CMPT 210: Probability and Computing

Lecture 13

Sharan Vaswani
February 27, 2024

Recap

Random variable: A random "variable" R on a probability space is a total function whose domain is the sample space \mathcal{S}. The codomain is denoted by V (usually a subset of the real numbers), meaning that $R: \mathcal{S} \rightarrow V$.
Example: Suppose we toss three independent, unbiased coins. In this case, $\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\} . C$ is a random variable equal to the number of heads that appear such that $C: \mathcal{S} \rightarrow\{0,1,2,3\}$. $C(H H T)=2$. An random variable partitions the sample space into several blocks. For r.v. R, for all $i \in \operatorname{Range}(R)$, the event $[R=i]=\{\omega \in \mathcal{S} \mid R(\omega)=i\}$. For any r.v. $R, \sum_{i \in \operatorname{Range}(\mathrm{R})} \operatorname{Pr}[R=i]=1$.
Example: For the above r.v. $C,[C=2]=\{H H T, H T H, T H H\}$ and $\operatorname{Pr}[C=2]=\frac{3}{8}$. $\sum_{i \in \operatorname{Range}(C)} \operatorname{Pr}[C=i]=\operatorname{Pr}[C=0]+\operatorname{Pr}[C=1]+\operatorname{Pr}[C=2]+\operatorname{Pr}[C=3]=\frac{1}{8}+\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=1$.

Recap

Indicator Random Variable: An indicator random variable corresponding to an event E is denoted as \mathcal{I}_{E} and is defined such that for $\omega \in E, \mathcal{I}_{E}[\omega]=1$ and for $\omega \notin E, \mathcal{I}_{E}[\omega]=0$.

Example: When throwing two dice, if E is the event that both throws of the dice result in a prime number, then $\mathcal{I}_{E}((2,4))=0$ and $\mathcal{I}_{E}((2,3))=1$.

Probability density function (PDF): Let R be a r.v. with codomain V. The probability density function of R is the function $\mathrm{PDF}_{R}: V \rightarrow[0,1]$, such that $\mathrm{PDF}_{R}[x]=\operatorname{Pr}[R=x]$ if $x \in \operatorname{Range}(\mathrm{R})$ and equal to zero if $x \notin \operatorname{Range}(\mathrm{R})$.

Cumulative distribution function (CDF): The cumulative distribution function of R is the function $\mathrm{CDF}_{R}: \mathbb{R} \rightarrow[0,1]$, such that $\mathrm{CDF}_{R}[x]=\operatorname{Pr}[R \leq x]$.
Importantly, neither PDF_{R} nor CDF_{R} involves the sample space of an experiment.
Example: If we flip three coins, and C counts the number of heads, then
$\operatorname{PDF}_{C}[0]=\operatorname{Pr}[C=0]=\frac{1}{8}$, and
$\mathrm{CDF}_{C}[2.3]=\operatorname{Pr}[C \leq 2.3]=\operatorname{Pr}[C=0]+\operatorname{Pr}[C=1]+\operatorname{Pr}[C=2]=\frac{7}{8}$.

Bernoulli Distribution

Canonical Example: We toss a biased coin such that the probability of getting a heads is p. Let R be the random variable such that $R=1$ when the coin comes up heads and $R=0$ if the coin comes up tails. R follows the Bernoulli distribution.
PDF_{R} for Bernoulli distribution: $f:\{0,1\} \rightarrow[0,1]$ meaning that Bernoulli random variables take values in $\{0,1\}$. It can be fully specified by the "probability of success" (of an experiment) p (probability of getting a heads in the example). Formally, PDF_{R} is given by:

$$
f(1)=p \quad ; \quad f(0)=q:=1-p
$$

In the example, $\operatorname{Pr}[R=1]=f(1)=p=\operatorname{Pr}[$ event that we get a heads $]$.
CDF_{R} for Bernoulli distribution: $F: \mathbb{R} \rightarrow[0,1]$:

$$
\begin{aligned}
F(x) & =0 & (\text { for } x<0) \\
& =1-p & (\text { for } 0 \leq x<1) \\
& =1 & (\text { for } x \geq 1)
\end{aligned}
$$

Uniform Distribution

Canonical Example: We roll a standard die. Let R be the random variable equal to the number that shows up on the die. R follows the uniform distribution.

A random variable R that takes on each possible value in its codomain V with the same probability is said to be uniform.
PDF_{R} for Uniform distribution: $f: V \rightarrow[0,1]$ such that for all $v \in V, f(v)=1 /|V|$. In the example, $f(1)=f(2)=\ldots=f(6)=\frac{1}{6}$.
CDF_{R} for Uniform distribution: For n elements in V arranged in increasing order $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, the CDF is:

$$
\begin{aligned}
F(x) & =0 \\
& =k / n \\
& =1
\end{aligned}
$$

$$
\begin{array}{r}
\left(\text { for } x<v_{1}\right) \\
\left(\text { for } v_{k} \leq x<v_{k+1}\right) \\
\left(\text { for } x \geq v_{n}\right)
\end{array}
$$

Q: If X has a Bernoulli distribution, when is X also uniform?

Binomial Distribution

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.
PDF_{R} for Binomial distribution: $f:\{0,1,2, \ldots, n\} \rightarrow[0,1]$. For $k \in\{0,1, \ldots, n\}$, $f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.
Proof: Let E_{k} be the event we get k heads. Let A_{i} be the event we get a heads in toss i.

$$
\begin{aligned}
E_{k}= & \left(A_{1} \cap A_{2} \ldots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \ldots \cap A_{n}^{c}\right) \cup\left(A_{1}^{c} \cap A_{2} \ldots A_{k} \cap A_{k+1} \cap A_{k+2}^{c} \cap \ldots \cap A_{n}^{c}\right) \cup \ldots \\
\operatorname{Pr}\left[E_{k}\right] & =\operatorname{Pr}\left[\left(A_{1} \cap A_{2} \ldots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \ldots \cap A_{n}^{c}\right)\right]+\operatorname{Pr}\left[A_{1}^{c} \cap A_{2} \ldots A_{k} \cap A_{k+1} \cap \ldots \cap\right]+\ldots \\
& =\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2}\right] \operatorname{Pr}\left[A_{k}\right] \operatorname{Pr}\left[A_{k+1}^{c}\right] \operatorname{Pr}\left[A_{k+2}^{c}\right] \ldots \operatorname{Pr}\left[A_{n}^{c}\right]+\ldots \quad \text { (Independence of tosses) } \\
& =p^{k}(1-p)^{n-k}+p^{k}(1-p)^{n-k}+\ldots \\
\Longrightarrow & \operatorname{Pr}\left[E_{k}\right]=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$\left(\right.$ Number of terms $=$ number of ways to choose the k tosses that result in heads $\left.=\binom{n}{k}\right)$

Binomial Distribution

For the Binomial distribution, $\operatorname{PDF}_{R}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.

Q: Prove that $\sum_{k \in \operatorname{Range}(\mathrm{R})} \mathrm{PDF}_{R}[k]=1$.
By the Binomial Theorem, $\sum_{k \in \operatorname{Range}(R)} \operatorname{PDF}_{R}[k]=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+1-p)^{n}=1$.
CDF_{R} for Binomial distribution: $F: \mathbb{R} \rightarrow[0,1]:$

$$
\begin{aligned}
F(x) & =0 \\
& =\sum_{i=0}^{k}\binom{n}{i} p^{i}(1-p)^{n-i} \\
& =1 .
\end{aligned}
$$

$$
(\text { for } x<0)
$$

$$
(\text { for } k \leq x<k+1)
$$

$$
(\text { for } x \geq n \text {) }
$$

Geometric Distribution

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.
PDF_{R} for Geometric distribution: $f:\{1,2, \ldots\} \rightarrow[0,1]$. For $k \in\{1,2, \ldots, \infty\}$, $f(k)=(1-p)^{k-1} p$.
Proof: Let E_{k} be the event that we need k tosses to get the first heads. Let A_{i} be the event that we get a heads in toss i.

$$
\begin{aligned}
E_{k} & =A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k} \\
\operatorname{Pr}\left[E_{k}\right] & =\operatorname{Pr}\left[A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k}\right]=\operatorname{Pr}\left[A_{1}^{c}\right] \operatorname{Pr}\left[A_{2}^{c}\right] \ldots \operatorname{Pr}\left[A_{k}\right] \quad \text { (Independence of tosses) } \\
\Longrightarrow \operatorname{Pr}\left[E_{k}\right] & =(1-p)^{k-1} p
\end{aligned}
$$

Q: Prove that $\sum_{k \in \operatorname{Range(R)}} \operatorname{PDF}_{R}[k]=1$.
By the sum of geometric series, $\sum_{k \in \operatorname{Range}(R)} \mathrm{PDF}_{R}[k]=\sum_{k=1}^{\infty}(1-p)^{k-1} p=\frac{p}{1-(1-p)}=1$.

Geometric Distribution

For the Geometric distribution, $\operatorname{PDF}_{R}(k)=(1-p)^{k-1} p$.

CDF_{R} for Geometric distribution: $F: \mathbb{R} \rightarrow[0,1]:$

$$
\begin{array}{rlr}
F(x) & =0 & (\text { for } x<1) \\
& =\sum_{i=1}^{k}(1-p)^{i-1} p & (\text { for } k \leq x<k+1)
\end{array}
$$

Questions?

