{E}\left[R_{1}\right]=\mathbb{E}\left[R_{2}\right]=\frac{7}{2}$ and hence, $\mathbb{E}[R]=7$.

Expectation - Examples

Q: A construction firm has recently sent in bids for 3 jobs worth (in profits) 10,20 , and 40 (thousand) dollars. The firm can either win or lose the bid. If its probabilities of winning the bids are $0.2,0.8$, and 0.3 respectively, what is the firm's expected total profit?
X_{i} is a random variable corresponding to the profits from job i. If the firm wins the bid for job 1, it gets a profit of 10 (thousand dollars), else if it loses the bid, it gets no profit. Hence, $\operatorname{Range}\left(X_{1}\right)=\{0,10\}, \operatorname{Pr}\left[X_{1}=10\right]=0.2$ and $\operatorname{Pr}\left[X_{1}=0\right]=1-0.2=0.8$. Similarly, we can compute the range and PDF for X_{2} and X_{3}. Let $X=X_{1}+X_{2}+X_{3}$ be the random variable corresponding to the total profit. We wish to compute $\mathbb{E}[X]=\mathbb{E}\left[X_{1}+X_{2}+X_{3}\right]$. By linearity of expectation, $\mathbb{E}[X]=\mathbb{E}\left[X_{1}+X_{2}+X_{3}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{3}\right]$.
$\mathbb{E}\left[X_{1}\right]=(0.2)(10)+(0.8)(0)=2$. Computing, $\mathbb{E}\left[X_{2}\right]$ and $\mathbb{E}\left[X_{3}\right]$ similarly, $\mathbb{E}[X]=(0.2)(10)+(0.8)(20)+(0.3)(40)=30$.
Q: If the company loses 5 (thousand) dollars if it did not win the bid, what is the firm's expected profit. Ans: $\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{3}\right]=$ $[(0.2)(10)-(0.8)(5)]+[(0.8)(20)-(0.2)(5)]+[(0.3)(40)-(0.7)(5)]=30-8.5=21.5$

Expectation of Random Variables

Q: If $R \sim \operatorname{Bin}(n, p)$, compute $\mathbb{E}[R]$.
Answer 1: For a binomial random variable, Range $[R]=\{0,1,2, \ldots n\}$ and $\operatorname{Pr}[R=k]=\binom{n}{k} p^{k}(1-p)^{n-k} . \mathbb{E}[R]=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}$. Painful computation!
Answer 2: Define R_{i} to be the indicator random variable that we get a heads in toss i of the coin. Recall that R is the random variable equal to the number of heads in n tosses. Hence,

$$
R=R_{1}+R_{2}+\ldots+R_{n} \Longrightarrow \mathbb{E}[R]=\mathbb{E}\left[R_{1}+R_{2}+\ldots+R_{n}\right]
$$

By linearity of expectation,

$$
\mathbb{E}[R]=\mathbb{E}\left[R_{1}\right]+\mathbb{E}\left[R_{2}\right]+\ldots+\mathbb{E}\left[R_{n}\right]=\operatorname{Pr}\left[R_{1}\right]+\operatorname{Pr}\left[R_{2}\right]+\ldots+\operatorname{Pr}\left[R_{n}\right]=n p
$$

If the probability of success is p and there are n trials, we expect $n p$ of the trials to succeed on average.

Expectation - Examples

Q: We have a program that crashes with probability 0.1 in every hour. What is the average time after which we expect that program to crash?

Ans: If X is the random variable corresponding to the time it takes for the program to crash, then $X \sim \operatorname{Geo}(0.1)$. For a Geometric random variables, $\mathbb{E}[X]=1 / p=10$. Hence, we expect the program to crash after 10 hours on average.
Q: It is known that disks produced by a certain company will be defective with probability 0.01 independently of each other. The company sells the disks in packages of 10 and offers a money-back offer of 2 dollars for every disk that crashes in the package. On average, how much will this money-back offer cost the company per package?

Ans: If X is the random variable corresponding to the number of disks that crash, then we know that $X \sim \operatorname{Bin}(10,0.01)$ and $\mathbb{E}[X]=(10)(0.01)=0.1$. If Y is the random variable equal to the cost of the money-back offer, then, $Y=2 X$. And we wish to compute $\mathbb{E}[Y]=2 \mathbb{E}[X]=2(0.1)=0.2$.

Expectation - Examples - Coupon Collector Problem

Q: In a game started by a coffee shop, each time we buy a coffee, we get a coupon. Each coupon has a color (amongst n different colors) and each time, the color of the coupon is selected uniformly at random from amongst the n colors. If we collect at least one coupon of each color, we can claim a free coffee. On average, how many coupons should we collect (coffees we should buy) to claim the prize?

Suppose we get the following sequence of coupons:
blue, green, green, red, blue, orange, blue, orange, gray

Let us partition this sequence into segments such that a segment ends when we collect a coupon of a new color we did not have before. For this example,

If the number of segments is equal to n, by definition, we will have collected coupons of the n different colors. Define X_{k} to be the random variable equal to the length of segment S_{k} and T to be the total number of coupons required to have at least one coupon per color.

Expectation - Examples - Coupon Collector Problem

$T=X_{1}+X_{2}+\ldots X_{n}$. We wish to compute $\mathbb{E}[T]$. By linearity of expectation, $\mathbb{E}[T]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\ldots+\mathbb{E}\left[X_{n}\right]$.
Let us calculate $\mathbb{E}\left[X_{k}\right]$. If we are on segment k, we have seen $k-1$ colors before. Hence, the probability of seeing a new (one that we have not seen before) colored coupon in S_{k} is $\frac{n-(k-1)}{n}$. $X_{k} \sim \operatorname{Geo}\left(\frac{n-(k-1)}{n}\right)$, and we know that $\mathbb{E}\left[X_{k}\right]=\frac{n}{n-k+1}$.

$$
\begin{aligned}
\mathbb{E}[T] & =\sum_{k=1}^{n} \frac{n}{n-k+1}=n\left[\frac{1}{n}+\frac{1}{n-1}+\ldots+\frac{1}{1}\right] \\
& \leq n\left[1+\int_{1}^{n} \frac{d x}{x}\right]=n[1+\ln (n)]
\end{aligned}
$$

We also know that $\mathbb{E}[T] \geq n \ln (n+1)$. Hence, $\mathbb{E}[T]=O(n \ln (n))$, meaning that we need to buy $O(n \ln (n))$ coffees to collect coupons of n colors and get a free coffee.

Questions?

